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Abstract: Sentiment analysis holds paramount importance in contemporary business landscapes, 
particularly in leveraging insights from the extensive pool of social media data. The rise of social media 
platforms, including opinion polls, weblogs, Twitter, and various other networks, has accentuated the need 
for effective sentiment analysis tools. Deep learning has emerged as a pivotal technique in natural language 
processing (NLP), particularly for sentiment analysis tasks, owing to its ability to autonomously learn features. 
However, the performance of deep learning models can suffer when confronted with a large number of 
features. To address this limitation, this paper proposes a novel fused feature selection technique, Chi-Vec, 
aimed at selectively passing relevant features to deep learning models. Chi-Vec is a fusion of Chi-square and 
Word2Vec. The research encompasses the exploration of three distinct datasets; CBET, ATIS, and AWARE. 
Leveraging the bi-directional Long Short-Term Memory (Bi-LSTM) architecture in conjunction with Chi-Vec, 
the approach achieves remarkable accuracy rates of 97.96%, 98.41%, and 94.45% for CBET, ATIS, and 
AWARE dataset respectively. Chi-Vec not only enhances the efficiency and accuracy of sentiment analysis 
but also demonstrates promising potential for various NLP applications. 

Keywords: Sentiment Analysis; Deep Learning; Feature Selection; Chi-Vec. 

INTRODUCTION 

Sentiment analysis has become indispensable in modern businesses, leveraging the vast reservoir of 
social media data to derive actionable insights. The proliferation of online platforms has underscored the 
significance of understanding, and analyzing public sentiment. This burgeoning demand for sentiment 

HIGHLIGHTS 
 

• Proposed a novel fused feature selection technique 

• The proposed Chi-Vec captures the semantic and statistical features. 

• Explored the proposed method with three distinct datasets. 
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analysis coincides with the exponential growth of social media, necessitating advanced techniques to sift 
through the immense volume of textual data and extract meaningful sentiments. 

Deep learning has emerged as a powerful tool in natural language processing (NLP), revolutionizing 
sentiment analysis with its ability to automatically learn intricate features from raw text data. Its application in 
sentiment analysis has yielded remarkable results, enabling more accurate sentiment classification and 
sentiment-based decision-making. However, deep learning models may encounter challenges when dealing 
with high-dimensional feature spaces [1], prompting the need for effective feature selection techniques [2]. 
The deep learning models used in this research are Convolutional Neural Networks (CNN), Recurrent Neural 
Networks (RNN), Long Short-Term Memory networks (LSTM), Bidirectional LSTM (Bi-LSTM), Gated 
Recurrent Unit (GRU), and Bidirectional Encoder Representations from Transformers (BERT). 

Addressing the limitations of deep learning models, this paper introduces Chi-Vec, a novel fused feature 
selection technique designed to optimize sentiment analysis tasks. In this context, the integration of Chi-
Square and Word2Vec features, fused together to form Chi-Vec features, holds significance. By selectively 
passing relevant features to deep learning architectures, Chi-Vec aims to enhance model performance and 
efficiency. Through the fusion of feature selection and deep learning methodologies, this approach endeavors 
to expand the horizons of sentiment analysis accuracy and applicability in real-world scenarios [3]. 

Literature Review 

In their study, Sharma and Jain [4] delve into ensemble learning, evaluating multiple ensemble classifiers 
and features for sentiment classification of social media data. Their proposed hybrid ensemble learning model 
amalgamates ensemble features, namely Information Gain and CHI-Squared, with ensemble classifiers such 
as Ada Boost with SMO-SVM and Logistic Regression. This combination aims to enhance sentiment 
classification accuracy. The model exhibits notable efficacy, achieving an accuracy of 88.2% with a minimal 
error rate. These results signify advancements over existing state-of-the-art methods. 

Alarifi and coauthors [5] proposed an innovative sentiment analysis approach leveraging big data and 
machine learning. Through meticulous data collection and preprocessing to minimize noise, they employed 
a greedy feature selection strategy to identify impactful features. These features were integrated into an 
optimized classifier, CSO-LSTMNN, outperforming the PSO algorithm in accuracy enhancement and error 
rate reduction. Evaluation metrics including error rate, precision, recall, and accuracy showcased notable 
enhancements in system efficiency. 

Dey and Das [6] introduced a hybrid neural network-based sentiment analysis framework, enhancing 
TF-IDF with a non-linear global weighting factor and the k-best selection method for improved feature 
vectorization. Utilizing pre-trained Word2Vec embedding, the framework optimizes deep learning efficiency. 
Combining CNN and LSTM, it outperforms traditional machine learning methods in sentiment analysis. 
Validation across diverse datasets confirms its efficacy using various metrics. 

Kaur and Sharma [7] developed a consumer review summarization model utilizing Natural Language 
Processing (NLP) and Long Short-Term Memory (LSTM) for sentiment analysis. Their hybrid approach 
encompasses NLP pre-processing to filter undesirable data, followed by feature extraction combining review-
related and aspect-related features. Sentiment classification is then performed using LSTM. Experimental 
evaluation across three datasets reveals high performance, with an average precision of 94.46%, average 
recall of 91.63%, and average F1-score of 92.81%. 

Daniel and Meena [8] emphasize the efficacy of hybrid methodologies combining deep learning and 
lexicon-based sentiment analysis (SA) techniques, showcasing superior performance. Their proposed 
approach integrates the Valence Aware Dictionary for Sentiment Reasoning (VADER) with a hybrid deep 
learning method, namely attention-based bidirectional long short-term memory, and variable pooling 
convolutional neural network (VPCNN-ABiLSTM). Achieving a remarkable accuracy of 97.1% with a 13.6% 
reduction in features compared to existing methods, their approach demonstrates significant advancements. 
The paper further discusses the CHOA approach, OBL strategy, and CNN-LSTM classifier employed within 
the proposed SA framework. 

Overall, the existing studies demonstrate advancements in sentiment analysis methodologies, 
addressing challenges such as noisy data, feature selection, classifier optimization, and incorporating 
contextual information. However, there remain challenges in effectively handling complex data structures, 
improving model interpretability, and achieving consistent performance across diverse datasets. These 
challenges provide opportunities for further research and development in the field of sentiment analysis. 
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Motivation and Justification 

The rapid evolution of social media platforms has generated an unprecedented volume of textual data, 
making sentiment analysis crucial for extracting actionable insights. While deep learning has revolutionized 
sentiment analysis, the challenge lies in optimizing model performance amidst high-dimensional feature 
spaces. Thus, the motivation for this research stems from the pressing need to enhance sentiment analysis 
methodologies by addressing the scalability limitations of deep learning models. By introducing Chi-Vec, a 
novel fused feature selection technique, the research aims to selectively pass relevant features to optimize 
model performance, thereby improving the efficiency and accuracy of sentiment analysis tasks across diverse 
datasets and applications. 

This research introduces an innovative approach to sentiment analysis, addressing scalability challenges 
inherent in deep learning models. Chi-Vec, a fused feature selection technique, optimizes model performance 
and streamlines sentiment analysis processes, facilitating informed decision-making across various domains. 
By leveraging Chi-Square feature selection for identifying statistically significant features and Word2Vec 
embeddings for capturing semantic relationships, Chi-Vec enriches the feature space comprehensively. This 
selective extraction of relevant features aims to enhance the efficiency of deep learning architectures. 
Through the integration of feature selection and deep learning methodologies, Chi-Vec expands the horizons 
of sentiment analysis accuracy and its practical applications. Rigorous experimentation validates the 
robustness and effectiveness of Chi-Vec, promising to revolutionize sentiment analysis approaches and 
extract valuable insights from textual data in real-world scenarios. 

Outline of the research work 

 

 
 

Figure 1. Outline of the research work 

Figure 1 illustrates the comprehensive workflow of the research work. In the training phase, labeled data 
undergoes preprocessing and Chi-Vec feature selection before being fed into a Deep Learning model. 
Subsequently, during the testing phase, unlabeled preprocessed data is subjected to Chi-Vec feature 
selection and then passed through the trained Deep Learning model. Following this, the data is classified, 
and the model's performance is evaluated. The rest of the paper is organized as follows: Section 2 presents 
the methodology of the proposed work. Section 3 presents the experimental results and section 4 concludes 
the paper 

MATERIAL AND METHODS 

The proposed sentiment analysis model initiates with preprocessing steps, followed by employing a 
feature selection technique to identify pertinent features. Subsequently, various deep learning models are 
utilized to construct the sentiment analysis model. 
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Preprocessing 

The textual data for sentiment analysis undergoes several preprocessing techniques to eliminate noise 
[9]. These techniques include case normalization, tokenization, lemmatization, removal of stop words, URLs, 
hashtags, symbols, special characters, and numbers [10,11,12,13]. Case normalization involves converting 
all text to either lowercase or uppercase. This helps in treating words with the same characters but different 
cases for e.g., "Hello" and "hello" as identical tokens. It simplifies the vocabulary and reduces sparsity in the 
data, making it easier for the model to learn patterns. Tokenization involves breaking down the text into 
individual words or tokens whereas lemmatization is the process of reducing words to their base or root form. 
It helps in standardizing the vocabulary by converting different inflected forms of words to their common base 
form. For example, "running," "runs," and "ran" would all be lemmatized to "run." Stop words are common 
words that often appear frequently in the text but carry little semantic meaning (e.g., "the," "is," "and"). 
Removing stop words reduces the dimensionality of the data and focuses the model's attention on more 
informative words. Additionally, to address imbalanced datasets, resampling is performed using a hybrid 
SMOTE-ENN technique [14].  

Hybrid SMOTE-ENN 

The hybrid SMOTE-ENN (Synthetic Minority Over-sampling Technique combined with Edited Nearest 
Neighbors) resampling technique is specifically designed to address the issue of imbalanced datasets. 
Imbalanced datasets occur when one class is significantly more prevalent than others, which can lead to 
biased models favoring the majority class. SMOTE focuses on the minority class by generating synthetic 
examples to balance the class distribution [15]. It does this by creating synthetic samples along the line 
segments connecting similar minority class instances. This helps to increase the representation of the 
minority class in the dataset. ENN, on the other hand, focuses on the majority class by removing instances 
that are considered noise or outliers. It works by identifying instances in the majority class that are 
misclassified by their nearest neighbors and removes them. This helps to reduce the dominance of the 
majority class and improve the balance between classes. By combining SMOTE and ENN, the hybrid 
approach aims to create a more balanced dataset that retains the essential information from both the minority 
and majority classes. In the case of the ATIS dataset, the class atis_flight is the majority class with 3666 
instances, while the remaining five classes represent the minority classes. To address this class imbalance 
and ensure that the model learns from all classes equally, the hybrid SMOTE-ENN technique is applied. This 
approach creates a more balanced dataset, thereby enhancing the model's performance and predictive 
accuracy across all classes. 

The rationale behind these preprocessing techniques is to create a clean and standardized dataset that 
retains the essential information for sentiment analysis while eliminating irrelevant noise. By applying these 
techniques, the model can focus on learning meaningful patterns from the text, leading to more accurate 
sentiment predictions. 

Proposed Chi-Vec Fused Feature Selection Algorithm 

The aim of this research is to propose a novel approach in feature selection for sentiment analysis, 
termed the Chi-Vec Fused Feature Selection Algorithm. This innovative methodology aims to combine the 
strengths of two distinct techniques; Chi-square and Word2Vec. Chi-square serves as a robust statistical 
measure, assessing the independence between features and target labels, facilitating the identification of 
relevant features [16]. Conversely, Word2Vec captures semantic relationships within textual data, extracting 
meaningful word embeddings [17,18]. By integrating these methodologies, the algorithm achieves a synergy 
that capitalizes on both the statistical significance conferred by Chi-square and the semantic context provided 
by Word2Vec embeddings. The novelty of this approach lies in its fusion of statistical significance and 
semantic relevance in feature selection, thereby offering a comprehensive representation of the data. Figure 
2 illustrates the schematic representation of the proposed Chi-Vec Fused Feature Selection algorithm. 
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Figure 2. Working of Chi-Vec Fused Feature Selection Algorithm 

Word Embeddings 

To imbue the text data with semantic meaning, a pre-trained Word2Vec model google-news-300 from 
Gensim [19] is utilized. It produces an embedding of dimensionality 300. Initially, the text is tokenized, 
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selected features have dimensions of [n_samples, n_features] and the Word2Vec embeddings have 
dimensions of [n_samples, embedding_size], horizontal stacking results in a combined feature matrix with 
dimensions of [n_samples, n_features ~ embedding_size]. 
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range, usually between 0 and 1, while preserving the relative distribution of the data. Scaling is crucial as it 
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scales, model is stabilized and converged, ensuring that each feature contributes proportionally to the 
model's decision-making process. Ultimately, scaling optimizes the model's performance during both training 
and inference phases. 
For better understanding of this process an example is given.  
 
Raw data: 
“I like the movie. It was fantastic. It is so positive vibe.” 
 
Preprocessed data: 
“like movie fantastic positive vibe”. 
 
Word Embedding of dimension n: 
[-0.02224731  0.05386353  0.0729599  … -0.00585938  0.15139771] 
 
Chi-square features of dimension m: 
[163  522 2594  …  522 2595] 
 
Fused Chi-Vec features of dimension (n~m): 
[-0.02224731  0.05386353  0.0729599  … -0.00585938  0.15139771  163  522 2594  …  522 2595] 
 
Scaled features: 
[-0.87097477  0.43690864  0.74937503 … -1.43623798  0.70919307  0.02709956 -0.020692 …  -
0.01490878  -0.04417613] 

Classification Techniques 

This section offers a succinct overview of the diverse deep learning (DL) models utilized for classification. 
The models encompass CNN, RNN, LSTM, Bi-LSTM, GRU, and BERT, each contributing distinct capabilities 
and architectures to the classification task [21]. 

CNN 

CNNs employ convolutional layers, pooling layers, and fully connected layers [22]. In CNN architecture, 
convolutional layers extract features through filters, capturing spatial hierarchies [9]. Pooling layers reduce 
spatial dimensions while retaining important information. Fully connected layers interpret extracted features 
for classification [10]. CNNs are primarily used for image analysis but are adapted for text sentiment analysis 
by treating text inputs as 1D sequences [20]. Word embeddings represent text, serving as input to CNNs. 
Through convolution and pooling, CNNs learn hierarchical text features, enabling sentiment classification. 
This approach efficiently captures local and global patterns, making CNNs effective for sentiment analysis in 
textual data. 

RNN 

Recurrent Neural Networks (RNNs) are a type of neural network architecture designed to process 
sequential data by maintaining a hidden state [9]. Each RNN unit receives an input and a hidden state from 
the previous time step, producing an output and updating its hidden state [17]. This recurrent structure 
enables RNNs to capture temporal dependencies in data, making them suitable for tasks like sentiment 
analysis. By processing text sequentially, RNNs can understand the context of words in a sentence, allowing 
them to infer sentiment [18]. This capability makes RNNs valuable in sentiment analysis applications, where 
understanding text sentiment is essential for decision-making. 

LSTM 

Long Short-Term Memory (LSTM) is a specialized recurrent neural network (RNN) architecture 
engineered to combat the vanishing gradient dilemma [9], offering enhanced capabilities in retaining 
information across lengthy sequences. Featuring memory cells equipped with input, output, and forget gates, 
LSTM efficiently regulates the flow of information, ensuring robust processing of sequential data [23]. 
Particularly in text sentiment analysis, LSTM shines by adeptly grasping the contextual intricacies within 
sentences, vital for discerning nuanced sentiments. Through sequential text processing, LSTM models 
acquire proficiency in recognizing and interpreting sentiment patterns, leveraging their innate ability to 
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maintain pertinent information over extended sequences. This makes LSTM a preferred choice for tasks 
demanding a profound understanding of text sentiment across diverse contexts and lengths of textual data. 

Bi-LSTM 

Bidirectional Long Short-Term Memory (Bi-LSTM) is a recurrent neural network (RNN) architecture 
designed to capture sequential patterns bidirectionally [20]. Comprising forward and backward LSTM layers, 
it processes input data in both chronological orders, enhancing context comprehension [16]. In text sentiment 
analysis, Bi-LSTM considers the entirety of a sentence, discerning nuanced dependencies between words. 
By capturing long-range dependencies and contextual nuances, it excels in understanding sentiment 
nuances within text data [24]. Through its bidirectional nature, Bi-LSTM effectively grasps the semantic 
meaning of text, enabling accurate sentiment classification. Its ability to comprehend sequences 
bidirectionally makes it a potent tool for nuanced sentiment analysis tasks [1]. 

GRU 

GRU, known as Gated Recurrent Unit, embodies a form of recurrent neural network architecture crafted 
to tackle the vanishing gradient issue inherent in traditional RNNs [9]. With reset and update gates 
constituting its essence, GRU selectively preserves or refreshes information, thereby enhancing learning 
efficacy [1]. In the realm of text sentiment analysis, GRU models meticulously process sequential input, adept 
at grasping subtleties inherent in contextual understanding pivotal for sentiment interpretation. Through 
dynamically adapting gate states, GRU adeptly captures extensive dependencies within text data, facilitating 
precise sentiment classification. Its streamlined framework and capacity to retain pertinent information render 
GRU a favored option for sentiment analysis endeavors, empowering sentiment-aware applications. 

BERT 

BERT utilizes a transformer architecture comprising self-attention mechanisms for contextual 
understanding [25,26]. It employs multiple layers of bidirectional transformers to capture intricate 
relationships within text [9]. BERT's pre-training involves masked language modeling and next sentence 
prediction tasks, enabling it to learn rich representations of words. In text sentiment analysis, BERT excels 
by comprehending nuances and context, facilitating more accurate sentiment classification [3]. By fine-tuning 
BERT on sentiment-labeled data, it adapts to specific sentiment analysis tasks, achieving superior 
performance compared to traditional methods. Leveraging its deep contextual understanding, BERT 
revolutionizes sentiment analysis, enhancing accuracy and capturing subtleties in text sentiment 
interpretation. 

RESULTS 

The study conducted a thorough experimental analysis to evaluate the efficacy of the proposed Chi-Vec 
feature selection algorithm against existing methods. It aimed to determine the effectiveness of various 
classifiers in conjunction with Chi-Vec for selecting the most relevant features in sentiment analysis tasks. 
Furthermore, the experiment sought to assess Chi-Vec's performance across different datasets, providing a 
comprehensive understanding of its applicability and potential for improving sentiment analysis accuracy. 

Dataset Description 

Three different benchmark datasets are used for the assessment of the Chi-Vec feature selection. They 
are described below. 

CBET Dataset 

The CBET (Cleaned Balanced Emotional Tweets) Dataset is created by Shahraki and Zaiane [27]. Its 
description and statistical information are listed in Table 1 and Table 2 respectively. 

                                   Table 1. Data Description of CBET Dataset 

S.No. Field Data Type Description 

1. Text text  Raw text Data 

2. Emotion text The emotion of the text 
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                                           Table 2. Statistical Information of CBET Dataset 

S.No. Class Name No. of Instances 

1. Anger 8000 

2. Fear 8000 

3. Joy 8000 

4. Love 8000 

5. Sadness 8000 

6. Surprise 8000 

7. Thankfulness 8000 

8. Disgust 8000 

9. Guilt 8000 

 Total Instances 72000 

ATIS Dataset 

The ATIS dataset [28] is a benchmark dataset of Airline Travel Information System created from tweets. 
The ATIS dataset description is listed in Table 3. Its statistical information is listed in Table 4.   

              Table 3. Data Description of ATIS Dataset 

S.No. Field Data Type Description 

1. Intent Id text Id of the Intent 

2. Text text Airline travel information text 

                                      Table 4. ATIS Dataset Statistical Information 

S. No Class Name No. of Instances 

1. atis _ abbreviation 147 
2. atis _ aircraft 81 
3. atis _ airfare 423 
4. atis _ airline 157 
5. atis _ flight 3666 
6. atis _ flight _ time 54 
7. atis _ ground _ service 255 
 Total Instances 4783 

AWARE Dataset 

The AWARE dataset [29] is a benchmark dataset of 11323 apps reviews. Reviews were collected from 
three domains: productivity, social networking, and games. The AWARE dataset description is listed in Table 
5. Its statistical information is listed in Table 6. P denotes positive class and N denoted negative class. 

                                    Table 5. Data Description of AWARE Dataset 

S.No. Field Data Type Description 

1.  review Text  The raw text 

2. sentiment text The sentiment behind the review 

                                                 Table 6. AWARE Dataset Statistical Information 

S. No Class Name No. of Instances 

1. P 25000 

2. N 25000 

 Total instances 50000 
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Performance Metrics 

Table 7 presents the metrics employed to assess the performance of the classifiers. The metrics 
encompass Accuracy, Precision, Recall, and F1-Score [30]. 

                              Table 7. Performance Metrics and Formula 

Performance Metric                            Formula 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Recall 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

F1-score 

2

1
𝑃
+
1
𝑅

 

           Where P is the precision and R is the Recall 

 
In this context, TP denotes the count of accurately identified positive occurrences, TN denotes the count 

of accurately identified negative occurrences, FP signifies the count of occurrences identified as positive but 
are actually negative, and FN indicates the count of occurrences identified as negative but are actually 
positive. 

Experimental Setup 

The hyperparameters used in the experimental setup included input dense layer units of 64 with ReLU 
activation, a dropout rate of 0.5, an output dense layer and softmax activation, employing categorical 
crossentropy as the loss function, utilizing the Adam optimizer, running for 10 epochs with a batch size of 25, 
and validating with a split ratio of 0.1. These hyperparameters were carefully selected to ensure a robust 
evaluation framework and facilitate fair comparisons across sentiment analysis tasks and datasets. 

Experiment 1: Choosing the k value for chi-square in Chi-Vec Feature selection 

Table 8 help to select the best k value for chi-square in Chi-Vec feature selection to choose the relevant 
features. 

      Table 8. Choosing k value for chi-square in Chi-Vec Feature Selection 

Models k value for chi-square 
Accuracy (%) 

CBET ATIS AWARE 

CNN 

1000 85.96 86.22 83.48 

500 88.00 89.09 84.82 

200 91.47 90.72 85.73 

100 95.89 93.39 86.20 

50 93.93 96.36 85.10 

40 92.15 95.95 84.82 
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    Cont. Table 8 

RNN 
1000 89.25 86.73 83.84 

500 91.26 89.91 85.59 

 

200 94.57 92.14 87.15 

100 96.71 94.59 88.20 

50 95.42 96.46 87.48 

40 94.75 95.68 86.96 

LSTM 

1000 90.96 88.76 86.86 

500 93.48 91.21 88.53 

200 96.73 93.75 91.38 

100 97.71 95.98 92.20 

50 96.54 97.36 91.39 

40 95.94 96.86 90.85 

Bi-LSTM 

1000 91.21 89.91 87.46 

500 93.89 90.35 91.99 

200 96.57 92.89 93.58 

100 97.96 96.53 94.45 

50 95.78 98.41 93.01 

40 90.43 97.99 90.97 

GRU 

1000 88.54 86.49 80.96 

500 91.44 88.83 83.19 

200 94.17 90.86 85.69 

100 96.31 92.47 87.00 

50 95.17 93.35 85.86 

40 94.76 92.59 84.98 

BERT 

1000 90.95 88.26 84.49 

500 93.00 90.92 86.67 

200 95.11 93.55 88.99 

100 96.92 95.18 90.50 

50 95.62 96.66 89.10 

40 94.99 95.97 88.69 

 

Experiment 2: Performance evaluation of the proposed Chi-Vec Feature selection for CBET dataset 

Table 9 displays DL model performance with and without feature selection, illustrating the impact of 
feature selection on model effectiveness for CBET dataset. 

Table 9. Assessment of the effectiveness of the proposed Chi-Vec feature selection technique for CBET Data 

Model Feature Selection Techniques Accuracy(%) Precision(%) Recall(%) F-score(%) 

CNN 

Without Feature Selection 92.09 92.23 92.09 92.84 
Chi-square 95.14 95.58 95.14 96.19 
Mutual Information 93.84 93.98 93.84 94.59 
Word2Vec 94.84 94.98 94.84 95.59 
PCA 93.34 93.48 93.34 94.09 
Proposed Chi-Vec 95.89 96.03 95.89 96.64 
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RNN Without Feature Selection 92.91 93.00 92.91 90.73 

 

Chi-square 96.26 96.35 96.26 94.08 
Mutual Information 94.66 94.75 94.66 92.48 
Word2Vec 95.66 95.75 95.66 93.48 
PCA 94.16 94.25 94.16 91.98 
Proposed Chi-Vec 96.71 96.80 96.71 94.53 

LSTM 

Without Feature Selection 93.91 92.76 93.91 92.45 
Chi-square 96.26 96.11 96.26 95.80 
Mutual Information 95.66 94.51 95.66 94.20 
Word2Vec 96.00 95.51 96.00 95.20 
PCA 95.16 94.01 95.16 93.7 
Proposed Chi-Vec 97.71 96.56 97.71 96.25 

Bi-LSTM 

Without Feature Selection 94.96 93.81 94.96 93.5 
Chi-square 96.31 95.16 96.31 94.85 
Mutual Information 94.71 93.56 94.71 93.25 
Word2Vec 95.71 94.56 95.71 94.25 
PCA 94.21 93.06 94.21 92.75 
Proposed Chi-Vec 97.96 97.61 97.96 97.30 

GRU 

Without Feature Selection 92.51 92.37 92.51 90.14 
Chi-square 95.86 95.72 95.86 93.49 
Mutual Information 94.26 94.12 94.26 91.89 
Word2Vec 95.26 95.12 95.26 92.89 
PCA 93.76 93.62 93.76 91.39 
Proposed Chi-Vec 96.31 96.17 96.31 93.94 

BERT 

Without Feature Selection 93.12 92.26 93.12 89.84 

Chi-square 95.97 95.61 95.97 93.19 

Mutual Information 94.87 94.01 94.87 91.59 

Word2Vec 95.87 95.01 95.87 92.59 

PCA 94.37 93.51 94.37 91.09 

Proposed Chi-Vec 96.92 96.06 96.92 93.64 

Experiment 3: Performance evaluation of the proposed Chi-Vec Feature selection for ATIS dataset 

Table 10 displays DL model performance with and without feature selection, illustrating the impact of 
feature selection on model effectiveness for ATIS dataset.  

 Table 10. Assessment of the effectiveness of the proposed Chi-Vec feature selection technique for ATIS Data 

Model Feature Selection Techniques Accuracy(%) Precision(%) Recall(%) F-score(%) 

CNN 

Without Feature Selection 91.56 91.63 91.56 90.68 

Chi-square 94.91 94.98 94.91 94.03 

Mutual Information 93.31 93.38 93.31 92.43 

Word2Vec 94.31 94.38 94.31 93.43 

PCA 92.81 92.88 92.81 91.93 

Proposed Chi-Vec 96.36 96.43 96.36 95.48 

RNN 

Without Feature Selection 91.66 91.64 91.66 90.73 

Chi-square 95.01 94.99 95.01 94.08 

Mutual Information 93.41 93.39 93.41 92.48 

Word2Vec 94.41 94.39 94.41 93.48 

PCA 92.91 92.89 92.91 91.98 

Proposed Chi-Vec 96.46 96.44 96.46 95.53 
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LSTM 

Without Feature Selection 92.56 92.15 92.56 91.62 

Chi-square 95.91 95.5 95.91 94.97 

Mutual Information 94.31 93.9 94.31 93.37 

Word2Vec 95.31 94.9 95.31 94.37 

PCA 93.81 93.4 93.81 92.87 

Proposed Chi-Vec 97.36 96.95 97.36 96.42 

Bi-LSTM 

Without Feature Selection 93.61 93.2 93.61 92.67 

Chi-square 96.96 96.55 96.96 96.02 

Mutual Information 95.36 94.95 95.36 94.42 

Word2Vec 96.36 95.95 96.36 95.42 

PCA 94.86 94.45 94.86 93.92 

Proposed Chi-Vec 98.41 98.00 98.41 97.47 

GRU 

Without Feature Selection 88.55 87.12 88.55 85.58 

Chi-square 91.90 90.47 91.90 88.93 

Mutual Information 90.30 88.87 90.30 87.33 

Word2Vec 91.30 89.87 91.30 88.33 

PCA 89.80 88.37 89.80 86.83 

Proposed Chi-Vec 93.35 91.92 93.35 90.38 

BERT 

Without Feature Selection 91.86 92.47 91.86 90.92 

Chi-square 95.21 95.82 95.21 94.27 

Mutual Information 93.61 94.22 93.61 92.67 

Word2Vec 94.61 95.22 94.61 93.67 

PCA 93.11 93.72 93.11 92.17 

Proposed Chi-Vec 96.66 97.27 96.66 95.72 

Experiment 4: Performance evaluation of the proposed Chi-Vec Feature selection for AWARE dataset 

Table 11 displays DL model performance with and without feature selection, illustrating the impact of 
feature selection on model effectiveness for AWARE dataset.  

  Table 11. Assessment of the effectiveness of the proposed Chi-Vec feature selection technique for AWARE Data 

Model Feature Selection Techniques Accuracy(%) Precision(%) Recall(%) F-score(%) 

CNN 

Without Feature Selection 82.20 83.04 82.20 81.93 

Chi-square 85.55 86.39 85.55 85.28 

Mutual Information 83.95 84.79 83.95 83.68 

Word2Vec 84.95 85.79 84.95 84.68 

PCA 83.45 84.29 83.45 83.18 

Proposed Chi-Vec 86.20 87.04 86.20 85.93 
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RNN 

Without Feature Selection 83.90 84.87 83.90 83.63 

Chi-square 87.25 88.22 87.25 86.98 

Mutual Information 85.65 86.62 85.65 85.38 

Word2Vec 86.65 87.62 86.65 86.38 

PCA 85.15 86.12 85.15 84.88 

Proposed Chi-Vec 88.20 89.17 88.20 87.93 

LSTM 

Without Feature Selection 87.20 87.48 87.20 87.00 

Chi-square 90.55 90.83 90.55 90.35 

Mutual Information 88.95 89.23 88.95 88.75 

Word2Vec 89.95 90.23 89.95 89.75 

PCA 88.45 88.73 88.45 88.25 

Proposed Chi-Vec 92.20 92.48 92.20 92.00 

Bi-LSTM 

Without Feature Selection 88.45 88.73 88.45 88.25 

Chi-square 91.80 92.08 91.80 91.60 

Mutual Information 90.20 90.48 90.20 90.00 

Word2Vec 91.20 91.48 91.20 91.00 

PCA 89.70 89.98 89.70 89.50 

Proposed Chi-Vec 94.45 94.73 94.45 94.25 

GRU 

Without Feature Selection 82.20 83.54 82.20 81.77 

Chi-square 85.55 86.89 85.55 85.12 

Mutual Information 83.95 85.29 83.95 83.52 

Word2Vec 84.95 86.29 84.95 84.52 

PCA 83.45 84.79 83.45 83.02 

Proposed Chi-Vec 87.00 88.34 87.00 86.57 

BERT 

Without Feature Selection 85.70 86.88 85.70 85.41 

Chi-square 89.05 90.23 89.05 88.76 

Mutual Information 87.45 88.63 87.45 87.16 

Word2Vec 88.45 89.63 88.45 88.16 

PCA 86.95 88.13 86.95 86.66 

Proposed Chi-Vec 90.50 91.68 90.50 90.21 
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Experiment 5: Assessing the training and validation loss of the Bi-LSTM model using Chi-Vec feature 
selection 

Across Experiment 2 to Experiment 4, it is clear that Bi-LSTM consistently excels across all three 
datasets when employing the Chi-Vec Fused Feature selection algorithm. The training loss and validation 
loss of Bi-LSTM are depicted in Figure 3(a) and Figure3(b), respectively. 

 

 

Figure 3(a). Training loss of Bi-LSTM using Chi-Vec 

 

Figure 3(b). Validation Loss of Bi-LSTM using Chi-Vec 

 
In the training and validation loss graph, the x-axis represents the number of training iterations or epochs, 

while the y-axis represents the loss value. Initially, both training and validation losses are typically high as 
the model begins learning. As training progresses, the loss generally decreases, indicating improved 
performance and convergence of the model. Ideally, the training loss should steadily decrease, 
demonstrating that the model is effectively learning from the training data. Concurrently, the validation loss 
should decrease as well, albeit possibly with fluctuations, indicating that the model generalizes well to unseen 
data. A large gap between training and validation losses suggests overfitting, while a small gap or overlap 
indicates good generalization thereby indicating that these graphs illustrate the model's robust performance 
on unseen data, indicating its generalization capabilities. 

Experiment 6: Assessing Chi-Vec feature selection with state-of-art models 

The proposed Chi-Vec feature selection is compared with various state-of-art models and is depicted in 
table 12. 

  Table 12. Comparison of proposed Chi-Vec feature selection with state-of-art models 

Models Accuracy (%) 

SMO-SVM [4] 88.20 

CSO-LSTMNN [5] 96.89 

HFV+LSTM [7] 95.90 

VPCNN-ABiLSTM [8] 97.10 

Proposed Chi-Vec Feature Selection 98.41 

DISCUSSION 

The assessment spanning Table 9 to Table 11 demonstrates the efficacy of Chi-Vec feature selection 
technique across CBET, ATIS, and AWARE datasets. Chi-Vec consistently surpasses other methods, 
exhibiting higher accuracy, precision, recall, and F-score metrics. Remarkably, Bi-LSTM emerges as the most 
effective architecture across all datasets, showcasing its versatility and robustness in capturing complex 
patterns within the data. Bi-LSTM's ability to retain context information over long sequences helps in capturing 
the sentiment expressed throughout the entirety of a text. This adaptability and robustness make Bi-LSTM 
particularly effective in sentiment analysis tasks across diverse datasets 
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Figure 3(a) and Figure 3(b) validate the model's generalization to unseen data, mitigating concerns of 
overfitting or underfitting. Chi-Vec's success stems from its fusion of Chi-square statistics and Word2Vec 
embeddings, enabling it to capture both statistical and semantic features effectively. By amalgamating 
different feature selection techniques' strengths, Chi-Vec ensures models concentrate on pertinent 
information, enhancing sentiment analysis outcomes. 

Moreover, this study accentuates feature selection's pivotal role in sentiment analysis, with Chi-Vec 
standing out as a promising approach. Its knack for selecting and representing crucial features augments 
model accuracy and robustness across various datasets and deep learning architectures. Overall, the 
findings underscore Chi-Vec's efficacy in refining sentiment analysis outcomes and propelling advancements 
in natural language processing. Through its adept combination of statistical and semantic features, Chi-Vec 
demonstrates significant potential in advancing sentiment analysis and other text-based applications, 
marking a noteworthy stride in the field's evolution. 

CONCLUSION 

This study investigated the efficacy of the Chi-Vec feature selection technique across three diverse 
datasets for sentiment analysis; CBET, ATIS, and AWARE. The results demonstrate a significant 
enhancement in sentiment analysis model performance when integrating Chi-Vec across various deep 
learning architectures. Consistently, across all datasets and models, Chi-Vec yielded the highest accuracy, 
precision, recall, and F-score compared to other feature selection techniques. Notably, the Bi-LSTM model 
on the ATIS dataset achieved remarkable results with Chi-Vec, boasting an accuracy of 98.41%, precision 
of 98.00%, recall of 98.41%, and F-score of 97.47%. Comparative analysis against Chi-square, Mutual 
Information, Word2Vec, and PCA further underscores the superiority of Chi-Vec in selecting discriminative 
features for sentiment analysis tasks. These findings underscore Chi-Vec's efficacy in improving sentiment 
analysis model performance, offering valuable insights for researchers and practitioners in natural language 
processing. Future research could investigate the scalability and generalizability of Chi-Vec across larger and 
more diverse datasets. Evaluating Chi-Vec's performance in multilingual sentiment analysis tasks and under 
different domain-specific contexts could provide deeper insights into its effectiveness across various linguistic 
and semantic domains. 
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