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Abstract: Power distribution utilities effort to ensure the quality of energy to their consumers and the reliability 
of their power distribution system. It is necessary that maintenance activities are planned with the aim of 
maintaining or improving reliability indicators in supply to consumers. In this paper, a computational model 
based on integer nonlinear multiobjective programming is presented to improve the maintenance of 
equipment in the power distribution system. Since it is a reliability-centered approach, a probabilistic failure 
model is first used to obtain equipment reliability values at each time point through fuzzy inference. Three 
objective functions are optimized: i) minimizing maintenance cost, ii) minimizing failure frequency, and iii) 
maximizing equipment reliability. The optimization problem is also formed by three sets of constraints: i) 
individual and collective continuity indicators; ii) task execution time; and iii) maintenance limit for each type 
of equipment. Lichtenberg's algorithm is used to solve the model. A case study is performed for a feeder 
section consisting of twenty-eight distribution equipment. The results obtained using the Pareto constraints 
show scenarios that can help maintenance teams to make decisions and develop the preventive maintenance 
planning. Adding constraints on the duration and frequency of collective interruptions indicators improves the 
power quality of the distribution system; however, it requires an increase in investment by 36%.  

Keywords: Continuity Indicators; Fuzzy Inference; Lichtenberg Algorithm; Multiobjective Programming; 

Power Distribution Systems; Reliability-Centered Maintenance. 

 

HIGHLIGHTS 
 

• Reliability-centered maintenance model for power distribution systems is presented. 

• Fuzzy inference and integer nonlinear multiobjective programming is applied. 

• A meta-heuristic called Lichtenberg's algorithm is used. 

• The results can assist maintenance teams in decision making. 
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INTRODUCTION 

The challenge of the power distribution system is to provide consumers with high quality and continuous 
electricity at the prices set by ANEEL (National Electric Energy Agency). Interruptions and failures in the 
system cause financial and social costs, such as: revenue loss due to unsold energy, payment of fines, 
damaged equipment, loss of customer revenue, loss of material and damage to the image of the utility [1]. 
Therefore, in order to ensure better control over the quality of electricity supply to the population, utilities must 
meet with a series of requirements to guarantee the quality of electricity supply to consumers, highlighting 
the frequency and continuity of interruption, as well as the time to restore power supply. According to ANEEL, 
the interruption of the power supply is a temporary shutdown for the preservation and maintenance of the 
network and in cases of fortuitous events or force majeure [2]. To monitor the power supply, the regulator in 
Brazil uses collective continuity indicators (DEC and FEC) and individual continuity indicators (DIC and FIC). 
These data provide information on the quality of the energy supplied by the utility. 

The quality of electrical energy is linked to the reliability and continuity of supply and can be affected by 
climatic factors, system failures, preventive maintenance, among other factors. Endrenyi and coauthors [3] 
state that maintenance has a direct impact on reliability and that there must be a balance in interventions in 
the system. If maintenance is done minimally, the system may have low performance and the number of 
failures may increase. If it is done frequently, reliability improves, but maintenance costs increase. Some 
mathematical models have been developed to assist in maintenance planning.  

Reis [4] presents a mathematical model and an optimization methodology to find the best repair 
strategies. In the study, two application models are used to find planning actions that minimize the use of 
resources for preventive and corrective maintenance while guaranteeing a desired reliability level for the 
system. The optimization models GRASP (greedy randomized adaptive search procedure) and GA (genetic 
algorithm) are implemented from the point of view of reliability of distribution system. The author reports that 
the GA method proved to be more efficient GRASP model. The use of this technique can assist in planning 
the maintenance of the power distribution system, as it identifies at which intervals interventions should occur. 

With the help of an optimization methodology through Mixed Integer Linear Programming (MILP) models, 
Martin [5] developed a strategy to optimize maintenance in electricity distribution networks. He used different 
maintenance levels for equipment and maintenance scheduling cycles. The model used considers the sum 
of the total maintenance costs as an objective function, taking into account an interest rate. The studies 
carried out indicated that the methodology is successful, even if used in distribution networks with radial 
operation. 

Pereira [6] determines a maintenance schedule based on Markov chain and using penalties associated 
with the unavailability of the power supply. He uses a database of protection devices over eleven years to 
determine the probability of failure of the system. Thus, it is possible to determine the maintenance interval 
necessary to minimize the penalties payable by a power distribution utility and avoid unplanned shutdowns. 
However, the operation of the system becomes complex due to the uncertainties in the power demand of the 
problem and the large number of components.  

Neto [7] proposed a strategy to solve the problem of transmission system maintenance planning based 
on the relationship between reliability and cost. The modelling applied consists of minimizing maintenance 
costs and failure risk (based on Markov chains) to produce a feasible schedule (taking into account systemic 
constraints) with logistic optimization. The solution technique used is Simulated Annealing. As the object of 
the study, a system with 13 equipment for power transmission activity was determined. The results obtained 
showed that the proposed methodology presented significant relative improvement, demonstrating its 
feasibility of application to real problems. 

However, a different approach model based on reliability, also called RCM (Reliability Centered 
Maintenance), is presented by Piasson [8] and Rodriguez [9]. The authors used a multiobjective metaheuristic 
with a trade-off between the reliability of the system and the cost of preventive maintenance of the equipment. 
The reliability of the individual installations was modeled using fuzzy inference and failure probability. This 
first approach provides data for the application of the NSGA-II algorithm (Non-dominated Sorting Genetic 
Algorithm). Rodriguez explains that by applying this strategy, it is possible to define the optimal Pareto curve 
of the two functions in question, which (respecting the operational constraints) gives a logical sequence of 
maintenance tasks for the system under study. The maintenance task schedules obtained by this technique 
ensure to supply the energy for the system without failures and prevent possible penalties by the regulator 
based on the indicators. 

Similar to Neto [7], Carnero and coauthors [10] apply the Markov chain process to a single objective 
model. In summary, the model solves problems in sustaining energy supply in healthcare organizations where 
energy supply is critical. Thus, the MACBETH approach (Measuring Attractiveness by a Categorical Based 
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Evaluation Technique) leads to a combination of measures that make the maintenance of distribution more 
reliable. The application of the proposed technique in a power distribution system for a hospital area resulted 
in a 20% cost reduction and an increase in system reliability by 0.15%. 

Using the Lagrange multipliers, Moradi and coauthors [11] present techniques for identifying critical 
components in a microgrid and their failure rates. The proposed model was implemented in a part of the 
distribution network in Tehran, the capital of the Islamic Republic of Iran. The results proved the effectiveness 
of the model by lowering the values of the SAIFI (System Average Interruption Frequency Index) reliability 
indices. Afzali and coauthors [12] proposed (Weighted Importance), i.e., a reliability index of weighted 
importance for the assets of the distribution. This model is applied to two levels of a feeder. At the first level, 
the feeders of a substation are prioritized for reliability measures. At the second level, the components of a 
base case feeder are prioritized for measures. The authors conclude that the higher the value of the WI index, 
the lower the reliability of the system, and consequently the greater the need for maintenance at these points. 

Ferreira [13] addresses in his paper the implementation of a risk matrix to identify defective assets using 
data provided by power distribution utility. He also notes that with this technique it is possible to identify the 
points that require more preventive intervention, which leads to a reduction in losses for utilities. Thus, 
carrying out these maintenance practices makes distribution more assertive, both in planning and in carrying 
out maintenance on electricity network that can prevent future defects. All these practices lead to a reduction 
in financial compensation for customers. 

To provide electric power with a high level of reliability, Yari and coauthors [14] use Big Data to determine 
the actual failure rate of equipment and the average repair time applying stochastic optimization. The 
developers propose a practical model for maintenance scheduling considering the economic risk function 
and budget constraints based on the cost of preventive maintenance and the value of the lost. The authors 
note that using the NSGA-II algorithm for a multiobjective model proved to be efficient and it was possible to 
achieve significant improvements in reliability indices.  

Similarly, Kong and coauthors [15] propose data analysis through Big Data and power supply 
uncertainties. The approach uses the Improved Elman Neural Network (IENN) method, and the authors note 
that this technique makes it possible to simplify the calculations and insert uncertainty factors into the 
distribution network model, bringing the study closer to reality. They report that the application of neural 
networks proves to be effective, but that different topologies of distribution networks may affect the 
effectiveness of the method. 

Catelani and coauthors [16] use the data-driven system in the context of reliability-centered maintenance. 
The study optimizes a maintenance plan for wind turbines and helps in decision making and cost reduction. 
The authors explain that the use of FMECA (Failure Modes, Effects and Criticality Analysis) facilitates 
generator maintenance by assigning only one maintenance task to each scenario. In this study, only 5% of 
maintenance was corrective. 

In his study, Neto [17] uses real data from a substation to develop strategies for performing maintenance 
tasks. Through cost and reliability relationships, the application of heuristic combination with dynamic 
programming, a feasible system maintenance schedule is developed. The author shows that the implemented 
algorithm allows the selection of the most cost-effective preventive maintenance schedules with little 
computational effort. Neto states that the results obtained in the simulations performed show the impact of 
the methodology on reducing costs in all maintenance activities. Table 1 shows a comparison of the 
presented tools for maintenance of power system distribution asset for different cases. 

Table 1. Comparison of works presented in the literature review 

Technique Used 
Proposed 

Model 
[4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] 

Mixed Integer Linear Programming                

Markov model                

Simulated Annealing                

Fuzzy Inference & NSGAII                

Risk Matrix                

GRASP                

GA - Genetic Algorithms                

Dynamic Programming                

MACBETH                
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Cont. Table 1 

FMEA                

Lagrange multipliers                

Weighted Importance                

Big Data                

IENN                

FMECA                

Objective function addition - collective 
continuity indicator 

          
     

Continuity and Priority Constraints                

Single Objective Optimization Methods                

Multiobjective Optimization Methods                

Lichtenberg's Algorithm                

 Proposed model  In the literature 

 
According to Pomalis and coauthors [18], the quality of electrical energy is a set of characteristics of the 

electrical energy delivered by the utilities to the consumer and which is directly linked to the individual and 
collective continuity indicators applied by the utilities. Degradation of DEC values may be linked to adverse 
weather conditions, access to the location and problems with energy protection equipment. The FEC may be 
related to the lack of maintenance and improvements, as well as the growth of vegetation around the network. 

Complex problem involves multiple objectives and there are heuristic and mathematics methods to solve 
multiobjective problems [19]; however, not many studies applied multiobjective formulation in optimization of 
maintenance. Collective and individual continuity indicators are very important for Brazilian power distribution 
utilities and ANEEL may totally or partially suspend the activities of utilities when they violate the limits of 
established quality indicators. However, only Piasson [8] and Rodriguez [9] applied DIC and FIC constraints. 
In the literature review, no use of DEC and FEC was found and only two objectives are formulated. 

Since the objective of a power distribution utilities is to deliver energy with quality and within reasonable 
limits, corrective, preventive and predictive maintenance is necessary for the system to be reliable and to 
avoid penalties due to the unavailability of service. In order to avoid unnecessary expenses for maintenance 
and consequently improve the continuity indicators, it is necessary to optimize the intervention process in 
order to “make the most of” the benefits of the installed equipment. Therefore, this paper proposes the 
implementation of an optimization method that can be applied in the optimal reliability-centered maintenance 
planning of the power distribution systems. Such a technique can help to find a trade-off between the cost 
and reliability of electricity network maintenance and help utilities repair teams in their decision making. By 
targeting these resources, power distribution utilities can reduce their costs and effectively improve indicators. 

Therefore, this paper presents a computational model based on multiobjective integer nonlinear 
programming to improve asset maintenance in the power distribution system. Since it is a reliability-centered 
approach, a probabilistic failure model using fuzzy inference (Mamdani) is first used to obtain the equipment 
reliability values at each instant of time. The model is built with the objective of optimizing three objective 
functions: i) minimizing maintenance cost, ii) minimizing failure frequency, and iii) maximizing equipment 
reliability. The optimization problem is also formed by three sets of constraints, namely: i) individual and 
collective continuity indicators (DIC, FIC, DEC, FEC), ii) time to perform tasks, and iii) maintenance limits for 
each type of equipment. A meta-heuristic called Lichtenberg's algorithm is used to solve this model. To 
validate the model, a case study is conducted over a twenty-four-month period for a feeder section consisting 
of twenty-eight distribution equipment. 

The paper is organized into four sections. Section 2 explains the materials, methods, and modeling of 
the problem. Section 3 is dedicated to the presentation of the results obtained in the application of the 
developed method. Section 4 concludes the paper with its main highlights. 

MATERIAL AND METHODS 

MOLA (Multi-objective Lichtenberg Algorithm) takes a similar approach to NSGA-II. The approximation 
through non-dominated form genetic algorithms (NSGA-II) is often used to solve optimizations with two 
objective functions. Also, the algorithm MOLA defined by Pereira and coauthors [20] uses metaheuristics to 
solve multiobjective problems with two or more functions. They demonstrate that the algorithm's search 
technique uses Lichtenberg figures resembling lightning bolts in clouds to create its search space. The 
authors claim that the algorithm is promising in solving multiobjective problems and is superior to traditional 
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algorithms such as NSGA-II, MOPSO (Multi-objective Particle Swarm Optimization), MOGOA (Multi-objective 
Grasshopper Optimization Algorithm), MOEA/D (Multi-objective Evolutionary Algorithm based on 
decomposition) and MGWO (Multi-objective Gray Wolf Optimizer) because it has meaningful values for 
convergence and speed. 

The algorithm first consists of creating a Lichtenberg Figure (LF) that is fixed in the search space, and 
points of its structure are used as candidates for checking the objective functions (Table 2). The algorithm 
consists of releasing particles randomly in the matrix. If they reach LF, which was only one particle in the 
center to begin with, they have a probability S of fixation, also called the coefficient of adhesion. If the value 
found reaches a radius greater than Rc, it is discarded, and the random mode starts again. This continues 
until all particles found in the Np input are contained in the LF or until it reaches its build limit (Table 3).   

   Table 2. MOLA's main algorithm 

      Algorithm 1: Main 

1 Define objective functions and search space – 𝐽𝑖 upper and lower limits 

2 Set the number of iterations and population – 𝑁𝑖𝑡𝑒𝑟 , 𝑃𝑜𝑝 (common for all optimizers) 

3 Set LF refinement and switch parameters - 𝑅𝑒𝑓, 𝑀 (MOLA routine parameters) 

4 Define LF parameters - 𝑅𝑐 , 𝑁𝑝, 𝑆 

5 if 𝑀 = 0, load LF, end if 

6 if 𝑀 = 1, create LF, end if 

7 while (𝑖𝑡𝑒𝑟 < 𝑁𝑖𝑡𝑒𝑟) Do 

8      if 𝑀 = 2, create LF, end if  

9      𝑋𝑡𝑟𝑖𝑔𝑔𝑒𝑟 = space center search (first LF trigger point) 

10 if 𝑟𝑒𝑓 = 0 

11 Applies to random scaling and rotation 

12              Initialize the random population over the LF, 𝑋𝑖(𝑖 = 1,2, … , 𝑃𝑜𝑝) 

13 copy the LF to create the second LF from the same *LF (Local) 

14 Same random scaling and rotation applies to both 

15 The random global population is initialized through the LF 𝑋𝑔𝑙𝑜𝑏𝑎𝑙𝑖(𝑖 = 1,2, … ,0.4 ∗ 𝑃𝑜𝑝) 

16              Initialize the random local population through the LF 𝑋𝑙𝑜𝑐𝑎𝑙𝑗(𝑗 = 1,2, … ,0.6 ∗ 𝑃𝑜𝑝) 

17 𝑋𝑖 = 𝑋𝑔𝑙𝑜𝑏𝑎𝑙𝑖 + 𝑋𝑙𝑜𝑐𝑎𝑙𝑗 

18    end if 

19 Calculate 𝐽𝑖 for each one 𝑋𝑖 of the problem  

20 Find the dominated and non-dominated solutions analyzed in 𝐽𝑖 

21 Builds the current Pareto frontier with non-dominated solutions 

22 Saves non-dominated solutions across iterations 

23 𝑋𝑡𝑟𝑖𝑔𝑔𝑒𝑟 =  𝑋𝑁𝐷 

24 𝐼𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1 

25 End while 

26 return Pareto border 
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                Table 3. Algorithm for creating Lichtenberg Figures - MOLA 
      Algorithm 2:  Creation of LF 

1 An array  𝑅𝑐 is created – size zero 

2 A unit particle is placed at the center 

3 while (𝒊 < 𝑵𝒑) do 

4              Randomly place a unit particle in the array 

5              if the plotted unit particle t is close to another unit particle 

6                if 𝑟𝑎𝑛𝑑 < 𝑆 

7              This new unit particle is placed in the matrix 

8               𝒊 = 𝒊 + 𝟏 

9              If not 

10 The plotted unit particle is eliminated 

11   end if 

12                end if 

13 if the agglomerate of unit particles reaches 𝑅𝑐 

14 The simulation is finished 

15 end if 

16              end while 

17 𝑋 = coordinates of all unit particles of cartesian space in the size of the search space 

Problem modeling 

The aim of this paper is proposed an optimization of maintenance in a section of an electricity distribution 
network, using the Reliability-centered Maintenance (RCM) method to model uncertainties and minimize the 
cost of violating continuity indicators. Most real-world problems field of optimization multiple goals that must 
be achieved simultaneously. They are usually in conflict with each other, that is, there is no single solution 
that optimizes all objectives simultaneously [19]. Piasson [8] and Rodriguez [9] used the RCM method, the 
failure rate of equipment, to model system uncertainties. With the values of the continuity and historical 
unavailability indicators of the distribution assets, it is possible to project the failure rate of each equipment 
over the time horizon. The proposed optimization model differs from Piasson by using an algorithm with the 
possibility of using two or more objective functions. 

Decision variables 

For each unit, maintenance can be performed with different levels of intervention. There are therefore 
two possibilities that can be performed in this model. The first is to use only binary variables. In this case, a 
variable would have to create for each level and, subsequently, a constraint to not allow more than one level 
of maintenance to be carried out at the same time. The second would be to use only one variable, but with 
all levels of maintenance. For this modelling, the second option was chosen because it is easier to implement 
and contains a smaller number of variables and constraints. Therefore, the optimization variables alternate 
between m0 and m3 and denote the presence or absence of maintenance at the respective time. Each of the 
integer variables represents a level of maintenance to be performed. 

For a set 𝐸 of equipment and such that each equipment 𝑒 has the possibility to perform maintenance 

tasks 𝑚 in the period of time 𝑡 and in the planning horizon 𝑃𝐻. Each type of maintenance on equipment 
represents an integer variable in Eq. (1), where: 

 
• “m0” perform no maintenance; 
• “m1” soft maintenance; 
• “m2” intermediate maintenance; 
• “m3” hard maintenance. 

𝑥(𝑒,𝑚)
𝑡 = {𝑚 = 𝑚0, 𝑚1, 𝑚2, 𝑚3} ,         ∀ 𝑒 ∈ 𝐸 (1) 

During the planning horizon, whether or not the maintenance is carried out impacts the reliability index. 
This value is updated at each point in time by the failure rate multiplier. 
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Objective functions 

The first objective function (Eq. 2) represents the cost of maintenance tasks. It represents the value of 
each repair, which varies according to the intensity of maintenance in each equipment. The function also has 
an associated interest rate so that the value is updated with each month that passes in the simulation. 

𝑓1  =  ∑ ∑ 𝐶[𝑥(𝑒,𝑚)
𝑡 ] (

1

1 + 𝑟
)

𝐸

𝑒=1

𝑃𝐻

𝑡=1  

𝑡

 (2) 

where: 
t time (month) 
PH planning horizon 
e type of equipment installed in the system 
E system equipment set 

𝐶[𝑥(𝑒,𝑚)
𝑡 ] variable maintenance cost depending on to the level of maintenance ($) 

𝑥(𝑒,𝑚)
𝑡  integer decision variable that defines the level of equipment maintenance and time (t) 

r interest rate (%) 
 
The second objective function (Eq. 3) deals with the reliability of the equipment. It is represented in terms 

of unreliability, which is the opposite of reliability, decreasing the value over time. It is also related to with the 
power demand of each radial section of the feeder with which the unreliability is associated. 

𝑓2  =  
1

𝑃𝐻
∑ [

∑ (1 − 𝑅𝑠(𝑡))𝑃𝑠
𝑆
𝑠=1

∑ 𝑃𝑠
𝑆
𝑠=1

]

𝑃𝐻

𝑡=1  

 

 (3) 

where: 
S number of customers per section 
Rs reliability of customer service 
Ps active power per feeder section (W) 

The calculation of the reliability of the section Rs is previously done by fuzzy inference and is updated at 
each iteration of the algorithm routine. In this way, an attempt is made to approximate the wear and tear and 
natural ageing of the equipment over the planning horizon. 

Since it is feasible to use a system with more than one objective function, it was decided to use the 
energy interruption frequency equivalent (FEC) as the objective function. Thus, the third objective function 
(Eq. 4) can assume values of minimum and maximum and improve the solutions arranged in the search 
space. 

𝑓3  =  ∑  

𝑃𝐻

𝑡=1  

 

𝐹𝐸𝐶monthly(𝑡) (4) 

Interruption accumulation is defined as the ratio between the number of supply interruptions and the 
number of consumers affected. This search helps to identify points where the number of affected consumers 
is more frequent. 

Constraints 

Duration and Frequency of Individual Interruption per Consumer Unit 

In the constraints of the problem, there are individual continuity indicators in Eq. (5-10). These provide 
information on the duration and frequency of the power interruption for each individual consumer. FIC is the 
frequency of individual interruption per consumer Unit and DIC is the duration of individual interruption per 
consumer unit. The indicators limits are defined and monitored by ANEEL: monthly, quarterly, and annually. 

𝐷𝐼𝐶monthly(𝑡)  ≤  𝐷𝐼𝐶monthly
𝑚𝑎𝑥  (5) 

𝐷𝐼𝐶quarterly(𝑡)  ≤  𝐷𝐼𝐶quarterly
𝑚𝑎𝑥  (6) 
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𝐷𝐼𝐶𝑎𝑛𝑛𝑢𝑎𝑙(𝑡)  ≤  𝐷𝐼𝐶𝑎𝑛𝑛𝑢𝑎𝑙
𝑚𝑎𝑥  (7) 

𝐹𝐼𝐶monthly(𝑡)  ≤  𝐹𝐼𝐶monthly
𝑚𝑎𝑥  (8) 

𝐹𝐼𝐶quarterly(𝑡)  ≤  𝐹𝐼𝐶quarterly
𝑚𝑎𝑥  (9) 

𝐹𝐼𝐶𝑎𝑛𝑛𝑢𝑎𝑙(𝑡)  ≤  𝐹𝐼𝐶𝑎𝑛𝑛𝑢𝑎𝑙
𝑚𝑎𝑥  (10) 

In addition to Piasson and Rodriguez, some changes were made to the formulation of the original 
problem and the collective continuity indicators (FEC and DEC) were added to complement the continuity 
indicators. FEC is energy interruption frequency equivalent and DEC is the interruption duration equivalent 
per consumer Unit. 

𝐷𝐸𝐶monthly(𝑡)  ≤  𝐷𝐸𝐶monthly
𝑚𝑎𝑥  (11) 

𝐹𝐸𝐶monthly(𝑡)  ≤  𝐹𝐸𝐶monthly
𝑚𝑎𝑥  (12) 

It was then necessary to add customers (Cc) to the model to simulate the insertion of these indicators 
and give fidelity to the proposed model. 

𝐷𝐸𝐶 (𝑡) =
∑ 𝐷𝐼𝐶monthly(𝑡)𝐶𝑐

𝑖=1

𝐶𝑐
 (13) 

𝐹𝐸𝐶 (𝑡) =
∑ 𝐹𝐼𝐶monthly(𝑡)𝐶𝑐

𝑖=1

𝐶𝑐
 (14) 

With equations (15-20) we have the description of the continuity indicators used in the constraints. 
Equations (15-16) define how the monthly indicator values are calculated, depending on the integer variable, 
the reliability of the section and the average operating time. The following equations (17-20) show the 
approximation used by Piasson and coauthors [21] for monthly and annual reference values, using a 
proportionality relationship. 
 
where: 

𝐷𝐼𝐶𝑚𝑜𝑛𝑡ℎ𝑙𝑦(𝑡)  ≤  𝐴𝐸𝑇[𝑥(𝑒,𝑚)
𝑡 ] +  [1 – 𝑅𝑠]𝑀𝐸𝑅𝑇 (15) 

𝐹𝐼𝐶𝑚𝑜𝑛𝑡ℎ𝑙𝑦(𝑡)  ≤  𝑥(𝑒,𝑚)
𝑡  +  [1 – 𝑅𝑠] (16) 

𝐷𝐼𝐶𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑙𝑦(𝑡) ≈
1

𝑘𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑙𝑦𝐷𝐼𝐶
∑ 𝐷𝐼𝐶𝑚𝑜𝑛𝑡ℎ𝑙𝑦(𝑡)

3𝑚

𝑡=1+3(𝑚−1)

 (17) 

𝐹𝐼𝐶𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑙𝑦(𝑡) ≈
1

𝑘𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑙𝑦𝐹𝐼𝐶
∑ 𝐹𝐼𝐶𝑚𝑜𝑛𝑡ℎ𝑙𝑦(𝑡)

3𝑚

𝑡=1+3(𝑚−1)

 (18) 

𝐷𝐼𝐶𝑎𝑛𝑛𝑢𝑎𝑙(𝑡) ≈
1

𝑘𝑎𝑛𝑛𝑢𝑎𝑙𝐷𝐼𝐶
∑ 𝐷𝐼𝐶𝑚𝑜𝑛𝑡ℎ𝑙𝑦(𝑡)

3𝑎

𝑡=1+12(𝑎−1)

 (19) 

𝐹𝐼𝐶𝑎𝑛𝑛𝑢𝑎𝑙(𝑡) ≈
1

𝑘𝑎𝑛𝑛𝑢𝑎𝑙𝐹𝐼𝐶
∑ 𝐹𝐼𝐶𝑚𝑜𝑛𝑡ℎ𝑙𝑦(𝑡)

3𝑎

𝑡=1+12(𝑎−1)

 (20) 

Mean emergency response time (MERT) 

According to ANEEL, the MERT represents the average value corresponding to the execution time of 
the maintenance of a given group of consumption units from preparation to execution [22]. For this model, 
the implementation as [9] addressed in his study was used. It highlights the constraint as the sum of the 
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execution times at each level of maintenance and for each type of equipment. These indicators are used to 
check the response time to emergencies related to the group of consumption units. The recorded values are 
expressed in minutes and are calculated monthly by the power distribution utilities. 

 
• Average Preparation Time (APT); 
• Average Travel Time (ATT); 
• Average Execution Time (AET); 
• Average Time to Fault Location (ATL). 

𝑀𝐸𝑅𝑇 = 𝐴𝐸𝑇 + 𝐴𝑇𝑇 + 𝐴𝑃𝑇 + 𝐴𝑇𝐿 (21) 

The maximum values for performing maintenance are set by the regulator and are presented in eq. (22). 

∑ 𝐴𝑃𝑇[𝑥(𝑒,𝑚)
𝑡 ] +

𝐸

𝑒=1

𝐴𝑇𝑇[𝑥(𝑒,𝑚)
𝑡 ] + 𝐴𝐸𝑇[𝑥(𝑒,𝑚)

𝑡 ]  ≤ 𝑇𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 (22) 

where: 
 
 

Depreciation of equipment assets 

Asset depreciation aims to allocate maintenance needs during the useful life of the equipment. Therefore, 
the aging of each equipment is presented in eq. (23). 

𝑇𝑒 + 𝑡 − 𝑇𝑙𝑒
≥  0 (23) 

where: 
 
 
 

One time maintenance 

Finally, to ensure that only one maintenance is performed per time period will be performed, constraint 
(24) is inserted. 

∑ 𝑥(𝑒,𝑚)
𝑡

𝑃𝐻

𝑡=1

≤ 0 (24) 

The update of the failure rate is done by eq. (25) every month (t). When equipment is repaired, there is 
a reduction in the occurrence of failures. The reliability calculation according to eq. (26) is done using the 
exponential model of the Poisson distribution, a characteristic curve for the useful life of the equipment. 
Finally, eq. (27) defines the product of the reliability of all feeders. 

    𝜆𝑒
𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝛿𝑒

𝑚𝜆𝑒
 𝑡𝑦𝑝𝑖𝑐𝑎𝑙

 (25) 

𝑅𝑠𝑐𝑜𝑛𝑠𝑖
(𝑡) = 𝑅(𝑡)  = exp (−𝜆𝑡)  (26) 

𝑅𝑠(𝑡) = ∏ 𝑅𝑐𝑜𝑛𝑠𝑖𝑖
(𝑡)

𝑛

𝑖=1

 (27) 

Consumer supply priority constraint 

Another change made to the constraints is the addition of a priority for section two (Figure 1). This 
addition is intended to simulate the priority of consumers that depend on uninterrupted power supply, such 

𝐴𝑃𝑇[𝑥(𝑒,𝑚)
𝑡 ] average preparation time of the team for the maintenance (min.); 

𝐴𝑇𝑇[𝑥(𝑒,𝑚)
𝑡 ] average travel time of the team to perform the maintenance (min.); 

𝐴𝐸𝑇[𝑥(𝑒,𝑚)
𝑡 ] average execution time of maintenance (min.); 

𝑇feasible available time of the maintenance team (min.). 

𝑇𝑒 equipment life cycle (in years); 

𝑇𝑙𝑒
 equipment life upgrade rate e (in years). 
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as hospitals, supermarkets, and priority group A consumers. The selected equipment 𝑒 =  {𝑒𝑖: 𝑒𝑓}, are part 

of the main supply at the substation output. For this reason, the constraint acts only on the first five equipment 
that form the main supply node, and with a minimum reliability (𝑅(𝑡)) value for this section of 0.8, according 
to eq. (28). 

𝑓(𝑡)  =  ∑  

5

𝑒=1  

 

𝑅(𝑡) > 0,8 (28) 

Proposed model 

The case study has 28 operating devices: 3 circuit breakers (DJ), 8 primary network cables (LN), 1 
capacitor bank (CP), 4 voltage regulators (RT), 9 distribution transformers (TR) and 3 protection switch and/or 
maneuvers (CS).  

The adopted radial model (Figure 1) represents a feeder fragment that is widely used in distribution 
systems because of its low cost and also because of the ease of protection coordination. In the event of a 
failure in the main feeder sections (01 and 02), the supply to the remaining loads may be affected. In this 
way, the effect of the priority constraint (eq. 28) added to the main branch can be verified. 

 

Figure 1. Feeder Section 28 equipment. 

To develop fuzzy inference and the Lichtenberg algorithm, it is necessary to input the initial values of the 
equipment behavior. Each maintenance performed has a level of intensity and provides a repair cost. The 
equipment maintenance cost and the initial values of failure rates were obtained through historical data from 
utilities. The failure rate parameter multiplier refers to the update of the occurrence of an outage. Every time 
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a failure occurs, the equipment updates this value through an associated multiplication constant, which will 
provide an increase or decrease in the failure rate (eq. 25). Table 4 presents data proposed by [8,9].  

Table 4. Maintenance parameters. 

 Equipment Maintenance cost (R$) Failure rate parameter multiplier 
Failure rate 

(failures/year) 

 m0 m1   m2 m3 m0 m1 m2 m3  

TR 0 120 550 2500 1.04 0.8 0.5 0.01 0.2723 

CP 0 350 1000 - 1.04 0.8 0.08 1.04 0.2723 

RT 0 150 650 1200 1.03 0.8 0.5 0.01 0.4312 

LN 0 80 170 - 1.04 0.8 0.08 1.04 0.4312 

CS 0 30 70 - 1.01 0.8 0.01 1.01 0.2723 

DJ 0 150 800 2000 1.04 0.8 0.5 0.01 0.4312 

Legend: DJ – Circuit breakers; LN – primary network cables; CP – capacitor bank; RT – voltage regulators; 
TR – distribution transformers; CS – protection and/or maneuvering key. 

Through eq. (21), the regulatory agency monitors exceeded values. Table 5 presents the maintenance 
execution time [8,9]. 

   Table 5. Maintenance execution time (min.). 

  Equipment AET ATT APT ATL 

 m0 m1 m2 m3 m0 m1 m2 m3 m0 m1 m2 m3  

TR 0 120 150 180 0 60 80 100 0 20 30 60 30 

CP 0 30 60 0 0 60 100 0 0 20 30 0 30 

RT 0 120 150 180 0 60 80 100 0 20 30 60 30 

LN 0 30 120 0 0 60 100 0 0 20 30 0 30 

CS 0 30 60 0 0 60 100 0 0 20 30 0 30 

DJ 0 60 120 0 0 60 100 0 0 20 30 0 30 

RESULTS AND DISCUSSION 

This section presents the results obtained in the implementation of the computational model to optimize 
the preventive maintenance of an electrical power distribution system for a small feeder. A planning horizon 
of 24 months was used for all scenarios.  

Initial example results 

The test was performed using the Multi-Objective Lichtenberg Algorithm V2.0 (MOLA) solver, developed 
by [20], in MATLAB and available in the MathWorks community. The change in Piasson's model (2014) is 
due to the insertion of the collective indicators DEC and FEC (Figure 2), which makes the problem more 
constrained. Moreover, the reliability of the system improves by inserting the continuity constraint (eq. 28) in 
the main distribution branch. 
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Figure 2. Pareto Frontier – Cost vs. Unreliability – with addition DEC and FEC. 

In this example, the magenta Pareto curve is slightly higher than the blue curve, which is due to the 
introduction of constraints on collective indicators that were not included in the original proposal. This is 
because the increase in constraints due to the addition of indicators means that the manifold has greater 
maintenance requirements to maintain the same level of system reliability. The collective continuity indicators 
DEC and FEC are of paramount importance because they not only ensure the quality of continuity of energy 
supply to consumers, but also consumer perceptions of the service provided. The inclusion of constraints in 
the problem is intended to improve the model and bring it closer to the requirements of the regulator ANEEL. 

Results for final modeling 

In this section of the paper, the results of applying the Lichtenberg algorithm to the asset maintenance 
model in the electric power distribution system were shown. By using three objective functions, it was possible 
to present several interpretations of possible results. However, it is important to point out that the presented 
evaluation does not provide a single result, and it is up to the manager to choose one. 

The first result diagram of the optimization is the Pareto frontier between the first two objective functions, 
cost, and reliability (Figure 3). This figure shows possible maintenance scenarios, where increasing the 
investment in equipment directly leads to an improvement in reliability values, which was already expected. 
However, higher investments do not always lead to a viable scenario for maintenance team decision making. 
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Figure 3. Pareto Frontier – Cost vs. Unreliability 

It is verified that the insertion of constraints and the objective function forces the algorithm to improve 
the possible output responses of the graph. If we compare the values produced by the two curves (Figure 2 
and Figure 3) (adding the consumer priority constraint and FEC as the third objective function), the cost 
increases from R$13,010.00 to R$34,750.00, an increase of 267.10% to maintain the same system reliability, 
0.1187. This confirms the idea that the increase in constraints in this model signals the need to intensify 
system maintenance. The priority constraint causes the levels of unreliability in sections 01 and 02 to have 
values above 0.8 and as result more preventive maintenance is needed. Another point to consider is the 
increase in equipment and consumers between the two examples. Even if the reliability values do not 
improve, the comparison shows that the model becomes more realistic and approaches the specifications of 
ANEEL. 

For each approach, three solutions were chosen (P4, P5 and P6), as follows: Point P4 represents lower 
investment and low reliability; P5 is an intermediate solution that ensure reliability without increasing costs 
too much; P6 represents maximizing investment. The points were chosen with the aim of maintaining the 
same level of reliability in both cases to allow comparison of the addition of the function (eq. 4) as the objective 
and the insertion of the constraint (eq. 28). Figure 4 shows a significant increase in maintenance cost between 
the three points. 
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Figure 4. Pareto Frontier – Cost vs. unreliability 

Table 6 summarizes the points chosen in Figure 4 and compares the unreliability of the system, the 
maintenance cost, and the number of interventions in the two models. 

The addition of the objective function (eq. 4) and the priority constraint (eq. 28) change the investments 
in the selected points: in P4 there was a 63.84% variation in cost when the level of maintenance was 
increased by 115 units; in P5 there was an increase of 25.08% in cost and 62.98% in the level of maintenance; 
P6 had the highest cost, the scenario with additional constraints and without additional constraints had the 
same number of maintenance and the cost increased by 19.13%, this means that there was a change in the 
maintenance level. The additional costs recorded in Figure 4 can also be associated with the use of a third 
objective function. The interpretation of the algorithm in the addition of the constraint (eq. 4) adds higher 
levels of maintenance to aim for continuity of the system and reduce the time between maintenance. When 
the system uses a higher level of maintenance, the failure rate and the probability of a new failure decrease. 

                           Table 6. Comparative table of results. 

  Points Unreliability Cost (R$) Quantity of Maintenance  

𝑃4 0.1118 21,210.00 74 

without (eq. 28) 𝑃5 0.09331 44,250.00 262 

𝑃6 0.07624 115,500.00 672 

𝑃4’ 0.1118 34,750.00 189 

with (eq. 4) and (eq. 28) 𝑃5’ 0.09331 55,350.00 427 

𝑃6’ 0.07604 137,600.00 672 
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Figure 5 shows the unreliability and registered interruptions by section. The third objective function is the 
cumulative FEC, which is the sum of the individual power interruptions. The increase in these interruptions 
causes the algorithm to make more interventions in the system, which improves the reliability of the system. 
Figure 5 shows that the unreliability decreases only because the interruptions increase and consequently 
more maintenance is required. By adding the indicator FEC as an objective function, the number of possible 
solutions in the search space has improved, i.e., the function can reach maximum and minimum values, 
unlike when it was only used as a constraint. 

 
Figure 5. Pareto Frontier Unreliability x Accumulated FEC 

From this perspective, the heuristic interprets the need to maintain the reliability level and intensify the 
maintenance of the system. The extreme solution with more maintenance is not always a viable model for 
the maintenance team. For this reason, the proposed model provides support for decision making for each 
scenario. 

CONCLUSION 

The concern with the interruption in the supply and improving energy quality through assertive 

maintenance have become the goal of the power distribution utilities. For this reason, heuristic methods 
are increasingly used to solve problems that would not be possible with mathematical optimization methods. 
In this context, the Lichtenberg algorithm proves to be an efficient alternative to obtain solutions in 
multiobjective modeling with the possibility of two or more objective functions. 

Nevertheless, based on the results, it was found that the constraints on the indicators required by the 
agency in the distribution procedures are indeed necessary. The introduction of new constraints in the 
proposed model resulted in need to intensify maintenance by 72.79% on average, which led to a 34.69% 
increase in the average total value of repairs. This shows the importance of investing in maintenance not only 
on the part of the utility, but also to agency control through continuity indicators. When the continuity constraint 
was introduced, simulating possible priority energy consumers, more investments had to be triggered to 
maintain the reliability level. 

Therefore, the proposed model was generally found to be suitable for the optimization of reliability-
centered maintenance plans applied to electric power distribution. In addition, it is important to point out that 
the use of the Pareto curve as a result shows a set of solutions that are not dominated by the three objective 
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functions, which, in turn do not represent a final answer, but a set of solutions that, depending on the strategy, 
can help managers make decisions about the best relationship between reliability and cost. 

Moreover, among the challenges found in the development of this work, the historical values of failure 
rates and maintenance in power distribution utilities. Due to the unavailability of some information from these 
entities, there is some difficulty in optimizing the model and the accuracy of the maintenance carried out in 
recent years, and thus in planning better interventions in the system. 
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