
Vol.67: e24230703, 2024 
https://doi.org/10.1590/1678-4324-2024230703 

ISSN 1678-4324 Online Edition 

 

 

 
Brazilian Archives of Biology and Technology. Vol.67: e24230703, 2024 www.scielo.br/babt 

Article - Engineering, Technology and Techniques 

MRI Imaging Techniques and Artificial Ligaments for 
the Diagnosis and Reconstruction of Cruciate Ligament 
Injuries of the Knee Joint 

Jiebing Li 1* 
https://orcid.org/0009-0005-1614-8581 

1Shijiazhuang people's Hospital, Bone and Joint Department, Shijiazhuang, Hebei, China. 

Editor-in-Chief: Alexandre Rasi Aoki 
Associate Editor: Raja Soosaimarian Peter Raj 

Received: 08-Jul-2023; Accepted: 15-Apr-2024. 

*Correspondence: jiebingli5@gmail.com(J.L.). 

 

Abstract:This study focused on the use of MRI imaging techniques and artificial ligaments in diagnosing and 
reconstructing Cruciate Ligament (CL) injuries of the knee joint. CL injuries are common in athletes and can 
cause significant pain and disability. MRI imaging is a powerful diagnostic tool that accurately identifies the 
extent and location of the injury. The use of Artificial ligaments has been increasing in the surgical 
reconstruction of the ligament. In this study, we offer a deep learning (DL)-a based method called ThreeFold 
CNN for arthroscopically detecting injuries to the CL in the knee during MRI. The CL on MRI was first 
separated using two deep convolutional neural networks (2DCNNs). Then structural problems within the 
isolated ligament were detected using a classification CNN to create a completely automated DL-based 
diagnostic method. We employ the Satin Bowerbird Optimizer (SBO) method for accelerating the 
performance of the model. The CL injury diagnosis system's specificity and sensitivity are 97 and 97, 
respectively, at the optimum threshold. In contrast, the clinical radiologists' specificity varied between 0.91 
and 0.99, while their sensitivity was between 0.97 and 0.99. The diagnostic performance of the CL injury 
diagnosis system and CR did not differ in a statistically significant manner at𝑃 <  .05. The CL injury diagnosis 
system's area under the ROC curve was 98.5, which indicates outstanding overall diagnostic accuracy. 

Keywords: Cruciate ligament (CL); MRI; artificial ligaments; injury diagnosis. 

INTRODUCTION 

Cruciate ligament injuries are common in athletes and can result in significant pain and disability. The 
knee joint is particularly susceptible to such injuries due to the complex biomechanics involved in its 
movement [1]. Both the anterior cruciate ligament (ACL) and the posterior cruciate ligament (PCL) perform 
essential functions in maintaining the condition and performance of the knee joint. The collateral ligament 
(CL) is a prevalent location for injury in athletes, and such damages can have spanning effects on an 

HIGHLIGHTS 
 

• Structural problems within the isolated ligament were detected  

• Satin Bowerbird Optimizer (SBO) method for accelerating the performance of the model.  

• CL injury diagnosis system's area under the ROC curve was 98.5. 
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individual's ability to engage in activities or other external operations [2-3]. Knee ligament (CL) injuries are 
depicted conceptually in Figure 1. 

 

 
Figure 1. CL injuries of the knee joint 

The diagnosis and treatment of cruciate ligament injuries have been greatly improved by advances in 
medical imaging and surgical techniques. MRI is a powerful diagnostic tool that allows for the accurate 
identification of the extent and location of the injury. MRI imaging techniques have greatly improved the 
diagnosis of cruciate ligament injuries and have helped to guide the development of more effective treatment 
options [4]. 

Surgical reconstruction of the cruciate ligament is often required to restore the stability and function of 
the knee joint [5]. Artificial ligaments have been developed to replace the damaged ligament and provide 
support to the knee joint during the healing process. The use of artificial ligaments has been shown to improve 
the outcomes of patients undergoing cruciate ligament reconstruction surgery. However, MRI is a commonly 
used imaging modality for the diagnosis of CL injuries, accurate diagnosis and diagnosis of these injuries can 
be challenging and require expertise [6]. 

In this study, we propose a DL-based method for arthroscopically detecting injuries to the CL in the knee 
during MRI. The proposed method involves using a two-stage DL approach. Firstly, a ThreeFoldCNNis used 
to isolate the CL from the MRI image. This is followed by the diagnosis of structural anomalies within the 
isolated CL using a categorization CNN in a DL-based diagnosis system.  

This study aims to develop a reliable and accurate automated system for detecting CL injuries on MRI, 
which can assist radiologists and clinicians in making accurate diagnoses. The proposed DL-based method 
has the potential to improve the accuracy and efficiency of CL injury diagnosis on MRI, leading to earlier 
diagnosis and improved patient outcomes. 

Contribution 

This research effectively combines sophisticated MRI imaging methods with artificial ligaments, offering 
an integrated approach to the diagnosis and reconstruction of CL damage in the knee joint. 

We present a new ThreeFold CNN approach for arthroscopic identification of CL injuries in MRI scans, 
demonstrating the capability of deep learning in automating diagnostic procedures to achieve efficient and 
precise outcomes. 

The use of 2DCNNs for accurate differentiation and isolation of the CL on MRI demonstrates the 
effectiveness of deep learning in image segmentation, an essential stage in the diagnostic process. 

The integration of the Satin Bowerbird Optimizer approach enhances the speed of the deep learning 
model, emphasizing the significance of optimization techniques in improving the effectiveness of diagnostic 
systems for CL injuries when compared to conventional clinical radiology approaches. 

RELATED WORKS 

Study [7] employed the 3D-CT technique to recreate the ACL's natural femoral impression and double-
bone tract. To aid in the development of anatomic double-beam repair of the ACL by arthroscopy, they 
compare the positions of the two centers and outline the law governing their interaction. According to the 
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findings of the 3D reconstruction, the thickness of the UF layer forms a peak in the front, medial region and 
afterward diminishes in the posterior medial regions. 

Research [8] shows that it was possible to train a DL CNN algorithm to detect the existence of a full ACL 
injury with an accuracy of over 96% on a test set. In addition, they investigate a variety of network designs 
tailored to the specific difficulties inherent in MRI-based sports injury diagnosis. They first show that the 
intercondylar area is where the input field of view has to be restricted to achieve optimal algorithm 
performance. Second, they show that the contextual information of neighboring imagine slices may 
significantly enhance the classification accuracy of a network. 

Research [9] employed DL to improve the quality of Fourier approximation images, and it demonstrated 
the diagnostic value of a 5-minute 3D qDESS MRI sequence that yields multi-contrast images and concurrent 
quantitative T2 relaxation time observations. When arthroscopic results were employed as the supreme 
standard, the fast procedure exhibited good concordance with the imaging results from a typical diagnosis 
knee MRI protocol that required around 20 minutes. 

To investigate the effectiveness of MRI based on DL in the diagnosis of ACL injury, a multimodal feature 
fusion DL model was created in the study [10] and used in the diagnosis of patients with ACL injuries. The 
outcomes demonstrated that DL-based MRI significantly enhanced the capacity to identify ACL injury and 
improved sensitivity, specificity, and accuracy. 

The goal of the research [11] was to use a “semi-supervised framework, double-linear layers U-Net 
(DCLU-Net)” to create a DL model for segmenting and classifying MRI images of ACL injuries for diagnostic 
purposes. The goal of the study [12] was to determine if a 3D fat-suppressed proton density (FS-PD) multi-
planar voxel picture of the knee was more beneficial than a thin-slice, high-resolution 2D FS-PD image 
utilizing a denoising technique using DL-based reconstruction (dDLR) with maximum-probability 
reconstruction (MPR). 

In research [13], they apply and compare four different machine learning classification models to the 
well-balanced, structured ACL dataset: “the random forest (RF), the categorical boosting (Cat Boost), the 
light gradient boosting machines (LGBM), and the highly randomized classifier (ETC)." 

Study [14] developed an “efficiently-layered network (ELNet)” CNN architecture on MRNet and validated 
it using MRI scans of knee ACL injuries. The model had a small number of parameters—about 0.2 million—
and was lightweight. The study only gave AUC for the knee MRI dataset, which was a constraint in terms of 
accuracy because 90% was not an adequate result for tears in the ACL as assessed on MRNet. 

Four classifications of ACL injuries were utilized in research [15] of hierarchical severity. Both the 2D and 
3D CNN models were used to evaluate the CNN model. Although the 2D CNN performed better overall than 
the 3D CNN, it was poorer without transfer learning. Due to the small size of the test set, subcategories of 
partial tears could not be categorized, which was a drawback of the study. Radiologists determined the MRI 
ratings. 

A study [16] uses a DL technique to automatically and effectively diagnose ACL tears. They created a 
DL model, which showed promise for patients with osteoarthritis and delivered the best performance for 
prospective classification. They offer cutting-edge research built on a customized CNN model following hyper-
parameter adjustments. The outcomes showed that the CNN model built on DL significantly improved the 
categorization of knee ACL rupture. 

ACL tears from magnetic resonance imaging were automatically segmented by DL in research [17]. With 
the help of the convolutional neural network architecture U-Net, a knee mask was created on the original 
MRIs. In study [18], 2D U-Net was utilized to partition the cartilage and meniscus into eleven groups. Using 
the same 3D U-Net CNN architecture technique, the meniscal cartilage and staging patellar boundary box 
severity were recognized in a cascade way.Research [19] suggested using a three-layered compressed 
parallel deep convolutional neural network to improve the attribute individuality of knee MRI data for detecting 
ACL splitting. 

To improve injury detection algorithms' generalization capacity, a study [20-23] introduced a CNNs-
based DL model, which achieved an accuracy of 87.5% on the MRNet dataset and 87.00% on the Knee MRI 
dataset. It has been found that DL frameworks can significantly outperform machine learning when it comes 
to detecting knee tears in MRI images. On the other hand, current knee injury detection designs employ 
complicated network structures, which increases the size of the training parameters. 

Problem statement 

The cruciate ligament of the knee is frequently injured, and artificial ligaments and MRI imaging methods 
are frequently used for diagnosis and treatment. These approaches do, however, face several difficulties that 
may compromise their precision and effectiveness. It can be difficult to get accurate images of the knee joint 
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using MRI imaging methods, especially if there is swelling or other tissue damage. This might make it 
challenging for medical professionals to appropriately assess the severity of the injury and choose the most 
appropriate course of action. The fact that MRI imaging may be costly and may not be reimbursed by all 
insurance plans presents another difficulty.As a result, some patients may find it challenging to get access to 
this crucial diagnostic tool. One issue with artificial ligaments is that they might not always be able to offer 
the same amount of support and stability as a natural ligament. This may result in issues with the artificial 
ligament's mobility and long-term durability. To address these problems, a ThreeFoldCNNwas used, and in 
a DL-based diagnosis system, a classification CNN was used to find structural defects inside the isolated CL. 
To improve the model's performance, we use the Satin Bowerbird Optimizer (SBO) technique. 

METHODS 

In this research, we provide a DL-based approach to CL injury diagnosis in the knee via MRI depicted in 
figure 2. In this article, we propose ThreeFoldCNN, which contains two deep convolutional neural networks 
(2DCNNs) for splitting CL on MRI, and then defects within the isolated ligament were discovered using a 
classification CNN. The ThreeFoldCNN deep learning model employs a triple convolutional neural network 
development to examine medical imaging data, which in consequence improves the accurate assessment 
and 3D regeneration of knee cruciate ligament damage. To improve the model's performance, we use the 
Satin Bowerbird Optimizer (SBO) technique A cruciate ligament injury to the knee can be diagnosed and 
reconstructed with the use of a natural-inspired algorithm called Satin Bird Optimization (SBO). It optimizes 
diagnostics and treatments by emulating the mating behaviors of satin bowerbirds. 

 

 
 

Figure 2. Outline of the suggested approach 

Data sample 

The provisions of the "Health Insurance Portability and Accountability Act" were followed in conducting 
the current retrospective investigation with the approval of our Chinese institutional review panel and without 
any requirement for informed consent to be obtained. One hundred seventy-seven people with a surgically 
verified injury to the CL [99 men, 78 women; mean age: 28.5 years, range of age: 17-48 yrs.] and 177 people 
with a surgically verified intact CL [101 men, 76 women; mean age: 40 years; the range of age: 18-52 years] 
had MRI data sets obtained. All MRI tests were conducted using the same 3 Tesla MRI scanner, as shown 
in Figure 3.   
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Figure 3. MRI evaluation using 3 Tesla MRI scanner 

Table 1 summarizes the diagnostic parameters for the entire MRI testing sequences. A musculoskeletal 
radiologist (MR) with fifteen years of clinical expertise used a medical record-maintaining platform to randomly 
identify individuals with and without a CL injury. Patients scheduled for arthroscopic surgery on the knee at 
our hospital were checked to determine if they had recently undergone an MRI of their identical knee using 
the similar 3 Tesla MRI scanner within the four months before their surgery. 

 

Table 1. MRI evaluation specifications for the scanning sequences 

Parameter Coronal Fat-
Saturated 

Proton 
Density– 

weighted FSE 

Sagittal Fat-
Saturated 

T2-weighted 

FSE 

Sagittal 
Proton 
Density–
weighted 

FSE 

Axial Fat-
Saturated 

T2-weighted 

FSE 

Coronal Proton 

Density–
weighted 

FSE 

Echo time (msec) 21 82 24 81 24 

Flip angle (degrees) 90 90 90 90 90 

Field of view (cm) 11 11 17 15 12 

Repetition time (msec) 1820 5300 2500 4310 2100 

Reconstruction matrix 
size 

512 x 512 512 x 512 512 x 512 512 x 512 512 x 512 

Acquisition matrix size 448 x 224 448 x 224 448 x 224 448 x 224 448 x 224 

Section thickness 
(mm) 

1 2 4 5 11 

Echo train length 4 21 5 21 9 

Field of view (cm) 14 14 11 18 11 

Section thickness 
(mm) 

2 5 2 4 2 

Bit depth (bit) 16 16 16 16 16 

Echo train length 4 20 4 21 4 

Imaging time (min) 3:25 3:15 3:22 3:35 3:21 
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Data pre-processing 

Image normalization is a process of rescaling the pixel intensity values of an image to a common range. 
MRI images of the knee joint may have varying intensity levels due to differences in scanner hardware and 
settings, which can affect the accuracy of subsequent analysis. Image normalization helps to ensure that the 
intensity levels of the image are consistent across different images. This can be done by subtracting the 
mean intensity value of the image and dividing it by the standard deviation or by scaling the pixel values to a 
common range, such as [0, 1] or [-1, 1]. 

Noise reduction is a process of removing unwanted noise from an image. MRI images of the knee joint 
may contain various types of noise, such as thermal noise and artifact noise, which can affect the accuracy 
of subsequent analysis. Noise reduction techniques such as smoothing filters can be used to remove noise 
from the image. One common technique is Gaussian smoothing, which involves convolving the image with a 
Gaussian kernel. This results in a blurred image that removes high-frequency noise. 

Gaussian smoothing (GS) determines the gradient of a function by randomly selecting a direction from 
a traditional normal distribution, calculating the derivative of the function along that direction employing 
function assessments, and then multiplying the derivatives with the direction. Gaussian smoothing is a flexible 
zero-order strategy that may be easily incorporated into any gradient-based optimization technique by using 
the estimate. 

The Gaussian smoothing gradient estimator is clearly defined in Equation (1), 

∇θE
HT(θ)=

1

d
E(θ+dϵ)ϵ,  ∈~ N(0,J)  (1) 

 
It can be regarded as a Monte Carlo approximation of the gradient of the improved objective function, 

which has been smoothed using a typical normal random variable as shown in Equation (2). 

Ed(θ)≜E∈~N(0,J)[E(θ+dϵ)],  d>0  (2) 

 
The derivative of the improved objective function is provided by Equation (3), 

∇θEd(θ)= E∈~N(0,J) [
1

d
E(θ+dϵ)ϵ]  (3) 

Due to the frequent occurrence of significant variation in ∇𝜃𝐸𝑑(𝜃), often used alternatives are the forward-

difference (FD) estimator and the antithetic (AT) estimator, both of which integrate control shifts for ∈
~𝒩(0, 𝐽), as shown in Equation (4), 

∇θE
HT(θ)=

1

d
[E(θ+dϵ)-E(θ)]ϵ    (4) 

∇θE
BS(θ)=

1

2c
[E(θ+dϵ)-E(θ-dϵ)]ϵ  (5) 

 

 
Averaging over numerous directions helps decrease the variance of every estimator. We selected the 

FD estimator because of its simplicity and reduced computing load. 
When 𝑑 → 0 demonstrates that iterative optimization employing gradients derived by Equation (5) 

converges to the optimal point for convex purposes and remains stationary for non-convex ones, and when 
𝐸(𝜃) has some minor regularity requirements. 

Segmentation 

Image segmentation using thresholding is a common technique used in MRI image analysis of the knee 
joint for CL analysis. The threshold value should be chosen based on the expected intensity values of the 
foreground and background regions in the image. This can be done manually or using automated methods 
such as Otsu's thresholding or adaptive thresholding. The threshold value is applied to the image by 
comparing each pixel's intensity value to the threshold value.  

Pixels with intensity values above the threshold are assigned to the foreground, while pixels with intensity 
values below the threshold are assigned to the background. The initial threshold-based segmentation may 
contain noise or errors, which can be refined using pre-processing techniques. Image segmentation using 
thresholding is a simple and effective technique for separating the CL from other structures in the knee joint 
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in MRI images. The CL typically has a distinct intensity range compared to other structures in the knee joint, 
making it suitable for segmentation using thresholding. However, this method may not be suitable for images 
with poor contrast or for detecting subtle changes in the CL structure. 

Feature extraction 

Grey level co-occurrence matrix (GLCM) is a widely used technique for feature extraction in image 
analysis, including MRI images of the knee joint for CL analysis. GLCM is a texture analysis method that 
quantifies the spatial relationship between pairs of pixels in an image by computing the frequency of 
occurrence of pairs of Grey-level values at a given offset and direction. The GLCM can be used to extract 
various texture-based features from the image, such as contrast, correlation, energy, and homogeneity. 
These features are based on the statistical properties of the GLCM and can provide information about the 
texture and structure of the image.  

The extracted texture-based features can then be used as input to DL algorithms or other analysis 
techniques for CL analysis. GLCM is a powerful and widely used technique for feature extraction in MRI 
images of the knee joint for CL analysis. By quantifying the spatial relationships between pairs of pixels, 
GLCM can provide information about the texture and structure of the image, which can be useful for detecting 
subtle changes in the CL or other structures in the knee joint. 

CL Injury Diagnosis System 

When applied to medical imaging data, the deep learning model's triple convolutional neural network 
development generates more precise damage assessments and more effective 3D restoration of the knee 
cruciate ligament. 

Three different CNNs (ThreeFoldCNN) made up the suggested DL-based CL injury diagnosis system. 
From the total MRI dataset, the initial CNN selected the CL-containing image segments. To limit the amount 
of information required for further image recognition, the subsequent CNN isolated an intercondylar notch 
(IN) portion, which included the CL on the selected image portions. In the third category, to determine whether 
a CL injury had occurred or not, CNN examined an individual CL on the selected imaging portions, a 
completely automated processing pathway was made by layering the ThreeFoldCNN. 

 
Table 2 provides a summary of the CNNs' complex structure. 

Table 2. Extensive System Architecture for the CL Isolation, Classification CNN, and Section-diagnosis 

Section-diagnosis (1- CNN) Classification (3- CNN) CL Isolation (2- CNN) 

Input (gray-scale image) Input (gray-scale image) Input (gray-scale image) 

2DConv (6 7 x 7 filters), BN, ReLU 2DConv (32 7 x 7 filters) 2DConv (64 7 x 7 filters), BN, ReLU 

MaxPool (window size 2 x 2) MaxPool (window size 2 x 2) MaxPool (window size 2 x 2) 

MaxPool (window size 2 x 2) 2DConv (64 1 x 1 filters), BN, ReLU MaxPool (window size 2 x 2) 

FC (2 nodes) 

Dense block: {2DConv (1 x 1 filters), 
BN, 

MaxPool (window size 2 x 2) 
ReLU; 2DConv (3 x 3 filters), BN, 
ReLU} x 12 

2DConv (16 5 x 5 filters), BN, ReLU 

Dense block: {2DConv (1 x 1 filters), 
BN, 2DConv (192 3 x 3 filters), BN, 

ReLU ReLU; 2DConv (3 x 3 filters), BN, 
ReLU} x 6 

FC (84 nodes) MaxPool (window size 2 x 2) 

2DConv (128 1 x 1 filter), BN, ReLU 

2DConv (256 3 x 3 filters), BN, 
ReLU 
2DConv (256 1 x 1 filters), BN, 
ReLU 
2DConv (512 3 x 3 filters), BN, 
ReLU 

SoftMax (2 classes) 
 

MaxPool (window size 2 x 2) 
 

MaxPool (window size 2 x 2) 
 

Dense Block: {2DConv (1 x 1 filters), 
BN, 

{2DConv (512 1 x 1 filters), BN, 
ReLU 
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Cont. Table 2 

 

ReLU; 2DConv (3 x 3 filters), BN, 
ReLU} x 24 
 

2DConv (1024 3 x 3 filters), BN, 
ReLU}×2 

 
{2DConv (1024 3 x 3 filters), BN, 
ReLU}×4 

2DConv (128 1 x 1 filters), BN, ReLU 
 

{2DConv (256 1 x 1 filters), BN, 
ReLU 

 
2DConv (512 3 x 3 filters), BN, 
ReLU} x 4 

 
2DConv (512 1 x 1 filters), BN, 
ReLU 

 
2DConv (1024 3 x 3 filters), BN, 
ReLU 

SoftMax (2 classes) Tensor (7 x 7 x 11) 

GlobalAveragePool FC (4096 nodes) 

 
The first part LeNet-5, which was initially developed to perform biological imagery analysis but has lately 

been employed for other medical imaging uses, served as the foundation for CNN. A CNN with two distinct 
sets of convolutional layers (CLs), and softmax classifier, and two fully linked layers, is depicted at the top of 
Figure 4. 

 

 

Figure 4. CL injury diagnosis system using ThreeFoldCNN 

The CNN was altered to accommodate input images up to 448 × 448 with a range of 0 to 1 about the 
maximal MRI. One outcome class was designated for image segments with the CL, whereas the further was 
designated for image areas without the ACL. The second isolation of a ligament, "You Only Look Once, or 
YOLO,” which was successful in several visual identification tests, served as an idea for CNN. A CNN with 
24 CLs and two entirely linked layers is seen in the center of Figure 1. The CLs were applied to the particular 
image areas that included the CL to gather relevant image features.  

A rectangular box, the dimensions of which were anticipated by the fully connected layers using the 
acquired image data, was used to describe the IN, which contained the CL. Images of the present attached 
in a "rectangle box," including the CL on the selected image regions, were utilized as the input images for the 
classification process using CNN and downscaled to112 × 112. CNN was inspired by a category of neural 
networks called "densely connected convolutional networks" that performed exceptionally well in an image 
recognition task using data from the Large Scale Visual Identification Challenge.  

The three-fold dense blocks in this CNN were linked by CLs and a maximum pooling layer, as illustrated 
at the bottom of Figure 2. Dense connections were created to lessen the number of parameters necessary 
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in the network for high levels of throughput training while increasing interactions between network levels. 
After the dense blocks were processed, a “global average pooling” layer was used to determine the probability 
of a CL injury based on the compressed images which included the CL. The result of the classification was 
determined by averaging the probabilities of CL injury classification across all CL-containing image segments.  

The suggested CNN was adapted from DenseNet, and it was compared to two other classification CNNs, 
one based on “Dense Deep Convolutional Networks for Large-Scale Image Recognition” and the other based 
on AlexNet, both of which have been applied to image classification applications in the past. 

System for CL Injury Diagnosis Training and Evaluation 

The CL injury diagnostic system evolved into an end-to-end autonomous system when the 
ThreeFoldCNNwas trained. For section-selection training CNN and the segregation of the ligament CNN, we 
first individually selected the MRI portions containing the CL and then manually delineated the precise 
position of the IN on the identified MRI sections. However, after training was finished, the CL injury diagnosis 
system allowed entirely computerized segregation of the CL on all MRI segments to be used as inputs into 
the categorization CNN. Participants with and without a surgical verified CL damage were split into "training, 
validation, and hold-out" testing groups randomly. 

Iteratively optimizing the settings of the CNN allowed it to learn image features from a training dataset 
that included MRI from one hundred-six participants with an injury to their CL and 106 individuals with an 
intact CL. When selecting a suitable model to train on, we referred to the validation dataset, which included 
MRI from 26 participants with a CL injury and 25 subjects with an intact CL. The ideal model was finally 
assessed using the hold-out testing dataset, which included MRI from fifty individuals with a CL injury and 50 
individuals with an intact CL. This was done to avoid excessive training fitting and confirm that the 
characteristics of the image acquired during training could be generalized to newly gathered image data. 

SBO optimization 

A cruciate ligament injury to the knee can be diagnosed and reconstructed with the use of a natural-
inspired algorithm called Satin Bird Optimization. It optimizes diagnostics and treatments by emulating the 
mating behaviors of satin bowerbirds. 

The Satin Bowerbird Optimizer (SBO) is a unique optimization system designed to mimic the natural 
mating habits of a male SB. The masculine SB increases the probability of a successful courting by creating 
a courting cabin, singing loudly and persistently to attract the opposite sex, and holding a glowing item in its 
beak. The male has double duty in protecting the nest from damage during courtship: he must ensure a 
prosperous courtship cabin is built, and he must also continually fend off challenges from other males. Based 
on the SB survival rules, the SBO algorithm consists of the following operations: 

The first Satin Bowerbird population was generated at random. In a solution space, a random number of 
Naive Bayes (NB)individuals are formed as a starting population. The present population development 
algebra is s, and the precise spot of each courting cabin is defined as C-dimension.  

An individual's probability of being selected is proportional to their fit value (objective function) as a 
fraction of the total fitness value. The probability of choosing the courting cabin is given by Equation (6), the 
value of the fitness of the jth courtship cabin is given by fitj Equation (7), and the objective function value is 

given by f(yj). 

Probj=
fitj

∑ ⬚NC
n=1 fitn

            (6) 

fitj={
1

1+f(yj)
,f(y

j
)≥01+ |f (y

j
)| ,f (y

j
) <0        (7) 

The next step is to update the population data. Male SB is reported to iteratively refine the exact spot of 
their courting cabin depending on the information gathered from prior attempts. The current position formula 
is as follows: 

y
jl
s+1=y

jl
s+λl ((y

kl
+y

elite,l
) -y

jl
l )         (8) 

 
Where yjl

s  is the l -dimensional part of the jth person in the sth iteration; ykl is the l -dimensional part of 

the best spot ever discovered at this time; yl is chosen by the “roulette selection mechanism”; and yelite,l is 
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the l -dimensional part of the current global best spot for the entire population. The step factor is determined 

by equation (9) and is denoted byλl. 
 

λl=
α

1+Qk
            (9) 

Where Qk is the probability of identifying the target courtship cabin, and is the maximal step size, 

andQkϵ[0,1]. Equation (9) makes it abundantly evident that the size of the step decreases as the probability 

of identifying the ideal spot increases. The biggest size in step, represented byα, occurs when there is no 

chance of choosing the destination position. The smallest step size, shown by the
α

2
, occurs when the chance 

of choosing the destination location is 1. 
Differentiation at the individual level prevents the phenomenon of "local optimization." It's very 

uncommon for an imposing male to rob and even demolish the courting huts of weaker guys. Therefore, the 
method incorporates a random mutation chance after each iteration to enhance the mutation over time. At 
this point, as illustrated by Equation (10), yjl follows a normal distribution. 

y
jl
s+1~N (y

jl
s,σ2)          (10) 

N (y
jl
s,σ2) =y

jl
s+(σ*N(0,1))         (11) 

The calculation formula of the SD is as follows: 

σ=a*(varmax-varmin)         (12) 

Where varmax and varmin are the maximum and minimum values for variableyj, a is the scaling factor. 

At the end of each cycle, the original population and the mutated population are combined to produce a 
new combination population, and all of the individuals in the new population have their fitness values ranked 
from greatest to weakest. The most significant objective function value survives. If the last condition is met, 
the ideal position and value are outputted. Iteration will continue endlessly until the limit is reached. 

This approach integrates Three-Fold Convolutional Neural Networks (ThreeFoldCNN) with Satin Bird 
Optimization, a nature-inspired approach recognized for its problem-solving effectiveness. The utilization of 
deep learning methods with ThreeFoldCNN improves the evaluation of medical imaging data, facilitating the 
identification of complex patterns and significant aspects that are essential for the diagnosis of CLdamages. 
This deep learning architecture is crucial in detecting small imperfections in medical images, therefore 
enhancing the accuracy of injury identification. 

Satin Bird Optimization, which takes inspiration from the foraging habits of satin bowerbirds, enhances 
the reconstruction procedure by effectively exploring the solution area. This algorithm, inspired by biological 
processes, improves the preparation and execution of surgeries that reconstruct the CL, resulting in the best 
possible results for individuals. 

The combination of ThreeFoldCNN with Satin Bird Optimization creates a synergistic strategy that 
improves both the accuracy of diagnosis and surgical treatment for CL injuries in the knee joint. This approach 
has the potential to greatly transform the area of orthopedics by offering a thorough and effective solution to 
the difficulties connected with these injuries. 

Evaluation of CR 

With the help of an image archiving and communication system (IACS), a "Fellowship-trained MR 
(FTMR) with thirteen years of clinical practice, an MR fellow (MRF), a 2nd-year radiology resident (RR 1), 
3rd-year radiology resident (RR 2), and a 4th-year radiology resident (RR 3)"examined the MRI evaluations 
of all hundred individuals in the hold-out test dataset, allowing us to contrast the CL injury diagnosis system's 
diagnostic performance with that of clinical ratio. The five MRI sequences were merged by the CR, who was 
blind to the outcomes of the arthroscopic knee operations, to determine whether or not a CL injury had been 
made. Before examining the MRI data, the radiologists weren't involved in any formal training or calibration 
sessions. 

Statistical Analysis 

MATLAB and MedCalc were used for statistical analysis and the difference of P <  .05 was considered 
to be significant. The sensitivity and specificity of the MRF, RR, suggested CL injury diagnosis technique and 
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MR, and a substitute CL injury diagnosis mechanisms with the classification CNNs adopted from VGG-16 
were all measured against arthroscopic surgery in a "hold-out test dataset (HTD)" evaluation. 

We examined the areas under the ROC curves (AUCs) of the proposed and other CL injury diagnostic 
approaches using a nonparametric technique termed "receiver operating characteristic (ROC)"analysis. 

Maximum specificity and sensitivity for detecting CL injuries were calculated using the Youden index. 
The “confidence intervals-CIs” for the specificity and sensitivity of the suggested and other CL injury diagnosis 
methods and the CR, as well as the AUCs of the suggested and other CL injury diagnosis systems, were 
calculated using two-sided exact binomial testing. When the CR's point estimates of sensitivity and specificity 
for detecting injuries to the CL dropped beyond the 96% CIs of the AUC for the machine, it was considered 
to be statistically different from the machine's specificity and sensitivity. 

RESULT AND DISCUSSION 

CNNs for section selection required 0.82 hours to train, CNNs for ligament isolation required 5.11 hours, 
and CNNs for classification required 5.72 hours to train in the initial dataset for training. However, when 
employing the trained networks, the CL injury diagnosis method requires an average of 9 seconds to assess 
whether or not an individual has a CL injury.  

To evaluate the occurrence or lack of a medically validated CL injury, Table 3 compares the 
recommended CL injury diagnostic system using the classification CNNs adapted from "VGG16 and AlexNet" 
with a different CL injury diagnosis system utilizing the categorization CNNs adopted from "DenseNet ."The 
estimated point values for specificity and sensitivity ranged between 0.89 and 0.97 and 0.90 and 0.97, 
respectively, while AUCs ranged from 0.91 to 98.5, indicating that all classification CNNs performed well. 
Figure 5 depicts the outcome for AUC, specificity, and sensitivity for the Suggested Method using CNN. The 
suggested CL injury diagnosis system, using a DenseNet-adapted classification CNN, outperformed all other 
methods in terms of overall diagnostic performance. 

Table 3. Values for AUC, specificity, and sensitivity for the Suggested Method using CNN  

CNN AUC Sensitivity Specificity 

Dense Net  98.5 97 97 

Alex Net 91 90 89 

VGG16 96 93 93 

 

Figure 5. The outcome of specificity, and Sensitivity for the Suggested Method using CNN 
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Surgically verified CL injuries are shown in Table 4, while the specificity and sensitivity of the CR, MRF, 
RR, and the suggested CL injury diagnosis method are shown in Table 5 and Figure 6. At the ideal threshold 
of the “Youden index," the point estimates of the specificity and sensitivity of the suggested CL injury 
diagnosis system were 0.96 and 0.96, respectively. 

Table 4. Values for the RR, MR, RF, and Proposed CL Injury Diagnosis System for the HTD 

Reader and Result 
Disease 
Present 

Disease 
Absent 

Total 

CR    

Test positive 51 2 53 

Test negative 2 51 53 

Total 53 53  

R1    

Test positive 48 4 52 

Test negative 5 49 54 

Total 53 53  

MRF    

Test positive 49 3 52 

Test negative 4 50 54 

Total 53 53  

R2    

Test positive 49 3 52 

Test negative 4 50 54 

Total 53 53  

R3    

Test positive 50 3 53 

Test negative 3 50 53 

Total 53 53  

Machine    

Test positive 49 4 53 

Test negative 4 49 53 

Total 53 53  

 
Figure 6. Outcome of RR, MR, RF, and Proposed CL Injury Diagnosis System for the HTD 
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Table 5.Specificity and sensitivity for CR, RR, MR, and suggested CL Injury Diagnosis System for the HTD 

Reader AUC Sensitivity Specificity 

CR 98.5 98.5 98.5 (89,1) 

MRF 98.5 97 (87,1) 98.5 (89,1) 

R1 94 97 (87,1) 91 (79,98) 

R2 97.5 97 (87,100) 98.5 (89,100) 

R3 98.5 98.5 (89,1) 98.5 (89,1) 

Machine 98.5 97 (90,1) 97 (87,1) 

 
In contrast, the CR's point estimates of sensitivity ranged between 97 and 98.5, while their point 

estimates of specificity varied from 90.5 and 98.2. In particular, the fellowship-trained MR sensitivity and 
specificity point estimates were both 0.98.  

Figure 7 depicts the ROC curve of the suggested CL tear detection system for detecting surgically 
demonstrated CL injury. The AUC value for CL injury detection was 98.5. The figure displays the ROC curve 
of the CL injury detection system, together with the value estimations representing the specificity and 
sensitivity of the MR, MRF, and RR in recognizing the presence or absence of a CL tear, allowing for 
comparison.All radiologists’ sensitivity and specificity estimate points decreased within the 96% CIs of the 
AUC for the indicated CL injury diagnosis technique, with no significant variations among the CR and the 
machine. 

 

Figure 7. The outcome of the ROC curve 

In this section, we also provide a performance comparison between the proposed method and existing 
techniques.The existing approaches such as U-Net, 2D-CNN and DCNN [21-23]. The comparison metrics 
are F1-score, precision, and accuracy. 

Accuracy is determined by dividing the total number of cases studied by the percentage of true positive 
and true negative outcomes. True positives and true negatives are instances in which the model accurately 
recognizes the existence or absence of a CL injury, respectively. Figure 8 depicts the accuracy result. Our 
suggested ThreeFoldCNN+SBO is superior in diagnosing CL injury in knee joints when compared to the 
current approaches. 
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Figure 8. Accuracy result 

Precision is employed to assess a classification model's effectiveness. Precision in the classification of 
cruciate ligament (CL) injuries of the knee joint is the percentage of true positives (i.e., properly classified CL 
injuries) among all the positive predictions produced by the model (i.e., all anticipated CL injuries) shown in 
Figure 9. In other words, precision assesses the efficacy of the model in predicting positive cases.When 
compared to the current methods, our ThreeFoldCNN+SBO is more effective at identifying CL injury in knee 
joints. 

 

 

Figure 9. Precision result 

A statistic for analyzing the effectiveness of a classification model is the F1 score. It calculates a single 
score that represents the model's performance by weighing precision and sensitivity. Our 
ThreeFoldCNN+SBO is more effective than the existing approaches in diagnosing CL injury in knee joints 
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when compared to others. Figure 10 depicts the f1-score result.The comparison output of accuracy, precision, 
and F1-score isshown in Table 6. 

 

Figure 10. F1-score result 

Table 6. Comparison output of accuracy, precision, F1-score  

Methods Accuracy (%) Precision (%) F1-score (%) 

U-Net  85.3 90.75 89.15 

2D-CNN  87.35 91.4 90.12 

DCNN 90.15 92.85 89.75 

Threefold+SBO [Proposed] 95 93.48 91.5 

 

A computational cost graph that shows the relationship between the complexity of diagnostic and 
reconstructive operations and the necessary computational resources. It is used to show how cruciate 
ligament injuries in the knee joint can be diagnosed and repaired.Table 7 and Figure 11 depicts the outcome 
of computational cost. When comparing the proposed method(ThreeFoldCNN+SBO) (86.23) with the existing 
method U-Net (87.95) 2D-CNN (88.15) and DCNN (89.45) it shows that our suggested approach is better 
than the existing approach. This indicates that our proposed method is more effective. 

 
Figure 11. Computational cost 
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Table 7. The output of computational cost 

Methods U-Net  2D-CNN  DCNN  ThreeFoldCNN+SBO 

Computational cost 87.95 88.15 89.45 86.23 

 
Depending on the available technology, the severity of the injury, and the unique characteristics of the 

patient, the computational time required to diagnose and reconstruct cruciate ligament injuries of the knee 
can differ from several hours for assessment to several times for surgery preparation and performance.The 
comparison of computational time is presented in Figure 12 and Table 8.In comparison, the existing 
approachesU-Net (4.30sec) 2D-CNN (6.50sec), and DCNN (8.60sec), respectively, whereas our proposed 
approach has (2.40sec). According to the results, our suggested method is substantially lower than the 
existing approach. 

 

 
Figure 12. computational time 

Table 8. Result of computational time 

Methods U-Net  2D-CNN  DCNN  ThreeFoldCNN+SBO 

Computational Time 4.30sec 6.50sec 8.60sec 2.40sec 

DISCUSSION 

We found that a DL-based approach using arthroscopy as a reference standard can assess the complete 
thickness of CL injury in knee joints. With an AUC of 0.98, the CL injury detection technique demonstrated 
outstanding diagnostic performance for identifying a CL injury or not. Furthermore, the machine's sensitivity 
and specificity for identifying an injury to the CL did not differ statistically significantly from those of CR with 
different levels of expertise.The limitation of the CL injury diagnosis system was its ability to evaluate a small 
amount of "sagittal proton density-weighted and fat-suppressed T2-weighted fast spin-echo images". In 
contrast, the CR system was capable of evaluating every image section from a total of five separate 
MRIs.DenseNet, VGG16, and AlexNet were the threefold classifier CNNs that were the subject of our 
investigation, and we discovered that DenseNet had the greatest diagnostic accuracy for identifying an injury 
to the CL.The reason for AlexNet's more severe diagnostic performance was probably its fairly 
straightforward network design. The performance of the considerably more sophisticated VGG16 network 
may benefit from having enormous training datasets.DenseNet provides greater a connection compared to 
"AlexNet and VGG16" by utilizing a dense connection that facilitates direct information transmission across 
several network layers. This result in a reduction in the number of parameters needed to construct prediction 
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models.DenseNet's superior diagnostic accuracy on our miniature training dataset for CL injury detection was 
likely due to its dense connectivity. We also evaluate how well the proposed approach performs in 
comparison to the current methods. This demonstrates that the performance of our suggested strategy 
outperforms that of the alternatives. 

Our study has several drawbacks. First, rather than being a single network from end to end, our DL-
based CL injury detection system was made up of ThreeFoldCNN paired in a cascaded form. Because the 
ThreeFoldCNNwas trained separately, the training load could have increased.Our study also shows a 
drawback of a tiny training dataset. To this end, a combination of data processing methods, including transfer 
learning, was required to achieve optimal training effectiveness. In future research, it may be possible to 
significantly enhance the diagnostic performance of the CL injury detection system by using greater training 
datasets. 

CONCLUSION  

In this study, we offered a DL-based method (ThreeFoldCNN) for arthroscopically detecting injuries to 
the CL in the knee during MRI and to improve the model by using SBO. Our study has shown that arthroscopy 
is the best treatment and that a DL-based methodology may be utilized to identify a full-thickness CL lesion 
within the knee joint at MRI. Comparing the expertise levels of CR with the CL injury detection approach, we 
utilize sagittal proton density-weighted and fat-suppressed T2-weighted rapid spin-echo MRI to accurately 
evaluate whether a full-thickness CL injury is present or not. Until it can be used in clinical practice, the CL 
injury detection system still has to be technologically developed and validated. According to the outcomes, 
the CL destruction assessment system has a specificity of 97% and a sensitivity of 97%. The diagnostic 
physicians' specificity varied between 0.91% to 0.99%, while their sensitivity from 0.97% to 
0.99%.Experimental result shows that our proposed method is better than the existing method in terms of 
Accuracy (95%), Precision (93.48%), f1-score (91.5%), computational cost(86.23%), and time(2.40sec).In 
particular, large prospective studies evaluating full- and partial-thickness CL injury subjects assessed with a 
variety of MRI units and imaging protocols are needed to better characterize the diagnostic performance of 
the CL injury detection system. 
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