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Abstract: Accurate and timely identification of pulmonary disease is critical for effective therapeutic 
intervention. Computed tomography (CT), chest radiography (x-ray) and positron emission tomography (PET) 
scans are some examples of traditional diagnostic methods that rely on single-modality imaging. However, 
these methods are not always accurate or useful. This paper presents a novel strategy to overcome this 
obstacle by developing a multimodal deep learning framework. Current diagnostic techniques mostly 
prioritize the analysis of a single modality, which limits the holistic understanding of lung diseases. This 
limitation hinders the accuracy of diagnoses and the ability to tailor therapies to individual patients. To 
address this disparity, the proposed research presents a novel multimodal deep learning framework that 
effectively incorporates data from CT, X-ray, and PET scans. This approach allows for the extraction of 
features that are unique to each modality. Fusion methods, such as late or early fusion, are used to effectively 
capture synergistic information from multiple modalities. Adding more convolutional neural network (CNN) 
layers and pooling operations to the model improves the ability to obtain abstract representations. This is 
followed by the use of fully connected layers for classification purposes. The model is trained using 
appropriate loss functions and optimized using gradient-based techniques. The proposed methodology 
shows a significant improvement in the accuracy of lung disease diagnosis compared to conventional 
methods using a single modality. 

Keywords: Multimodal Deep Learning; Lung Disease; Precise Diagnosis.  

HIGHLIGHTS 
 

• Multimodal deep learning approach for lung disease diagnosis is proposed. 

• Intermediate fusion is used to fuse different lung modalities. 

• Proposed model performed better on multimodal data than single modality. 
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INTRODUCTION 

Lung diseases represent a significant global health dilemma, affecting a large number of patients and 
requiring accurate and timely diagnosis to ensure effective treatment [1]. Conventional diagnostic techniques, 
however useful, may be limited in effectively distinguishing the intricacies of different lung diseases [2]. This 
has spurred the search for novel methods that have the potential to transform the diagnostic field. The 
application of deep learning to the field of lung disease diagnosis has recently emerged as a viable approach 
to overcome the prevailing obstacles [3]. Lung diseases cover a wide range of problems including, but not 
limited to, infections, inflammatory disorders, and neoplastic growths [4]. Sophisticated diagnostic techniques 
are required to effectively understand the unique characteristics and complex nature of these diseases. 
These tools should provide detailed insights into the pathology and enable the development of targeted and 
tailored treatment approaches [5]. 

Accurate identification of disease is a fundamental aspect of successful medical management of 
respiratory disease [6]. Traditional diagnostic techniques, which typically rely on single-modality imaging such 
as CT scans or chest X-rays, may be limited in providing the comprehensive range of information required 
for accurate diagnosis [7]. This limitation underscores the urgent need for sophisticated diagnostic methods 
that can provide a more comprehensive understanding of lung disease [4]. Deep learning, which falls under 
the umbrella of artificial intelligence, has attracted considerable interest due to its potential to revolutionize 
medical diagnostics, particularly in the field of lung disease diagnosis [8, 9]. It is possible for deep learning 
models to make diagnostic processes more accurate and faster by using multi-layered neural networks to 
autonomously learn complex patterns and features from different data sets [10]. Deep learning shows 
potential in the field of pulmonary diseases due to its ability to extract small anomalies from imaging data and 
improve the decision-making process with more comprehensive information [11]. 

Although deep learning shows great promise in the field of lung disease diagnosis, there are still 
persistent obstacles that need to be addressed. The limited availability of annotated and diverse datasets 
poses a challenge in training models that can achieve high levels of robustness [12]. The interpretability of 
deep learning models in medicine remains a significant challenge. It is essential to understand the reasoning 
behind the judgments made by these models in order to gain confidence in clinical settings. In addition, 
researchers are constantly striving to address the ongoing difficulty of ensuring the generalizability of models 
across different patient populations and disease subtypes. 

The primary goal of this study is to improve the accuracy of lung disease diagnosis through the 
development of a multimodal deep learning system [13]. The proposed system aims to effectively incorporate 
data from CT, chest x-ray, and PET scans to provide a comprehensive and nuanced understanding of lung 
disease, overcoming the limitations of traditional single-modality approaches. The novelty of the proposed 
method lies in the use of a multimodal deep convolutional learning model that goes beyond the limits of 
single-modality analysis. The proposed method extracts modality-specific features from the data by 
combining different Convolutional Neural Network (CNN) branches with dilated convolutions for each imaging 
mode. The use of advanced fusion techniques, whether used as late or early fusion methods, makes it easier 
to obtain information from multiple sources that work well together. The addition of CNN layers and pooling 
operations improves the model's ability to learn abstract representations, which ultimately leads to better 
diagnostic accuracy. In general, this work presents a novel approach that utilizes many modes of information 
to improve the proposed understanding of lung diseases, overcoming the limitations of traditional single-
modality methods. 

MATERIAL AND METHODS 

This section will provide a detailed overview of the proposed methods and the data set used. 

Overview of the Proposed Architecture 

This system architecture design aims to exploit the unique advantages of multiple imaging modalities, 
such as CT, chest x-ray, and PET scans, in a multimodal deep learning context. The architectural design 
utilizes CNN with a unique emphasis on dilated convolutions. Each image modality is processed separately 
using specialized CNN branches. The integration of dilated convolutions within these branches enables the 
extraction of features that are unique to each modality, thereby improving the model's ability to capture subtle 
information. 

The use of dilated convolutions in advanced fusion techniques involves the fusion of feature maps from 
many modalities through the process of intermediate fusion. The process of final fusion involves the fusion 
of feature maps to produce a complete representation. In the context of additional CNN layers and pooling, 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4


 Varunkumar, K.A.; et al. 3 
 

 
Brazilian Archives of Biology and Technology. Vol.67: e24231088, 2024 www.scielo.br/babt 

intermediate processing involves the use of conventional CNN layers to facilitate hierarchical feature 
extraction. Pooling is incorporated into the network architecture to reduce spatial dimensions. The output 
feature map is an enhanced and abstracted feature map. In the context of classification using fully connected 
layers, the flatten operation is used to convert the feature map into a one-dimensional vector. Then, fully 
connected layers are used along with Rectified Linear Unit (ReLU) activation to effectively simulate 
complicated features. In the output layer, the final fully connected layer is utilized with softmax activation for 
the purpose of classification, as depicted in Figure 1. 
 

 
Figure 1. Proposed Framework 

Dilated Convolutions in CNN Branches 

Dilated convolutions are included as a special feature within these branches. Dilated convolutions, also 
known as extended convolutions, refer to a convolution operation in which the filter kernel includes intervals 
or gaps between its values. Unlike conventional convolutions, which move a filter at a constant step, dilated 
convolutions incorporate gaps or dilation rates within the filter. This allows the filter to capture a wider range 
of information from the input data. 

The inclusion of dilated convolutions within the CNN branches serves a distinct and deliberate purpose. 
This facilitates the network's ability to extract features from the input data in a more comprehensive manner. 
The ability to capture subtle and scattered patterns across many imaging modalities is particularly beneficial 
in the field of lung disease diagnosis. By integrating dilated convolutions into the proposed CNN branches, 
the proposed method can significantly increase the receptive fields of these branches. This enhancement 
allows them to capture and incorporate information from a wider spatial context, as shown in Figure 2. In a 
regular 2D convolution, the output Y at a given spatial location (i,j) is computed according to Equation 1. 

𝑌(𝑖, 𝑗) = ∑  
𝑀−1

𝑚=0
∑ 𝑋(𝑖 + 𝑚, 𝑗 + 𝑛). 𝐾(

𝑁−1

𝑛=0
𝑚, 𝑛) (1) 

Where X is the input sensor, K is the convolutional kernel, and M and N are the dimensions of the kernel. 
For dilated convolutions, we introduce a dilation factor d, which introduces spacing between the values of the 
convolutional kernel, allowing it to capture a wide range of spatial information. The output 𝑌𝑑 for dilated 
convolutions is computed as given in Equation 2. 

𝑌𝑑(𝑖, 𝑗) = ∑  
𝑀−1

𝑚=0
∑ 𝑋(𝑖 + 𝑑. 𝑚, 𝑗 + 𝑑. 𝑛). 𝐾(

𝑁−1

𝑛=0
𝑚, 𝑛) (2) 

The dilated convolution operation is often expressed in terms of the original convolution operation with 
modified indices. The dilated convolution operator ∗d is defined as in Equation 3. 

𝑌𝑑 = 𝑋∗𝑑𝐾 (3) 

This encapsulates the dilated convolution operation, where 𝑌𝑑 is the output, X is the input, and K is the 
kernel with the dilation factor incorporated. The procedure is explained as follows. 
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Procedure 1: Dilated Convolution 
 

Input: Input tensor X for a specific imaging modality; Convolution kernel K with dilation 

factor d 

Output: Output tensor Yd after dilated convolutions 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Initialization: 

Initialize the output tensor Yd with zeros. 

Traversal: 

Traverse the input tensor X with a nested loop over spatial locations (i,j). 

Dilated Convolution Operation: 

For each spatial location (i,j), compute the dilated convolution operation  

Update the corresponding entry in the output tensor Yd. 

End //Continue traversal until all spatial locations have been processed. 

output tensor Yd  

End 

 

Advanced Fusion using Dilated Convolutions 

The study uses sophisticated fusion methods to effectively integrate data from three imaging modalities, 

namely CT, chest x-ray and PET scans. Modality integration is further refined by the use of dilated 

convolutions, which add sophistication and complexity to the fusion process. The use of dilated convolutions 

is very important for the fusion process because it adds a new way to capture long-range relationships and 

contextual information. Unlike traditional convolutional methods, dilated convolutions allow the model to 

expand its receptive field while minimizing the impact on the number of parameters. Diluted convolutions are 

very important for obtaining synergistic information from different types of data, which helps us to better 

understand the complex patterns in lung disease. Using dilated convolutions to incorporate contextual 

information improves diagnostic accuracy by considering long-range dependencies.  

Intermediate Fusion with Dilated Convolutions 

In intermediate fusion using dilated convolutions, let 𝐹1, 𝐹2, 𝐹3, … , 𝐹𝑛 represent the feature maps obtained 
from distinct modalities following independent processing through dilated convolutions. The intermediate 
fusion IF procedure is denoted as in Eq. 4. 

𝐼𝐹 (𝐹1, 𝐹2, 𝐹3, … , 𝐹𝑛) = ∑  
𝑛

𝑖=1
𝐹𝑖∗𝑑𝑊𝑖 (4) 

Where, 𝑊𝑖 denotes the learnable weights for each modality. 
 

Final Fusion with Dilated Convolutions 

In order to get to the final fusion, the feature maps that come from the intermediate fusion (IF) are 
processed further using dilated convolutions. Let 𝐹𝑖𝑛𝑡 represents the intermediate fused feature map. The 
ultimate fusion FF procedure is denoted as in Equation 5.  

𝐹𝐹 (𝐹𝑖𝑛𝑡) = 𝐹𝑖𝑛𝑡∗𝑑𝑊𝑓 (5) 

 
Where, 𝑊𝑓 represents the final set of learnable weights for fusion. 

 

The pseudocode outlining the fusion process employing dilated convolutions is shown. 

 
Pseudocode 2: Advanced Fusion with Dilated Convolutions 
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Input: Feature maps F1,F2,…,Fn from different imaging modalities after individual 

processing through dilated convolutions. 

Output: Final fused feature map Ff. 

1 

2 

3 

4 

5 

6 

7 

8 

 

Initialize an IS to store intermediate feature maps. //Intermediate Fusion 

For each modality i: 

ISi = Fi∗d Wi //Apply dilated convolutions 

Add ISi to ISIS. 

Obtain Fint. // Concatenate feature maps in ISIS on channel axis to obtain Fint 

Ff = Fint∗d Wf  //Apply dilated convolutions for final fusion // Final Fusion 

Further process the fused feature map Ff through convolutional layers. 

Final fused feature map Ff  

//integrated information from modalities using fusion with dilated convolutions. 

 

Additional CNN Layers and Pooling 

In the proposed framework, additional CNN layers and pooling procedures are added after the initial 
processing of different imaging modalities using dilated convolutions and the advanced fusion stage. This 
step is critical for refining the learned representations, improving abstraction, and preparing the features for 
the final classification. 

Following the sophisticated fusion process, the feature maps exhibit a comprehensive and intricate 
depiction of the amalgamated information derived from several modalities. By adding more CNN layers, it is 
possible to improve the extraction of hierarchical features and patterns. The presence of these layers 
enhances the model capacity to discover intricate linkages within the amalgamated elements. 

Pooling operations, such as max pooling or average pooling, are utilized to reduce the spatial dimensions 
of the feature maps through down-sampling. Pooling is a technique that aids in the reduction of computing 
burden by prioritizing the most prominent features and facilitating translation invariance. Additionally, it 
facilitates the capture of the most informative elements of the combined features. The following section 
outlines the incorporation of extra CNN layers and pooling processes. Let 𝐹𝑓  represent the fused feature 

map after the advanced fusion stage. The additional CNN layers is mathematically expressed as in Equation 
6. 

𝐹𝐶𝑁𝑁 = 𝑅𝑒𝐿𝑈(𝑊1 ∗ 𝐹𝑓 + 𝑏1) (5) 

Where, 𝑊1 denotes the learnable weights of the convolutional layer, 𝑏1is the bias term, * is the 
convolutional operator, ReLU (Rectified Linear Unit) activation function. The max pooling operation used is 
given in Equation 6. 

𝐹𝑃 = 𝑀𝐴𝑋𝑃(𝐹𝐶𝑁𝑁 , 𝑃𝑆, 𝑆) (6) 

MAXP represents the max pooling function, PS is the pooling window size, and s denotes the stride of 
the pooling window. 

 

Pseudocode 3: Additional CNN Layers and Pooling  
 

Input: Fused feature map Ff  obtained from the advanced fusion stage. 

Output: Refined and abstracted feature map Fo ready for the final classification. 

1 

2 

3 

4 

5 

6 

 

7 

Initialize the feature map FCNN as Ff. 

For each additional CNN layer //Apply Additional CNN Layers 

FCNN = ReLU(Wi ∗ FCNN + bi) // Apply a convolutional with Wi and bi:  

Repeat //for the desired number of additional CNN layers. 

𝐹𝑃 = 𝑀𝐴𝑋𝑃(𝐹𝐶𝑁𝑁 , 𝑃𝑆, 𝑆)//Apply max pooling to downsample spatial dimensions 

Output Feature Map Fo // is obtained after the application of additional CNN layers 

and pooling. 

End 
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Fully Connected Layers for Classification 

Finally, the fully connected layers with a Softmax function is used to receive the predicted class 
probabilities. The pseudocode is given as follows 

Pseudocode: Fully Connected Layers for Classification 

 

Input: Flattened feature vector Ff obtained after CNN layers and pooling operations 

Output: Predicted class probabilities. 

1 

2 

3 

4 

5 

6 

7 

Initialize Ffc as Ff. 

For each fully connected layer: 

Ffc=ReLU(Wfc⋅Ffc+bfc) 

Repeat //for the desired number of fully connected layers. 

End 

Apply final FCL // Softmax activation at Output Layer 

End // Prediction output represents the predicted class probabilities. 

 

RESULTS AND DISCUSSION 

The proposed method is experimented and validated on the combined dataset, which is obtained from 
RIDER Lung CT - The Cancer Imaging Archive (TCIA) Public Access - Cancer Imaging Archive Wiki [14], 
Chest X-Ray Images - Pneumonia - kaggle.com [15] and 4D MRI dataset [16]. The experiments are 
performed in python tool on an i7 processor with 16 GB of RAM and 16 GB of GPU. K-fold cross validation 
with different values are used to validate the performance of the model as in Table 1. Accuracy, precision, 
recall, and F-measure was used to evaluate the performance of the proposed model. 

 
                                       Table 1. Results on different K-Fold cross validation 

Metric 3k Fold 5k Fold 10k Fold 15k Fold 

Accuracy 0.82 0.88 0.94 0.92 

Precision 0.85 0.92 0.96 0.94 

Recall 0.82 0.84 0.91 0.89 

F-measure 0.83 0.88 0.92 0.899 

 

 
 

Figure 2. Training and test loss 
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Figure 3. Performance evaluation of different folds 

Multimodal deep learning in precise medical diagnosis is very important. However, the important criteria 
is the preparation of multimodal datasets and selection of best features that takes part in the diagnosis 
process. As, it is our first effort to combine the data from three different sources; there are no similar studies 
to be compared with our model. In order to check and validate the performance of our model, we tried different 
k fold cross validations. The value for k was considered as 3, 5, 10, and 15 for the evaluation. As shown in 
Table 1 and Figure 3, the performance of the model was better for k=10. Then, we trained our model for 10-
fold cross validation and it achieved an accuracy of 94%. The training and test loss during different epochs 
are shown in Figure 2. The cross entropy is considered as loss function to validate the models performance 
during training and test phase. The formulas for loss function is given in Equation 7. 

 

𝐿𝑜𝑠𝑠 = − 
1

𝑁
∑ 𝑦𝑖 log(𝑝(𝑃𝑖)) + (1 − 𝑃𝑖)log (1 − 𝑝(𝑃𝑖) 

 

 

(7) 

Where, N represents total number of images corresponding to patients, 𝑃𝑖 represents if the image 
contains lung disease (1) or not (0). 𝑝(𝑃𝑖) is the Softmax probability of each class in binary classification.  

 
 

  Table 2. Performance comparison on different modalities 

Modality Accuracy Precision Recall F-measure 

CT Imaging 0.91 0.92 0.89 0.90 

X-ray Imaging 0.89 0.92 0.90 0.91 

PET 0.88 0.90 0.89 0.89 

Multimodal (CT+PET+X-ray) 0.94 0.96 0.91 0.92 
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Figure 4. Performance comparison on different modalities 

Further, we compared the performance of our model with 10-fold cross validation on multimodal dataset 
and on individual images from each modality as shown in Table 2 and Figure 4. It is clear that our model 
performed better with multimodal data and achieved better accuracy than on individual modalities.  

CONCLUSION 

The article presents a multimodal approach to handle data with three different modalities CT, PET, and 
X-ray. The data from different sources was first combined and then the modal was trained with intermediate 
fusion approach. Different K-fold cross validation was used and model performed well with 10 (K) fold cross 
validation. Further, the model was compared with multimodal and single modality data, and the results show 
that model is able to capture the features from different modalities to provide more accurate diagnosis than 
single modality data. The future experiments will consider testing the performance of the model on other 
multimodal data. In addition, other modalities such as clinical data can be incorporated and new modification 
to the model is planned in the future scope of the study. 
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