

Article - Environmental Sciences

# Richness of Native and Exotic Plants in Parks in São Paulo is Determined by Urban Park Size and Age

## Isabel Leoni Furquim de Andrade<sup>1\*</sup>

https://orcid.org/0000-0002-3008-2620

#### Klécia Gili Massi<sup>1</sup>

https://orcid.org/0000-0003-1823-7965

<sup>1</sup>Universidade Estadual Paulista "Júlio de Mesquita Filho", Departamento de Engenharia Ambiental, São José dos Campos, São Paulo, Brasil.

Editor-in-Chief: Alexandre Rasi Aoki Associate Editor: Marcos Pileggi

Received: 27-Sep-2022; Accepted: 12-Sep-2023

\*Correspondence: Isabel.leoni@unesp.br; Tel.: +55-11-9900061323 (I.L.F.A.).

## HIGHLIGHTS

- Older and larger parks had greater native species richness.
- Regarding exotic plant species, older parks presented greater richness than newer areas.
- Alone socioeconomics did not explain plant species richness, but they did when combined.

Abstract: Green areas have important social, biological and aesthetical values. They might provide house and food for fauna, protect biodiversity and can provide several ecosystem services of provision, regulation, support and culture. This research aimed to analyze composition of native and exotic species in urban parks in São Paulo (Brazil), in response to variables considered drivers of diversity adapted to urban environment and to socioeconomic aspects. We expected that socio-economic factors and age and size of parks would be important determinants of species richness All county parks (municipal management) larger than 1 ha were selected, which summed 68 parks throughout São Paulo. Socioeconomic variables for this study were population, growth rate of population, average per capita income, IDH and population density. We also accessed native and exotic species richness of plants and trees from the flora list of each park. In order to determine the effects of park size and age and neighbourhood socio-economic status on richness of plants and trees we used multiple regression analyses. We found a great species richness in urban parks in São Paulo and that richness associated to park age and size, and to some socio-economic factors, especially when combined to age and size of parks. Bigger sites could offer more resources and area for the growth and establishment of native plants, and older parks in São Paulo likely had more management and interventions improving its biodiversity. Lastly, in vulnerable regions and in smaller and newer parks, we recommend improvement in plant species diversity by managers.

## Keywords: Species, Urban Parks, São Paulo, Diversity

## INTRODUCTION

Nowadays, more than half of world population lives in cities (54%) and it is estimated that it might reach 66% by 2050 [1]. Growth of cities has led to vegetation and biodiversity loss [2]. Gray infrastructure, substituting vegetation and changing environmental conditions, is responsible for several impacts to urban ecosystems [3]. Besides, climate change and extreme events make cities more vulnerable [4]. Due to these

reasons, green areas (as urban parks) can provide several ecosystem services, as cooling of cities, water infiltration, and urban population life quality [5]. Among sustainable targets, promoting sustainable urbanization is recommended [6].

Urban parks, located within cities, protect biodiversity and water bodies and are places for recreation and environmental education (svma.sp.gov.br). These green areas have important social, biological and aesthetical values. They might provide house and food for fauna [7], protect biodiversity and can provide several ecosystem services of provision, regulation, support and culture [8]. Knowing urban parks biodiversity is important for in situ and ex situ conservation and for controlling of exotic and invasive species [9-11]. In Brazil, urban parks can function as useful tools for environmental awareness and education of the native flora [12]. In addition, native species in Brazilian urban parks can help to promote forest conservation and natural regeneration in cities [13,14]. The lack of plant surveys in urban parks bring difficulties in management and city public policies [15].

Urban ecology studies in Brazilian cities are not common [16], but results corroborate with researches that show higher percentage of green cover in rich neighborhoods [18]. Whether these higher income places are richer in urban biodiversity is a question still unanswered. In addition, the role of park size and age in species richness in tropical cities are not studied in Brazil as in Mediterranean-type climate regions (Figueroa, Castro, Reyes and Teillier, 2018 in Santiago, Chile). In natural ecosystems, island biogeography points habitat size as a predictor of higher species richness [19] and older stages of tropical forests succession having greater biodiversity [20].

In São Paulo, older parks might present high biodiversity, since these green areas were seen and managed as plant gardens in the past (for example, Jardim da Luz and Aclimação parks). Also, older parks had more time to suffer interventions as tree plantings and species introduction. Larger parks might also present high biodiversity, since there is more area available and more diversity of ecosystems that could support more species (for example, Anhanguera park). Lastly, parks located in vulnerable neighborhoods might have less biodiversity, since they do not get so much attention, money and actions from public policies, evidencing inequalities and environmental racism (for example, Santa Amélia park). A combination of these reasons could explain even better plant richness.

Urban parks have flora composed by planted and spontaneously regenerating plants, native or exotic, which may be function of park age and size and socio-economic status of the urban population. This research aimed to analyze composition of native and exotic species in urban parks in São Paulo (Brazil), in response to variables considered drivers of diversity adapted to urban environment. Specifically, we analyzed area and age of parks, as well as socio-economic conditions associated with urban population density, income and IDH. By studying 68 parks located in urban São Paulo city, we expected that socio-economic factors and age and size of parks would be important determinants of species richness, including native and exotic species, as well as spontaneous and planted species.

# MATERIAL AND METHODS

## Study area and data

São Paulo, the largest Brazilian city (1,521.202 km<sup>2</sup>), has 12.396.372 inhabitants [21], with a population density of 7,398.26 inhabitants per square kilometers [21] and urban land use cover of 1,521 km<sup>2</sup> (54% of this cover is green area) [22]. Climate is Cwa (lower precipitation and temperature in winter and moderately high temperatures in summer) [23] and vegetation was originally tropical rainforest and savanna. São Paulo has 105 county parks [24].

All county parks (municipal management) larger than 1 ha were selected, which summed 68 parks throughout São Paulo, resulting in 68 sampling units (Table 1). Separated by walls and fences from the neighborhood, all these parks represented management units administered independently from surrounding public infrastructures and activities. Park size varied from 1.26 to 950 ha and park age (in 2023), from 2 to 198 years old (Table 1: data obtained from Secretaria do Verde e Meio Ambiente do Município de São Paulo, SVMA, 2017: 24 and 25). Socioeconomic variables for this study were population (number of inhabitants per neighborhood), growth rate of population (rate of population growth between 2000 and 2010), average per capita income (per neighborhood, all data available at IBGE, 2011: 21), IDH (human population index), which takes into account life expectancy, education and per capita income (data available at IPEA, 2013: 26), and population density (number of inhabitants per hectare in each neighborhood: data available at 27, from 2022). Population density varied from 8.55 to 222.23 inhabitants per ha and IDH from 0.747 to 0.960 (Table 1). We also accessed SVMA website to extract native and exotic species richness of plants and trees data from the flora list of each park [25]. According to Secretaria do Verde e Meio Ambiente do Município de São Paulo,

all parks were inventoried by the same staff, which made all lists similar in quality. Plants were collected by SVMA staff, classified in shrubs, trees (more than 4 m height), treelets (less than 4 m height), herbs, bamboos, lianas, epiphytes, palms, Cycas and agaves and were deposited in the municipal herbarium of São Paulo; thus, richness was quantified [25].

**Table 1.** List of the 68 parks selected in in São Paulo city, Brazil. IDH is a Portuguese acronym for Human Development Index. Age is in 2023.

| Park                                   | Neighbourhood           | Native<br>species<br>richness | Exotic<br>species<br>richness | Age<br>(years) | Size<br>(ha) | Population<br>density<br>(inhab/ha) | IDH   |
|----------------------------------------|-------------------------|-------------------------------|-------------------------------|----------------|--------------|-------------------------------------|-------|
| Aclimação                              | Aclimação               | 41                            | 85                            | 84             | 11.22        | 186.74                              | 0.858 |
| Águas                                  | Cidade Kemel            | 69                            | 35                            | 19             | 7.03         | 186.73                              | 0.810 |
| Alfredo Volpi                          | Morumbi                 | 269                           | 55                            | 52             | 14.24        | 41.19                               | 0.938 |
| Alto da Boa<br>Vista                   | Santo Amaro             | 38                            | 19                            | 2              | 3.10         | 45.87                               | 0.943 |
| Anhanguera                             | Perus                   | 247                           | 104                           | 44             | 950.00       | 33.55                               | 0.772 |
| Aterro<br>Sapopemba                    | São Rafael              | 28                            | 25                            | 10             | 30.45        | 109.08                              | 0.767 |
| Barragem de<br>Guarapiranga            | Jardim<br>Guarapiranga  | 33                            | 24                            | 15             | 8.86         | 108.45                              | 0.798 |
| Benemérito<br>José Brás                | Brás                    | 13                            | 28                            | 12             | 2.66         | 83.61                               | 0.868 |
| Buenos Aires                           | Higienópolis            | 26                            | 53                            | 110            | 1.88         | 155.04                              | 0.950 |
| Burle Marx                             | Morumbi                 | 141                           | 32                            | 28             | 13.83        | 41.19                               | 0.938 |
| Carmo                                  | Itaquera                | 89                            | 60                            | 47             | 150.00       | 140.32                              | 0.795 |
| Casa<br>Modernista                     | Vila Mariana            | 55                            | 27                            | 15             | 1.26         | 151.73                              | 0.950 |
| Chácara das<br>Flores                  | Jardim Nazaré           | 51                            | 48                            | 21             | 4.17         | 153.66                              | 0.765 |
| Chácara do<br>Jockey                   | Vila Sônia              | 40                            | 46                            | 7              | 14.35        | 109.54                              | 0.895 |
| Chuvisco                               | Jardim Aeroporto        | 17                            | 29                            | 6              | 3.71         | 74.72                               | 0.932 |
| Cidade de<br>Toronto                   | Pirituba                | 51                            | 36                            | 31             | 10.91        | 98.21                               | 0.841 |
| Ciência                                | Cidade Tiradentes       | 73                            | 16                            | 12             | 17.75        | 141.00                              | 0.766 |
| Colina de São<br>Francisco             | Vila São Franciso       | 70                            | 27                            | 19             | 4.91         | 122.12                              | 0.895 |
| Cordeiro- Martin<br>Luther King        | Chácara Monte<br>Alegre | 52                            | 28                            | 16             | 3.50         | 76.88                               | 0.921 |
| Ermelino<br>Matarazzo                  | Jardim Belém            | 27                            | 67                            | 15             | 5.00         | 130.59                              | 0.801 |
| Eucaliptos                             | Morumbi                 | 60                            | 28                            | 28             | 154.47       | 41.19                               | 0.938 |
| Guabirobeira<br>Mombaça                | São Mateus              | 85                            | 21                            | 10             | 30.39        | 119.34                              | 0.814 |
| Guanhembu-<br>Benedita Ramos<br>Caruso | Jardim<br>Guanhembu     | 93                            | 69                            | 12             | 7.19         | 67.02                               | 0.815 |
| Guarapiranga                           | Parque Alves de<br>Lima | 189                           | 81                            | 49             | 15.26        | 108.45                              | 0.798 |
| Ibirapuera                             | Vila Mariana            | 248                           | 341                           | 69             | 158.40       | 151.73                              | 0.950 |
| Independência                          | Ipiranga                | 107                           | 82                            | 34             | 16.13        | 101.78                              | 0.906 |

| Cont. Table 1                       |                            |     |     |     |       |        |       |
|-------------------------------------|----------------------------|-----|-----|-----|-------|--------|-------|
| Jacintho Alberto                    | Jardim Pirituba            | 31  | 65  | 16  | 4.09  | 54.12  | 0.791 |
| Jardim da<br>Conquista              | Jardim da<br>Conquista     | 80  | 24  | 10  | 59.80 | 33.55  | 0.772 |
| Jardim da Luz                       | Bom Retiro                 | 68  | 123 | 198 | 11.34 | 84.73  | 0.847 |
| Jardim das<br>Perdizes              | Água Branca                | 15  | 31  | 11  | 4.60  | 25.68  | 0.917 |
| Jardim<br>Felicidade                | Jardim Felicidade          | 43  | 74  | 33  | 2.88  | 98.21  | 0.841 |
| Jardim<br>Herculano                 | Jardim Herculano           | 70  | 36  | 12  | 7.53  | 78.99  | 0.750 |
| Jardim Prainha                      | Grajaú                     | 124 | 41  | 15  | 9.21  | 39.22  | 0.754 |
| Jardim<br>Sapopemba                 | Jardim<br>Sapopemba        | 29  | 51  | 11  | 4.43  | 210.76 | 0.796 |
| Juliana de<br>Carvalho Torres       | Cohab Raposo<br>Tavares    | 42  | 31  | 11  | 5.44  | 79.50  | 0.819 |
| Lajeado                             | Guaianases                 | 78  | 52  | 13  | 1.41  | 120.93 | 0.770 |
| Leopoldina                          | Vila Leopoldina            | 15  | 44  | 13  | 5.50  | 54.84  | 0.907 |
| Lina e Paulo<br>Raio                | Vila Guarani               | 98  | 62  | 42  | 1.56  | 128.11 | 0.844 |
| Lions Clube<br>Tucuruvi             | Tucuruvi                   | 22  | 75  | 15  | 2.37  | 109.38 | 0.923 |
| Luiz Carlos<br>Prestes              | Jardim Rolinópolis         | 57  | 44  | 33  | 2.71  | 41.19  | 0.938 |
| M'Boi Mirim                         | Jardim Ângela              | 37  | 17  | 11  | 19.00 | 78.99  | 0.750 |
| Nabuco                              | Jardim Itacolomi           | 102 | 71  | 15  | 3.12  | 158.71 | 0.892 |
| Nascentes do<br>Ribeirão<br>Colônia | Jardim Novo<br>Parelheiros | 125 | 27  | 3   | 11.07 | 8.55   | 0.747 |
| Nebulosas                           | São Mateus                 | 34  | 32  | 12  | 4.49  | 119.34 | 0.814 |
| Paraisópolis                        | Campo Limpo                | 54  | 21  | 2   | 6.80  | 165.13 | 0.806 |
| Pinheirinho<br>d'Água               | Jaraguá                    | 96  | 42  | 14  | 25.03 | 66.96  | 0.791 |
| Piqueri                             | Tatuapé                    | 64  | 103 | 45  | 9.72  | 111.80 | 0.936 |
| Povo                                | Pinheiros                  | 39  | 100 | 15  | 13.35 | 81.71  | 0.960 |
| Praia São Paulo                     | Capela do Socorro          | 18  | 43  | 14  | 16.87 | 29.29  | 0.841 |
| Previdência                         | Jardim Ademar              | 167 | 80  | 44  | 9.15  | 43.36  | 0.928 |
| Raposo Tavares                      | Jardim Olympia             | 76  | 107 | 42  | 19.50 | 109.54 | 0.895 |
| Raul Seixas                         | José Bonifácio             | 26  | 51  | 34  | 3.35  | 88.03  | 0.804 |
| Rodrigo de<br>Gásperi               | Vila Zati                  | 35  | 79  | 41  | 3.90  | 98.21  | 0.841 |
| Santa Amélia                        | Jardim das<br>Oliveiras    | 40  | 49  | 31  | 3.40  | 8.55   | 0.747 |
| Santo Dias                          | Capão Redondo              | 324 | 53  | 8   | 13.4  | 197.59 | 0.782 |
| São Domingos                        | Pirituba                   | 71  | 89  | 15  | 8.00  | 98.21  | 0.841 |
| <b>J</b>                            | 1 intubu                   |     |     |     |       |        |       |

| Cont. Table 1                                  |                      |     |    |     |       |        |       |
|------------------------------------------------|----------------------|-----|----|-----|-------|--------|-------|
| Senhor do Vale                                 | Pirituba             | 27  | 29 | 13  | 2.20  | 98.21  | 0.841 |
| Sete Campos                                    | Cidade Ademar        | 15  | 26 | 13  | 8.33  | 222.23 | 0.766 |
| Severo Gomes                                   | Granja Julieta       | 103 | 91 | 34  | 3.49  | 76.88  | 0.943 |
| Shangrilá                                      | Grajaú               | 80  | 28 | 15  | 7.50  | 39.22  | 0.754 |
| Tatuapé                                        | Tatuapé              | 8   | 17 | 8   | 1.91  | 111.80 | 0.936 |
| Tenente<br>Brigadeiro<br>Roberto Faria<br>Lima | Parque Novo<br>Mundo | 18  | 61 | 19  | 5.03  | 96.16  | 0.824 |
| Tenente<br>Siqueira<br>Campos                  | Cerqueira César      | 122 | 56 | 141 | 4.86  | 145.40 | 0.957 |
| Trote                                          | Vila Maria           | 36  | 76 | 17  | 12.00 | 96.16  | 0.824 |
| Vila do Rodeio                                 | Inácio Monteiro      | 137 | 21 | 19  | 61.32 | 141.00 | 0.766 |
| Vil dos<br>Remédios                            | Vila Jaguará         | 113 | 64 | 44  | 10.98 | 54.12  | 0.791 |
| Vila Guilherme                                 | Vila Guilherme       | 36  | 76 | 37  | 6.50  | 78.74  | 0.868 |

Source: Authors (2022)

## **Statistical analyses**

In order to determine the effects of park area, park age and neighborhood socio-economic status on the native and exotic species richness of plants and trees we used multiple regression analyses. Thus, we used one (in this case simple linear regression), two and three variables and native and exotic species richness of plants and trees as dependent variable (Table 3). We performed seven regressions with one explanatory variable, eleven, with two explanatory variables and five, with three explanatory variables in relation to each response variable (the native and exotic species richness of plants and trees), totaling 28, 44 and 20 regressions, respectively (Table 3). To verify autocorrelation between variables, which occurs when the residuals of independent variables are not independent from each other, we used Durbin-Watson tests (44 with two variables and 20 with three variables), using car package and since all p-values were greater than 0.05, we could reject the null hypothesis and conclude that the residuals in these regression models were not autocorrelated. To comply with the requirements of homoscedasticity, we transformed all variables by log (x). All analysis were performed using R [28].

# RESULTS

Our study registered a total of 1,878 plant species in the 68 parks studied. Of these 1084 (57.72%) species were native and 589 (31.36%) were exotic. The number of plant species per park varied between 25 and 589 (Table 1), and the proportion of native species per park fluctuated between 22.68% and 86.70%. Overall, native species had a frequency (100 x number of parks occupied/68) that ranged between 1.47% and 88.24%, while exotic species showed a frequency ranging between 1.47% and 82.35%. Among the species with frequency greater than 50%, we recorded ten native species (*Schinus terebinthifolia, Syagrus romanzoffiana, Eugenia uniflora, Ceiba speciosa, Alchornea sidifolia, Erythrina speciosa, Handroanthus chrysotrichus, Piptadenia gonoacantha, Schizolobium parahyba, Vernonanthura polyanthes) and 23 exotic species, including Persea americana, Psidium guajava, Morus nigra, Eucalyptus sp., Libidibia ferrea, Paubrasilia echinata, Eriobotrya japonica, Mangifera indica, Cenostigma pluviosum, Archontophoenix cunninghamiana, Ligustrum lucidum and Pleroma granulosum, mostly trees and Fabaceae (Table 2). Some species considered invasive (as Leucaena leucocephala) had high frequency in the studied parks (Table 2).* 

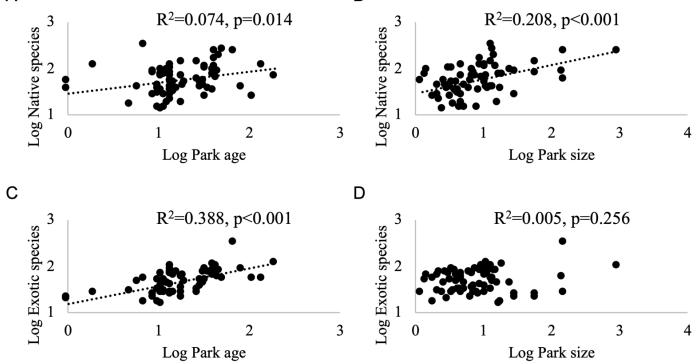
We found 211 plant families in the 68 parks. Exotic plants represented 110 families and native ones, 173. The six most diverse families of native species (Fabaceae, Asteraceae, Myrtaceae, Solanaceae, Melastomataceae and Rubiaceae) accounted to 33.58% (364 species) of the native flora recorded in the parks, whereas the six most diverse families of exotic (Fabaceae, Arecaceae, Asteraceae, Myrtaceae, Myrtaceae, Malvaceae and Poaceae) accounted to about 34.30% (202 species) of the exotic flora.

 Table 2. Plant species most frequently recorded in parks of São Paulo, Brazil.

 Species
 Frequency
 Or

| Species                                                          | Frequency | Origin | Family          | Life-<br>form |
|------------------------------------------------------------------|-----------|--------|-----------------|---------------|
| Schinus terebinthifolia Raddi                                    | 88.24%    | native | Anacardiaceae   | tree          |
| <i>Syagrus romanzoffiana</i> (Cham.) Glassman                    | 88.24%    | native | Arecaceae       | palm          |
| Eugenia uniflora L.                                              | 82.35%    | native | Myrtaceae       | treelet       |
| Persea americana Mill.                                           | 82.35%    | exotic | Lauraceae       | tree          |
| Psidium guajava L.                                               | 80.88%    | exotic | Myrtaceae       | treelet       |
| Ceiba speciosa (A.StHil.) Ravenna                                | 77.94%    | native | Malvaceae       | tree          |
| Morus nigra L.                                                   | 77.94%    | exotic | Moraceae        | treelet       |
| Alchornea sidifolia Müll.Arg.                                    | 76.47%    | native | Euphorbiaceae   | tree          |
| Erythrina speciosa Andrews                                       | 75.00%    | native | Fabaceae        | tree          |
| <i>Eucalyptu</i> s sp.                                           | 75.00%    | exotic | Myrtaceae       | tree          |
| Libidibia ferrea (Mart. ex Tul.) L.P.Queiroz                     | 73.53%    | exotic | Fabaceae        | tree          |
| <i>Paubrasilia echinat</i> a (Lam.) Gagnon. H.C.Lima & G.P.Lewis | 72.06%    | exotic | Fabaceae        | tree          |
| <i>Eriobotrya japonica</i> (Thunb.) Lindl.                       | 69.12%    | exotic | Rosaceae        | treelet       |
| Mangifera indica L.                                              | 69.12%    | exotic | Anacardiaceae   | tree          |
| Cenostigma pluviosum (DC.) Gagnon & G.P.Lewis                    | 67.65%    | exotic | Fabaceae        | tree          |
| Archontophoenix cunninghamiana (H.Wendl.)<br>H.Wendl. & Drude    | 66.18%    | exotic | Arecaceae       | palm          |
| Handroanthus chrysotrichus (Mart. ex DC.) Mattos                 | 66.18%    | native | Bignoniaceae    | treelet       |
| Ligustrum lucidum W.T.Aiton                                      | 66.18%    | exotic | Oleaceae        | tree          |
| Pleroma granulosum (Desr.) D. Don                                | 66.18%    | exotic | Melastomataceae | tree          |
| <i>Tipuana tipu</i> (Benth.) Kuntze                              | 64.71%    | exotic | Fabaceae        | tree          |
| Dypsis lutescens (H.Wendl.) Beentje & J.Dransf.                  | 63.24%    | exotic | Arecaceae       | palm          |
| <i>Leucaena leucocephala</i> (Lam.) de Wit                       | 63.24%    | exotic | Fabaceae        | tree          |
| Ficus benjamina L.                                               | 61.76%    | exotic | Moraceae        | tree          |
| Musa paradisíaca L.                                              | 61.76%    | exotic | Musaceae        | herb          |
| Malvaviscus arboreus Cav.                                        | 55.88%    | exotic | Malvaceae       | shrub         |
| Piptadenia gonoacantha (Mart.) J.F.Macbr.                        | 54.41%    | native | Fabaceae        | tree          |
| Schizolobium parahyba (Vell.) Blake                              | 52.94%    | native | Fabaceae        | tree          |
| Tecoma stans (L.) Juss. ex Kunth                                 | 52.94%    | exotic | Bignoniaceae    | treelet       |
| Bauhinia variegata L.                                            | 51.47%    | exotic | Fabaceae        | treelet       |
| Coffea arabica L.                                                | 51.47%    | exotic | Rubiacea        | treelet       |
| Heptapleurum actinophyllum (Endl.) Lowry & G.M.<br>Plunkett      | 50.00%    | exotic | Araliaceae      | tree          |
| Hovenia dulcis Thunb.                                            | 50.00%    | exotic | Rhamnaceae      | tree          |
| <i>Vernonanthura polyanthes</i> (Sprengel) Vega & Dematteis      | 50.00%    | native | Asteraceae      | treelet       |

Source: Authors (2022)


We found that age, size and age, size and IDH, age and population, age and population density, age and income, age and IDH and all combinations of three socioeconomic variables with age and size explained native and exotic species richness of plants and trees (Table 3). While native species richness and tree native species richness were both better associated to park size, age and neighborhood population, exotic species richness was better linked to age and population growth rate and exotic tree species richness to age and neighbourhood IDH (Table 3). Native and native tree species richness had more significant associations than exotic plants and exotic tree richness (Table 3). Alone socioeconomic variables did not explain richness of exotic and native plants and trees, but with size and age (individually and altogether) they did (Table 3).

| Portuguese acronym for Human Development Index. Results are shown as R <sup>2</sup> and p-value (when p<0.05, significant). |                 |                 |                     |                     |  |  |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|---------------------|---------------------|--|--|
|                                                                                                                             | Native species  | Exotic species  | Native tree species | Exotic tree species |  |  |
|                                                                                                                             | richness        | richness        | richness            | richness            |  |  |
| Size (S)                                                                                                                    | 0.208, p<0.001  | 0.005, p=0.256  | 0.104, p=0.004      | -0.013, p=0.683     |  |  |
| Age (A)                                                                                                                     | 0.074, p=0.014  | 0.388, p<0.001  | 0.155, P<0.001      | 0.419, p<0.001      |  |  |
| Population (P)                                                                                                              | 0.035, p=0.069  | 0.010, p=0.202  | 0.006, p=0.243      | 0.050, p=0.037      |  |  |
| Population density (PD)                                                                                                     | -0.011, p=0.626 | -0.007, p=0.480 | -0.012, p=0.678     | -0.002, p=0.359     |  |  |
| Growth rate of                                                                                                              | -0.017, p=0.914 | -0.012, p=0.599 | -0.009, p=0.500     | -0.016, p=0.845     |  |  |
| population (GR)                                                                                                             |                 |                 |                     |                     |  |  |
| Income (I)                                                                                                                  | 0.002, p=0.295  | -0.013, p=0.664 | -0.009, p=0.519     | -0.001, p=0.331     |  |  |
| IDH                                                                                                                         | -0.001, p=0.346 | 0.040, p=0.056  | -0.006, p=0.446     | 0.125, p=0.002      |  |  |
| S+A                                                                                                                         | 0.249, p<0.001  | 0.381, p<0.001  | 0.225, p<0.001      | 0.412, p<0.001      |  |  |
| S+P                                                                                                                         | 0.235, p<0.001  | 0.017, p=0.211  | 0.107, p=0.009      | 0.040, p=0.099      |  |  |
| S+PD                                                                                                                        | 0.196, p<0.001  | 0, p=0.373      | 0.091, p=0.017      | -0.014, p=0.580     |  |  |
| S+GR                                                                                                                        | 0.203, p<0.001  | -0.002, p=0.392 | 0.102, p=0.016      | -0.028, p=0.834     |  |  |
| S+I                                                                                                                         | 0.196, p<0.001  | 0.009, p=0.284  | 0.090, p=0.022      | -0.005, p=0.437     |  |  |
| S+IDH                                                                                                                       | 0.196, p<0.001  | 0.063, p=0.045  | 0.091, p=0.017      | 0.129, p=0.004      |  |  |
| A+P                                                                                                                         | 0.152, p=0.002  | 0.379, p<0.001  | 0.203, p<0.001      | 0.421, p<0.001      |  |  |
| A+PD                                                                                                                        | 0.069, p=0.036  | 0.379, p<0.001  | 0.152, p=0.002      | 0.411, p<0.001      |  |  |
| A+GR                                                                                                                        | 0.035, p=0.135  | 0.398, p<0.001  | 0.126, p=0.008      | 0.445, p<0.001      |  |  |
| A+I                                                                                                                         | 0.089, p=0.023  | 0.376, p<0.001  | 0.155, p=0.002      | 0.401, p<0.001      |  |  |
| A+IDH                                                                                                                       | 0.099, p=0.013  | 0.386, p<0.001  | 0.183, p<0.001      | 0.458, p<0.001      |  |  |
| S+A+P                                                                                                                       | 0.308, p<0.001  | 0.372, p<0.001  | 0.263, p<0.001      | 0.414, p<0.001      |  |  |
| S+A+PD                                                                                                                      | 0.240, p<0.001  | 0.372, p<0.001  | 0.217, p<0.001      | 0.404, p<0.001      |  |  |
| S+A+GR                                                                                                                      | 0.228, p<0.001  | 0.394, p<0.001  | 0.207, p<0.001      | 0.436, p<0.001      |  |  |
| S+A+I                                                                                                                       | 0.247, p<0.001  | 0.374, p<0.001  | 0.218, p<0.001      | 0.391, p<0.001      |  |  |
| S+A+IDH                                                                                                                     | 0.246, p<0.001  | 0.381, p<0.001  | 0.231, p<0.001      | 0.450, p<0.001      |  |  |

**Table 3.** Results of Multiple regressions that relate native and exotic species richness of plants and trees to independent variables (park size and age, neighborhood population, population density, growth rate, income and IDH). IDH is a Portuguese acronym for Human Development Index. Results are shown as R<sup>2</sup> and p-value (when p<0.05, significant).

Source: Authors (2022)

In addition, larger and older parks had more native plant species than smaller and newer parks (Figures 1a and 1b), and also older parks had more exotic species than newer parks (Figure 1c). A B



**Figure 1.** Relation between (A) Log number of native species and Log Park age, (B) Log number of Native Species and Log Park size, (C) Log number of exotic species and Log Park age, and (D) Log number of exotic species and Log Park size in São Paulo. The relationships shown in (A), (B) and (C) are statistically significant (P<0.05). Source: The Authors, 2022.

## DISCUSSION

This research aimed to analyze composition of native and exotic species in urban parks in São Paulo (Brazil), in response to variables considered drivers of diversity in natural ecosystems, adapted to urban environment. By studying 68 parks located in urban São Paulo city, we expected that socio-economic factors and age and size of parks would be important determinants of species richness, including native and exotic species, as well as spontaneous and planted species. We found a great species richness in urban parks in São Paulo and that richness associated to park age and size, and to some socio-economic factors, especially when associated to age and size of parks.

We verified a great plant species richness in urban parks in São Paulo city, which corroborates an extensive biodiversity inventory of 2016 [26]. These green areas have important social, biological and aesthetical values. They can function as useful tools for environmental awareness and education of the native flora [12]. In addition, native species in Brazilian urban parks can help to promote conservation and natural regeneration of forest and other native ecosystems in cities and of biodiversity [13,14]. For example, it has been shown that semiurban fragments preserved biodiversity of native butterflies in southeast Brazil and that it is possible to preserve some biological diversity, ensuring the conservation of Neotropical urban areas [29]. Thus, urban parks may have an important role on that. In addition, this great plant richness found may offer several ecosystem services [8], among which we highlight feeding the fauna. The most important (in frequency) families found (Fabaceae, Asteraceae, Myrtaceae, Solanaceae, Melastomataceae and Rubiaceae) and the most important species are known for its fleshy fruits, as another study in São Paulo city already showed [18].

We verified that older and larger parks had greater native species richness, which agrees with the usual drivers of diversity in natural ecosystems (as island biogeography theory and succession of tropical forests studies have been showing). The exact same results was found for urban parks in Santiago of Chile, and they argue that bigger sites could offer more resources and surface area for the growth and establishment of native plants, which we agree [10]. Also, older parks in São Paulo likely had more management and interventions improving its biodiversity. Regarding exotic plant species, older parks presented greater richness than newer areas and that may be explained by the fact that exotic species are nowadays known and seen as potentially invasive and may threat native flora and fauna [30]. There was not an influence of park size on exotic plant species richness.

Lastly, when isolated, socioeconomic variables did not explain plant species richness inside parks, except for IDH and population; thus, denser and less vulnerable regions had more exotic tree species. These characteristics may indicate a neighborhood that is well stablished with older parks having more exotic tree species. We expected that poorer neighborhoods would be negatively related to plant species richness inside urban parks. In São Paulo city, vulnerable portions of the city suffer from a lack of infrastructure and, consequently of green infrastructure and cover [18]. Thus, that relation could be extended into biodiversity of urban parks. Fortunately, that does not seem to be true, as it has been showed for urban parks in Santiago of Chile [10], i.e., urban parks in vulnerable neighborhoods are as diverse as in rich ones. However, when combined to park size and age, socioeconomics were significant, particularly IDH that related to all response variables, indicating that more developed neighborhoods together with older or larger parks had higher biodiversity. Thus, in vulnerable areas (with lower IDH) and in smaller and newer parks, we recommend improvement in plant species diversity by management of Secretaria do Verde e do Meio Ambiente, along with other actions to promote social justice and inclusion into public spaces.

In the last few years, São Paulo city has substantially increased its urban parks, through a policy of increasing green cover and urban afforestation [31]. Based on our results, it is very important to use and manage this public space with its multiple functions [31], incorporating plant diversity conservation and restoration as a target to be pursued.

**Funding:** Klécia Massi is funded by CNPq, PQ-2 grant 309541/2022-0. **Conflicts of Interest:** The authors declare no conflict of interest.

#### REFERENCES

- UN. United Nations, Department of Economic and Social Affairs, Population Division. [2014 revision of the World Urbanization Prospects]. [updated 2014 July 10, cited 2022 Sep 6]. Available from: https://www.un.org/en/development/desa/publications/2014-revision-world-urbanization-prospects.html
- Grimm NB, Redman CL. [Approaches to the study of urban ecosystems: The case of Central Arizona—Phoenix] [Internet]. Urban Ecosystems .2004 [cited 2022 Sep];7(3):199-213. Available from:
- https://doi.org/10.1023/b:ueco.0000044036.59953.a1

- Ossola A, Hahs AK, Nash MA, Livesley SJ. [Habitat Complexity Enhances Comminution and Decomposition Processes in Urban Ecosystems] [Internet]. Ecosystems. 2016 [cited 2022 Sep];19(5):927-41. Available from: https://doi.org/10.1007/s10021-016-9976-z
- IPCC Intergovernmental Panel on Climate Change [Internet]. [Climate change: a threat to human wellbeing and health of the planet]. Taking action now can secure our future — IPCC; [updated 2022 Feb 28, cited 2022 Sep 6]. Available from: https://www.ipcc.ch/2022/02/28/pr-wgii-ar6/.
- Haase D, Larondelle N, Andersson E, Martina A, Borgström S, Breuste J, et al. [A Quantitative Review of Urban Ecosystem Service Assessments: Concepts, Models, and Implementation]. AMBIO [Internet]. 2014 [cited 2022 Sep 6];43(4):413-33. Available from: https://doi.org/10.1007/s13280-014-0504-0
- 6. United Nations Sustainable Development [Internet]. [Goal 11: Make cities inclusive, safe, resilient and sustainable]; [cited 2022 Sep 6]. Available from: https://www.un.org/sustainabledevelopment/cities/.
- Junior LS. [Importance of urban parks: The example of Parque Alfredo Volpi]. Congresso Brasileiro de Arborização Urbana, 16., 2012, Uberlândia. Anais. Uberlândia: Sociedade Brasileira de Arborização Urbana – SBAU.
- 8. Pacheco JMS, Lopes DMP, da Silva EV. [The importance of urban parks for quality of life and environment in cities]. Encontros Universitários da UFC. 2018;3:2054.
- Schmitt J, Goetz M. [Species richness of fern and lycophyte in an urban park in the Rio dos Sinos basin, Southern Brazil] [Internet]. Braz J Biol. 2010 [cited 6 Sep 2022];70(4):1161-7. Available from: https://doi.org/10.1590/s1519-69842010000600005
- Figueroa JA, Castro SA, Reyes M, Teillier S. [Urban park area and age determine the richness of native and exotic plants in parks of a Latin American city: Santiago as a case study] [Internet]. Urban Ecosyst. 2018 [cited 2022 Sep 6];21(4):645-55. Available from: https://doi.org/10.1007/s11252-018-0743-0
- Da Silva CBS, Dos Santos OF, Gomes FMM, Simplício AAF, Da Silva FL. [Nature Conservation: a study of native plant species in IFMA campus Codó]. III Congresso Internacional das Ciências Agrárias. Cointer- Odvagro.2018 [cited 2022 Sep 6].
- Cerati TM, Lazarini RA. [The action-research in environmental education: na experience from around a protected area] [Internet]. Ciência & Educação (Bauru). 2009 [cited 2022 Sep 6];15(2):383-92. Available from: https://doi.org/10.1590/s1516-73132009000200009
- Moraes LF, Assumpção JM, Luchiari C, Pereira TS. [Planting native tree species for ecological restoration on Biological Reserve Poço das Antas, Rio de Janeiro, Brazil] [Internet]. Rodriguésia. Set 2006 [cited 2022 Sep 6];57(3):477-89. Available from: https://doi.org/10.1590/2175-7860200657307
- 14. Rodrigues RR, Leitão Filho HF. [Riparian forests: conservation and recuperation]. São Paulo, SP, Brasil: Edusp; 2000. 320 p.
- Lagoa MH. [Água Branca Park: sustanaible management of na urban forest] [Internet]. Universidade de São Paulo; 2008 [cited 2022 Sep 6]. Available from: http://www.teses.usp.br/teses/disponiveis/16/16135/tde-12052010-161559/.
- Catapreta CA, de Abreu MG, Sena MV. III-452 [Feasibility of social and urban reinsertion of solid waste disposal areas and their transformation into ecological parks]. In: 30° Congresso ABES; Belo Horizonte, Brazil. Belo Horizonte: SLU. p. 1-9.
- Lepczyk CA, Aronson MF, Evans KL, Goddard MA, Lerman SB, MacIvor JS. [Biodiversity in the City: Fundamental Questions for Understanding the Ecology of Urban Green Spaces for Biodiversity Conservation]. BioScience [Internet]. 2017 Aug 9 [cited 2022 Sep 6];67(9):799-807. Available from: https://doi.org/10.1093/biosci/bix079
- Takakura M, Massi KG. [Wealth and Education Influences on Spatial Pattern of Tree Planting in a Tropical Metropolis in Brazil] [Internet]. Env. Manag. 2021 [cited 2022 Sep 6];69(1):169-78. Available from: https://doi.org/10.1007/s00267-021-01542-2
- 19. MacArthur RH, Wilson EO. [The theory of island biogeography]. Princeton University. 1967
- Chazdon RL, Peres CA, Dent D, Sheil D, Lugo AE, Lamb D, et al. [The Potential for Species Conservation in Tropical Secondary Forests] [Internet]. Conservation Biology. 2009 [cited 2022 Sep 6];23(6):1406-17. Available from: https://doi.org/10.1111/j.1523-1739.2009.01338.x
- Instituto Brasileiro de Geografia e Estatística IBGE. [Demographic Census 2021]. São Paulo; 2021. [cited 2022 Sep 6]. Available from: https://www.ibge.gov.br/component/content/article/1861-novo-portal/institucional/30085-trabalhe-no-censo.html
- 22. Secretaria Municipal do Verde e do Meio Ambiente [Internet]. [City of São Paulo has more than 50% of green areas in its territory, studies indicate]. São Paulo: SVM. 2023 [cited 2023 Sep 17]. Available from: https://www.prefeitura.sp.gov.br/cidade/secretarias/meio\_ambiente/noticias/?p=348457
- Rolim GD, Camargo MB, Lania DG, Moraes JF. [Koppen and Thornthwaite climate classification and their applicability in determining agroclimatic zones for the state of São Paulo]. Bragantia [Internet]. 2007 [cited 2022 Sep 6];66(4):711-20. Available from: https://doi.org/10.1590/s0006-87052007000400022
- 24. Secretaria Municipal do Verde e do Meio Ambiente [Internet]. Division of urban parks. São Paulo: SVM. 2023 [cited 2023 Sep 17]. Available from:

https://www.prefeitura.sp.gov.br/cidade/secretarias/meio\_ambiente/parques/index.php?p=292393

- 25. Secretaria Municipal do Verde e do Meio Ambiente [Internet]. Biodiversity Inventory of the Municipality of São Paulo. São Paulo: SVM. 2016 [cited 2022 Sep 6]. Available from: https://www.prefeitura.sp.gov.br/cidade/secretarias/meio\_ambiente/publicacoes\_svma/index.php?p=229837
- 26. PNUD, FJP, IPEA. São Paulo (city). [Atlas of Work and Development of the City of São Paulo]. São Paulo. 2013. [cited 2022 Sep 6]. Available from: https://www.prefeitura.sp.gov.br/cidade/secretarias/upload/Informes Urbanos/29 Dimensoes IDH-M.pdf
- Prefeitura Municipal de São Paulo [Internet]; [Demographic data of districts belonging to subprefectures]. São Paulo: PMSP, 2023 [cited 2022 Sep 6]. Available from: https://www.prefeitura.sp.gov.br/cidade/secretarias/subprefeituras/subprefeituras/dados\_demograficos/index.php? p=12758
- 28. R Central Development Team. R: a language and environment for statistical computing. Version 3.6.1. Vienna: R Foundation for Statistical Computing. 2019. http://www.r-project.org
- 29. Iserhard CA, Duarte L, Seraphim N and Freitas AVL. How urbanization affects multiple dimensions of biodiversity in tropical butterfly assemblages. Biodiv Conserv. 2018 [cited 2022 Sep 6] 28(3):621-38. Available from: https://doi.org/10.1007/s10531-018-1678-8..
- 30. Higgins SI, Richardson DM, Cowling RM, Trinder-Smith TH. Predicting the Landscape-Scale Distribution of Alien Plants and Their Threat to Plant Diversity. Conserv. Biol.1999 [cited 2022 Sep 6] 13(2):303-13. Available from: https://doi.org/10.1046/j.1523-1739.1999.013002303.x
- 31. Prefeitura Municipal de São Paulo [Internet]. Plano Municipal de Arborização Urbana. São Paulo. SVMA. 2019 [cited 2022 Sep 6]. Available

from: https://www.prefeitura.sp.gov.br/cidade/secretarias/meio\_ambiente/projetos\_e\_programas/index.php?p=28 4680.



© 2024 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY NC) license (https://creativecommons.org/licenses/by-nc/4.0/).