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Abstract: The agricultural sector, particularly in emerging economies like Africa, faces significant challenges 
in weed management, directly impacting yield, production costs, and crop quality. Accurate and early weed 
identification is pivotal for effective weed control strategies. In response, our research extends beyond 
conventional deep learning methodologies by integrating Convolutional Neural Networks (CNN) with Grey 
Wolf Optimization (GWO) and Support Vector Machine (SVM) for enhanced plant seedling classification. 
Leveraging a dataset of 5539 images across 12 plant species, including essential crops such as Common 
Wheat, Maize, and Sugar Beet, alongside nine weed types, we embarked on a comprehensive analysis 
employing four advanced CNN architectures: ResNet-50, Inception-V3, VGG-16, and EfficientNet-B0. Our 
approach involved initial model training and validation, followed by the application of GWO for feature 
optimization and SVM for refined classification. Post-optimization, the EfficientNet-B0 model emerged as the 
frontrunner, showcasing exemplary performance with a remarkable training accuracy of 99.82% and a test 
accuracy of 98.83%. These results highlight the efficacy of combining CNNs with evolutionary algorithms and 
machine-learning techniques in agricultural applications. This study illustrates the capabilities of CNNs in 
agricultural contexts and emphasizes the added value of optimization algorithms in improving model 
performance. The integration of GWO and SVM presents a significant advancement in plant seedling 
classification, offering a powerful tool for precision agriculture. Our findings hold great promise for enhancing 
crop management and yield in Africa and other emerging economies, contributing to the evolution of 
sustainable farming practices through innovative technological solutions. 

Keywords: Plant Seedlings; Classification; Convolutional Neural Network; Grey Wolf Optimization; Support 
Vector Machine; Deep Learning; Precision Agriculture; Weed Management. 

HIGHLIGHTS  
 

• The hybrid CNN-GWO-SVM model revolutionizes seedling classification. 

• GWO refines SVM precision, enhancing feature selection. 

• EfficientNet-B0 sets a new standard with 98.83% accuracy. 

• AI-driven approach advances sustainable weed management. 
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INTRODUCTION 

In an era characterized by swift population growth and escalating demands for food, the agricultural 
sector is confronted with the dual imperative of amplifying production while ensuring sustainability. This 
challenge is particularly acute in regions like Africa, where the farm sector is a primary economic driver. As 
underscored by the Food and Agriculture Organization of the United Nations [1], the modernization of farming 
processes, encompassing seed sowing and weed management, is vital for boosting crop yields and 
sustaining productivity. In this context, adopting intelligent farming techniques is a pivotal force capable of 
propelling economic growth and enhancing agricultural efficiency. The advent of weeds in agricultural 
landscapes presents a formidable challenge as they vie with crops for essential nutrients and space, thereby 
diminishing yields [2]. Conventional weed control strategies, which typically involve manual labor or the 
application of chemical herbicides, are laborious and fraught with environmental risks [3]. Addressing these 
hurdles, our study introduces an innovative approach to plant seed classification by utilizing Convolutional 
Neural Networks (CNNs), a distinguished subset of Artificial Intelligence known for its proficiency in image 
analysis [4]. In recent times, CNNs have found extensive applications in the agricultural domain, notably in 
plant species identification [5], weed detection [6], and the diagnosis of plant diseases [7], underscoring their 
versatility and efficacy in diverse agricultural contexts. The dataset that forms the foundation of our research, 
graciously provided by the Aarhus University Signal Processing group in collaboration with the University of 
Southern Denmark, encompasses 5539 images depicting approximately 960 unique plants across 12 species 
at various stages of growth, curated explicitly for research in early-stage plant identification [8]. Our 
exploration extends beyond traditional neural network applications by incorporating four pre-trained CNN 
models, ResNet-50, Inception-V3, VGG-16, and EfficientNet-B0, to extract profound features from plant 
seedling data. To enhance feature effectiveness, we apply feature selection using the Gray Wolf Optimization 
(GWO) method, followed by applying the selected features to the SVM classifier, ensuring a robust 
classification mechanism. Our research methodology is comprehensive, starting from importing necessary 
libraries, dataset loading, and image visualization. The preprocessing phase is multi-faceted, involving 
normalization, Gaussian blurring, background removal, and subsequent post-processing visualization to 
prepare the data for CNN model compatibility. This includes reshaping the data for Keras model compatibility 
and converting labels into one-hot vectors. Our approach culminates in developing and accessing four distinct 
CNN models, each optimized through GWO and SVM for superior performance. Notably, our advanced 
models demonstrated remarkable accuracy, with the EfficientNet-B0 model achieving an impressive 99.82% 
accuracy on the training set and 98.83% on the test set post-optimization. 

GRAPHICAL ABSTRACT  
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Literature Review 

Recent developments signify a shift towards harnessing the capabilities of Convolutional Neural 
Networks (CNNs) for distinguishing between various plant species and weed types [5-7]. For instance, 
Elnemr [4] introduces a specialized CNN architecture tailored for the early growth stages of plant seedlings, 
achieving an impressive 94.38% classification accuracy. This innovation effectively discriminates between 
crop and weed species, highlighting the significant role of CNNs in agricultural applications. Similarly, Latif 
and coauthors [9] advance this field by integrating advanced preprocessing techniques such as noise removal 
and grayscale conversion into their deep CNN model, achieving a notable 95.02% test accuracy for 
segmented images. Both studies emphasize the benefits of integrating AI technologies, like IoT and cloud 
computing, to reduce agricultural costs and enhance efficiency. 

Concurrently, Nkemelu and coauthors [10] introduce a deep-learning model that combines CNNs with 
traditional image segmentation techniques to address weed detection challenges. Their methodology, which 
includes steps like Gaussian blur application before model training, significantly improves accuracy. This 
underscores the value of merging advanced image segmentation techniques with CNNs for optimized weed 
detection. 

Alimboyong and coauthors [11] concentrate on refining deep neural network models for plant seedling 
classification. Their innovative architecture, trained on a dataset of 4,234 images from twelve plant species, 
demonstrates the model's effectiveness with an overall accuracy of 90.15%. The authors propose expanding 
datasets through data augmentation and potentially integrating CNNs with Recurrent Neural Network (RNN) 
architectures as promising future research directions. 

Rahman and coauthors [12] and Gupta and coauthors [13] explore transfer learning with different 
focuses. Rahman and coauthors [12] assess a variety of CNN architectures, including LeNet-5, VGG-16, 
DenseNet-121, and ResNet-50, using a dataset of 5,539 images across 12 plant classes. Among these, 
ResNet-50 emerges as particularly effective, boasting an impressive 96.21% accuracy in overall test sets. 
Gupta and coauthors [13] take this exploration further by fine-tuning established CNN models such as 
VGG19, ResNet50, Xception, VGG16, and MobileNetV2 and incorporating Global Average Pooling (GAP) 
layers to bolster model generalization capabilities and curtail the risk of overfitting. Their findings reinforce 
the advantages of models like ResNet50 and VGG16 over traditional classification approaches like KNN and 
SVM. Makanapura and coauthors [14], highlight EfficientNetB0's particular potency in plant seedling 
classification, achieving impressive metrics in both F1-Score (96.26%) and overall accuracy (96.52%). This 
underscores the immense potential of deep learning in precision agriculture. 

Furthermore, utilizing optimization algorithms such as Grey Wolf Optimization (GWO), inspired by the 
hunting strategy of grey wolves, in feature selection processes introduces a notable enhancement in the 
classification accuracy of machine learning models [15]. This method proves particularly effective in selecting 
the most influential features from the multitude extracted by CNNs, as outlined in studies focusing on 
agricultural and medical applications [16]. 

This comprehensive literature review consolidates and examines the recent advancements in plant 
seedling classification, emphasizing the integration of CNNs for initial feature extraction, Grey Wolf 
Optimization for feature selection, and Support Vector Machine for the final classification task. The synergistic 
application of these technologies offers a compelling solution to the challenges in precision agriculture, 
especially in weed management, promising a significant improvement in crop yield and management, 
particularly in emerging economies and regions like Africa. These findings establish a solid foundation for our 
research, highlighting the potential of integrating deep learning, optimization algorithms, and classification 
methods in revolutionizing agricultural practices. 

 

MATERIAL AND METHODS 

This section outlines the comprehensive methodology employed to address the precise plant seedling 
classification challenge. At the heart of our approach lies the integration of advanced Convolutional Neural 
Networks (CNN) with Grey Wolf Optimization (GWO) for feature optimization, followed by classification 
leveraging Support Vector Machine (SVM). The process encompasses initial data acquisition and 
preprocessing, feature extraction using state-of-the-art CNN architectures, feature selection enhanced by 
GWO, and concluding with SVM-based classification. The methodology is designed to leverage the strengths 
of each component, ensuring robustness, accuracy, and efficiency in classifying a diverse set of plant 
seedlings. 
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Dataset Overview and Splitting Strategy 

This subsection outlines the dataset's comprehensive overview and strategic partitioning into training, 
validation, and testing sets, crucial for the study's rigorous analysis and evaluation. 

Description  

Our study utilized a dataset provided by the Aarhus University Signal Processing group and the 
University of Southern Denmark. This dataset contains 5539 high-resolution images of approximately 960 
unique plants, encompassing 12 species, including three crops (Maize, Common wheat, and Sugar beet) 
and nine weed varieties. The images were captured over 20 days, recording various growth stages to 
document early plant development stages critical for effective agricultural management [8]. 

The dataset's high-resolution images (5184 x 3456 pixels), captured using a Canon 600D DSLR camera, 
are ideal for identifying plant species at early growth stages. This is crucial for timely weed control before 
competition for nutrients begins. Figure 1 in our paper shows this diverse and detailed dataset, demonstrating 
its suitability for applying machine learning in precision agriculture. 

 

Figure 1. Plant seedling images. 

Figure 1 provides a visual overview of the dataset, showcasing the diversity and clarity of the images. 
This visual representation illustrates the dataset's various species and growth stages, offering a glimpse into 
its comprehensive nature and suitability for our research objectives. Figure 2 provides a clear insight into the 
diversity and complexity of the dataset. A notable challenge encountered in our study was the imbalance in 
data across all classes. To address this, we employed data augmentation techniques and other strategic 
methods to mitigate the issue. 
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Figure 2. Distribution of Sample Counts per Class in the Plant Seedling Dataset 

Data Splitting 

The plant seedling dataset was divided into three distinct sets: training, validation, and testing, 
constituting 70%, 10%, and 20% of the data, respectively. This split was carefully designed to ensure the 
models could be trained extensively, tuned accurately, and evaluated effectively without any overlap between 
the validation and testing sets. Table 1 below outlines species distribution across each dataset category to 
provide a comprehensive overview of the data allocation. 

             Table 1. Data splitting details 

Class Species Training Validation Testing Total 

1 Black-grass 223 24 62 309 

2 Charlock 325 36 91 452 

3 Cleavers 242 26 67 335 

4 Common Chickweed 513 57 143 713 

5 Common wheat 182 20 51 253 

6 Fat Hen 387 43 108 538 

7 Loose Silky-bent 549 60 153 762 

8 Maize 185 20 52 257 

9 Scentless Mayweed 437 48 122 607 

10 Shepherd’s Purse 198 21 55 274 

11 Small-flowered Cranesbill 414 46 116 576 

12 Sugar beet 333 37 93 463 

             Total Images 3988 438 1113 5539 
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Proposed Architecture Overview 

As seen Figure 3, our proposed architecture navigates the intricate data of plant and weed images 
through a streamlined process. Initially, the images undergo a series of preprocessing steps, enhancing their 
quality and preparing them for feature extraction. We employ renowned CNN architectures, ResNet-50, 
Inception-V3, VGG-16, and EfficientNet-B0, fine-tuned for our specific dataset, to distill essential features 
from the images.  

 
Figure 3. Schematic Overview of the Plant Seedling Classification Pipeline 

Subsequently, the Grey Wolf Optimizer refines these features, selecting the most indicative ones for 
accurate classification. The final stage involves the Support Vector Machine classifier, which uses these 
optimized features to distinguish between plant species. The architecture culminates in a robust classification 
system, ensuring high accuracy and efficiency. Further details of each stage are elaborated in our study, 
underscoring the systematic approach of our classification methodology. 

Data Preprocessing 

The preprocessing of the dataset is critical in preparing the images for the Convolutional Neural Network 
(CNN). This section describes the sequential steps and associated mathematical formulas implemented to 
preprocess the images: 

 
Normalization: We normalized the data to ensure uniformity in pixel value ranges across all images. 

Mathematically, this is represented in equation (1): 

𝐼′ =
𝐼

255
 (1) 

where 𝐼 is the original image matrix, and 𝐼′ is the normalized image matrix. 

 

Gaussian Blurring: Gaussian blurring reduces high-frequency noise and is implemented via the 
convolution of the original image I with a Gaussian kernel G, defined as follows in equation (1): 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒

−
𝑥2+𝑦2

2𝜎2  (2) 

where * denotes convolution, and σ is the standard deviation of the Gaussian kernel. 
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The resultant blurred image, 𝐼𝑏𝑙𝑢𝑟𝑟𝑒𝑑 is then given by the convolution of 𝐼 𝑎𝑛𝑑 𝐺, as shown in equation (3): 

𝐼𝑏𝑙𝑢𝑟𝑟𝑒𝑑 = 𝐼 ∗ 𝐺 (3) 

Masking: The seedlings were isolated from the background using a mask M defined within the HSV 
color space. The mask is defined by the condition in equation (4) : 

𝑀(𝑥, 𝑦)  =  

{ 

1 𝑖𝑓 ℎ𝑙𝑜𝑤 ≤ 𝐻(𝑥, 𝑦) ≤  ℎ_ℎ𝑖𝑔ℎ 𝑎𝑛𝑑 

 𝑠_𝑙𝑜𝑤 ≤ 𝑆(𝑥, 𝑦) ≤ 𝑠_ℎ𝑖𝑔ℎ 𝑎𝑛𝑑 

𝑣_𝑙𝑜𝑤 ≤  𝑉(𝑥, 𝑦)  ≤  𝑣_ℎ𝑖𝑔ℎ 

  0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

} 

(4) 

where 𝐻, 𝑆, and 𝑉 are the hue, saturation, and value, respectively, and ℎ_𝑙𝑜𝑤, ℎ_ℎ𝑖𝑔ℎ, 𝑠_𝑙𝑜𝑤, 𝑠_ℎ𝑖𝑔ℎ,
𝑣_𝑙𝑜𝑤 𝑎𝑛𝑑 𝑣_ℎ𝑖𝑔ℎ represent the lower and upper bounds for segmentation. 
 

Visualization Post-Processing: The preprocessed images were visualized to confirm the effectiveness 
of the preprocessing steps and ensure the data was conducive for CNN training. Figure 4 in the paper 
illustrates the preprocessing steps, showing the transition from original to processed images, including the 
normalized, blurred, masked, and final segmented photos ready for the classification task. 

 

 
Figure 4. The preprocessing steps show the original images alongside their blurred, masked, and post-processed 
counterparts. 

The impact of these preprocessing steps is significant. As indicated by Latif, G. and coauthors (2023), 
using segmented images, a result of our masking process, improved the accuracy of plant seedling 
classification by 3.44%, underscoring the importance of effective preprocessing [9]. 
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Feature Extraction 

Feature extraction serves as a critical phase in the processing pipeline of our study, transforming raw 
image data into a more compact and informative set of features that can be efficiently analyzed. We employed 
four esteemed CNN architectures to harness their pre-trained knowledge: ResNet-50, Inception-V3, VGG-
16, and EfficientNet-B0. These models, renowned for their effectiveness in image-related tasks, are 
described in their respective seminal papers [17-20]. 

ResNet-50, through its innovative residual learning framework, allows the training of substantially deeper 
networks than previously used. This model is particularly adept at addressing the degradation problem, 
ensuring that with increased depth, accuracy is saturated and then degrades rapidly. We leveraged the 
ResNet-50 architecture pre-trained on the ImageNet dataset, adapting it to our specific task by adding a 
custom classification head. This head comprises a Global Average Pooling layer followed by dense layers, 
culminating in a softmax layer for multi-class prediction. The model's layers were initially frozen to preserve 
the learned weights, with subsequent fine-tuning to tailor the feature extraction to our dataset's specificities. 

Inception-V3 employs a more complex architecture than ResNet-50, with asymmetric convolutions that 
allow it to capture information at various scales. This CNN was similarly adapted using transfer learning, 
where we integrated a custom head to the pre-trained base. The model's initial layers were frozen, and fine-
tuning was conducted on a subset of the layers, ensuring that the model's learned weights were adjusted to 
our classification problem. 

VGG-16 is recognized for its simplicity and depth, using an architecture with tiny convolution filters that 
allow it to learn finer details. For our study, VGG-16's pre-trained base was augmented with a custom head 
similar to the other models. A portion of the network's layers was frozen, followed by fine-tuning to ensure 
the extracted features were pertinent to our plant seedling classification task. 

Lastly, EfficientNet-B0 stands out with its systematic scaling up of the network, which balances network 
depth, width, and resolution. The pre-trained EfficientNet-B0 model was fine-tuned similarly to the previous 
models, with a custom head designed for our classification task. The model incorporated regularizers to 
prevent overfitting and dropout layers to ensure robustness. 

In summary, the fine-tuned models are used not just for classifying images but are harnessed as feature 
extractors, each contributing a unique perspective in representing the data. Through transfer learning, we 
preserved the integrity of the learned image representations. Then, we fine-tuned the models to align with 
the specific textures, shapes, and patterns in our dataset's plant and weed images. The output features from 
these models serve as inputs for the feature selection phase, where the Grey Wolf Optimizer (GWO) will 
further distill the essence of the data, selecting the most informative features for the final classification stage. 

Optimizing Feature Selection with Grey Wolf Algorithm 

In the landscape of plant seedling classification, feature selection is a cornerstone in refining the 
predictive capabilities of machine learning models. Our approach harnesses the Grey Wolf Optimizer (GWO), 
an innovative algorithm inspired by the social hierarchy and hunting strategy of grey wolves in nature [15]. 
This algorithm plays a pivotal role in sifting through the features extracted by our deep learning models to 
identify the most influential ones for our classification task. 

Our CNN models output a 1 × 512-dimensional feature vector for each image. While rich in information, 
this high-dimensional feature space necessitates a robust feature selection method to enhance model 
performance and prevent overfitting. The GWO algorithm meets this need by mimicking the cooperative 
hunting behavior of wolves to search for the optimal feature set. 

The fitness function, central to the success of the GWO algorithm, assesses the quality of each potential 
solution, that is, each subset of features. The fitness of a feature subset is determined by its ability to improve 
the classification accuracy of our Support Vector Machine (SVM) model.  

The effectiveness of our GWO approach is quantified by a fitness function, encapsulated in equation (5) 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  𝛼𝑃 +  𝛽 (
𝑁 −  𝐿

𝐿
) (5) 

In this equation: 
 

• 𝑃 represents the classification accuracy obtained using the SVM classifier. 

• 𝐿 signifies the length or the number of selected features. 

• 𝑁 denotes the total number of features in the entire dataset. 
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• 𝛼 𝑎𝑛𝑑 𝛽 are coefficients balancing the weight of classification accuracy (𝛼) against the complexity 

of the feature set (𝛽). Here 𝛼 is a value between 0 and 1, and 𝛽 is its complement, such that       

𝛽 =  1 –  𝛼. 
 
The fitness function, pivotal in our feature selection strategy, is adeptly designed to prioritize feature sets 

that elevate classification accuracy and advocate for a compact, more potent feature selection. This strategic 
choice is synergistic with the overarching goal of augmenting the SVM classifier's efficiency and mitigating 
the risk of overfitting, a common concern in high-dimensional image classification tasks such as ours. This 
careful balance is visually encapsulated in Figure 5, illustrating the nuanced optimization process of feature 
selection employing the Grey Wolf Algorithm, ensuring our SVM classifier is fine-tuned for optimal 
performance. 

 
Figure 5. Optimization of Feature Selection Using Grey Wolf Algorithm for Enhanced Plant Seedling Classification 

By integrating the GWO into our feature selection phase, we leverage its strategic exploration and 
exploitation capabilities, thus ensuring that our SVM classifier is equipped with the most discriminative 
features for accurate and efficient classification of plant seedlings. 

Classification Using SVM 

The Support Vector Machine (SVM) is particularly distinguished in classification algorithms for its 
precision and efficiency. It is characterized by its kernel trick capability and the absence of local minimum 
issues. SVM's core functionality lies in constructing a hyperplane or a set of hyperplanes in a high or infinite-
dimensional space, which can be used for classification, regression, or other tasks [16]. The effectiveness of 
SVM in binary and multi-class classification problems makes it an ideal candidate for a wide array of 
applications, including the classification challenges addressed in this study. 

This research uses SVMs as the classifiers following the feature selection process conducted by the 
Grey Wolf Optimizer (GWO). By leveraging the SVM's ability to manage linear and non-linear data through 
kernel functions, we can easily navigate the intricacies of plant seedling classification. The optimization 
process, guided by the GWO, refines the feature set, allowing the SVM to focus on the most relevant features, 
enhancing its predictive prowess. The subsequent sections will delve into the results and discussion, 
demonstrating the effectiveness of this combined approach in distinguishing between different plant species. 

RESULTS AND DISCUSSION 

In this section, we meticulously analyze the performance metrics of our integrated model and provide a 
comparative examination with existing methodologies, reinforcing the superiority of our approach in the 
precise classification of plant seedlings. 

Evaluation of Model Performance Metrics 

Our analysis commenced with deriving several metrics, each offering insights into different facets of 
model performance. We encapsulated these metrics in Table 2, where each metric is defined alongside its 
corresponding mathematical representation and a descriptive elucidation. 
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       Table 2. Evaluation metrics equations with a detailed description. 

Metric Equation Description 

Accuracy 
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 

Measures the overall correctness of the model by 
dividing the sum of correct predictions by the total 
number of predictions. 

Precision 
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

Assesses the model's ability to return only relevant 
instances, showing the proportion of true positives 
among all optimistic predictions. 

Recall 
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

Reflects the model's capability to identify all relevant 
instances, indicating the proportion of true positives 
detected from all actual positives. 

F1 Score 
2 ∗  (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)
 

Balance precision and recall are instrumental when the 
cost of false positives and false negatives differ 
significantly. 

Post-Training Model Performance Analysis 

This subsection is dedicated to examining the models' performance following their training phase, with a 
multi-dimensional approach to the analysis. 

Epoch-wise Validation Accuracy Trends 

Figure 6 delineates the progression of validation accuracy throughout 50 epochs. It juxtaposes the 
learning curves of four CNN derivatives: ResNet-50, Inception-V3, VGG-16, and EfficientNet-B0. ResNet-50 
and EfficientNet-B0 emerge as front-runners, rapidly attaining higher accuracy, indicative of their superior 
learning efficacy. Meanwhile, inception-V3 and VGG-16 exhibit a more gradual but consistent enhancement 
in accuracy. 

 
 

 
Figure 6. Validation Accuracy Progression Over 50 Epochs for CNN Models 

ResNet-50 and EfficientNet-B0, in particular, achieved a rapid ascent to high accuracy levels, indicating 
their effective feature learning capabilities. Inception-V3 and VGG-16 showed steady progress, reflecting 
consistent learning without significant overfitting. 
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Epoch-wise Validation Loss Trends 

Figure 7 portrays the trajectory of validation loss for each model over the epochs. ResNet-50 and VGG-16 
show a precipitous decline in loss, underscoring their swift convergence. Inception-V3's loss reduction is 
more measured but ultimately aligns with the other models. EfficientNet-B0 displays a unique pattern (a 
pronounced initial spike) hinting at its complex learning dynamics before stabilizing and mirroring its 
counterparts' descent of loss. 

 
 

 
Figure 7. Validation Loss Development Over 50 Epochs for CNN Models 

Model Metrics Before GWO and SVM Integration 

Before the introduction of GWO and SVM, the CNN-based transfer learning models were assessed on 
their inherent predictive prowess. Tables 3 and 4 offer a juxtaposition of training and testing metrics. Notably, 
EfficientNet-B0 exhibits exceptional performance, solidifying its status as a powerful feature extractor and 
classifier. 

                   Table 3. Comparative Training Metrics of Models Before GWO and SVM Application (%) 

Models Accuracy F1 Score Precision Recall 

ResNet-50 96.61 96.59 96.61 96.61 
Inception-V3 92.57 92.24 92.30 92.57 
VGG-16 89.86 89.61 90.28 89.86 
EfficientNet-B0 99.77 99.77 99.78 99.77 

                   

                  Table 4. Comparative Test Metrics of Models Before GWO and SVM Application (%) 

Models Accuracy F1 Score Precision Recall 

ResNet-50 93.08 92.95 93.01 93.08 
Inception-V3 85.44 85.02 84.97 85.44 
VGG-16 86.61 86.03 86.64 86.61 
EfficientNet-B0 98.03 98.01 98.02 98.02 

Enhanced Model Evaluation Post-CNN-GWO-SVM Integration 

The fusion of CNN architectures with GWO and SVM culminates in a robust classification framework. 
This section will dissect the models' augmented capabilities, showcasing the notable performance gains of 
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this synergistic approach. Tables 5 and 6 present the comparative metrics post-integration, highlighting the 
amplified accuracy and precision from the GWO and SVM combination. 

                  Table 5. Enhanced Training Metrics of Models Following GWO and SVM Integration (%) 

Models Accuracy F1 Score Precision Recall 

ResNet-50 96.74 96.63 96.82 96.74 
Inception-V3 92.67 91.96 92.70 92.67 
VGG-16 91.94 91.54 92.47 91.94 
EfficientNet-B0 99.82 99.82 99.82 99.82 

 

                  Table 6. Enhanced Test Metrics of Models Following GWO and SVM Integration (%) 

Models Accuracy F1 Score Precision Recall 

ResNet-50 94.34 94.14 94.28 93.34 
Inception-V3 87.78 87.06 87.61 87.78 
VGG-16 88.68 88.21 88.96 88.68 
EfficientNet-B0 98.83 98.83 98.83 98.83 

 
Upon integrating the Grey Wolf Optimizer (GWO) and Support Vector Machine (SVM) with the pre-

trained CNN frameworks, we observed a significant enhancement in the model performances. The data 
encapsulated in Table 5 and Table 6 reflects this uplift, with precision, recall, F1 scores, and accuracy all 
experiencing a marked improvement. Table 5, which outlines the training metrics, shows that the ResNet-50, 
Inception-V3, and VGG-16 models have all benefited from the integration, with each metric witnessing an 
uptick. The EfficientNet-B0 model has achieved near-perfect scores across all metrics, reinforcing its superior 
feature extraction and generalization capability. In the realm of testing, as per Table 6, the ResNet-50 model 
has crossed the threshold of 94% in accuracy, a testament to the robustness of its architecture when 
combined with GWO and SVM. Inception-V3 and VGG-16 also exhibit substantial gains, with accuracy 
improvements of over 2% and 3%, respectively. It is the EfficientNet-B0 model that has set a new benchmark 
with an impressive accuracy of 98.83%, cementing its status as the best-performing model in this study. 
These results demonstrate the individual strengths of each CNN architecture when merged with advanced 
optimization and classification techniques and highlight the potential of such hybrid models in complex image 
classification tasks. The EfficientNet-B0, in particular, stands out as a beacon of excellence, promising 
exciting prospects for future research and practical applications. 

Figure 8 displays the confusion matrix for the EfficientNet-B0 model, enhanced by applying Grey Wolf 
Optimizer (GWO) and Support Vector Machine (SVM). This matrix illustrates the model's improved 
classification capabilities, highlighting its refined ability to distinguish among different classes with superior 
accuracy in test data. 
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Figure 8. Test-Based Confusion Matrix of the Optimized EfficientNet-B0 Model Using GWO and SVM 

Comparative Analysis with Existing Models in Literature 

Table 7 provides a comparative analysis, showcasing the performance of our Optimized EfficientNet-B0 
Model Using GWO and SVM in conjunction with the results of other studies utilizing the same dataset. This 
comparison underscores the effectiveness of our approach in plant seedling classification. 

    Table 7. Comparative Analysis with Existing Models in Literature 

Year & ref. Methods Employed 
Best Performing 
Model/Approach 

Accuracy  
(%) 

F1 Score 
(%) 

2018, [10] KNN, SVM, CNN CNN 92.6 - 

2019, [4] Custom CNN Custom CNN 94.38 93.57 

2023, [9] 
CNN with Original and 
Segmented Images 

Segmented 
Image Deep CNN 

95.02 - 

2019, [11] Deep CNN Deep CNN 90.15 - 

2020, [12] 
ResNet-50, VGG-16, 
DenseNet-121, and LeNet-5 

ResNet-50 96.21 95.42 

2020, [13] 
VGG-16, VGG-19, ResNet-50, 
Xception and MobileNetV2 

ResNet-50 95.23 95.00 

2019, [21] ResNet-101 ResNet-101 96.04 95.72 

2022, [14] 
ResNet-50-V2, MobileNet-V2 
and EfficientNet-B0 

EfficientNet-B0 96.52 96.26 

2022, [22] MobileNet-V2, ResNet50 ResNet50 88.00 88.00 

2023, [23] Custom CNN (Weed-ConvNet) 
Custom CNN 
(Weed-ConvNet) 

97.80 - 

2024, This Study 
ResNet-50, Inception-V3, 
VGG-16, EfficientNet-B0 + 
GWO + SVM 

EfficientNet-B0 
+ GWO + SVM 

98.83 98.83 
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CONCLUSION  

In addressing the pivotal challenge of precision agriculture, particularly the issue of weed management 
in the agricultural sector, this study elucidates a groundbreaking approach by amalgamating Convolutional 
Neural Networks (CNN) with Grey Wolf Optimization (GWO) and Support Vector Machine (SVM) for 
enhanced plant seedling classification. Through a meticulous analysis of a dataset comprising 5539 images 
across various plant species, our approach leverages the strengths of pre-eminent CNN architectures 
(ResNet-50, Inception-V3, VGG-16, and EfficientNet-B0) coupled with the sophisticated feature optimization 
enabled by GWO, and the refined classification capabilities of SVM. 

The study's progression from theoretical merit to practical efficacy was marked by an initial training and 
validation phase, moving on to utilizing GWO for feature optimization and finally implementing SVM for 
classification refinement. This multi-faceted approach was vindicated by the standout performance of the 
EfficientNet-B0 model, which achieved a remarkable training accuracy of 99.82% and a testing accuracy of 
98.83%. These figures reflect the pinnacle of our experimental findings and underscore the synergy achieved 
by integrating state-of-the-art machine learning technologies. 

The significance of this research transcends theoretical and empirical success; it pioneers a path for 
substantial advancements in the agricultural industry, especially within the context of emerging economies 
such as Africa. By facilitating early and accurate weed identification, our findings promise to enhance crop 
management strategies, reducing production costs, improving crop quality, and boosting yields. Such 
achievements embody the ethos of precision agriculture and herald a new era of sustainable farming 
practices enriched by technological innovation. 

Furthermore, the collaborative methodology of CNNs, GWO, and SVM delineates a versatile framework 
that can be adapted beyond the scope of agriculture into various fields requiring nuanced pattern recognition 
and classification. The exemplary performance of our integrated model posits a robust foundation for future 
research endeavors aimed at refining and scaling these techniques for broader applications. 

In conclusion, this study marks a significant milestone in applying deep learning and optimization 
algorithms toward solving critical challenges within the agricultural sector. It demonstrates the benefits of 
integrating advanced machine learning models for plant seedling classification. It paves the way for enhanced 
agricultural practices that could profoundly impact food production and security, especially in regions that 
need sustainable solutions the most. As we look forward to the adaptation and further exploration of these 
models, it remains evident that the intersection of AI and agriculture holds promising potential for 
transformative advancements in the quest for efficiency, sustainability, and resilience in food systems 
worldwide. 
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