
DOI 10.1590/s1982-21702019000400025

This content is licensed under a Creative Commons Attribution 4.0 International License.

ORIGINAL ARTICLE

THE USE OF THE AUTOMATED DIGITAL ZENITH CAMERA SYSTEM
IN ISTANBUL FOR THE DETERMINATION OF ASTROGEODETIC 

VERTICAL DEFLECTION 
Müge Albayrak1,2 - ORCID: 0000-0001-6705-4044
Kerem Halıcıoğlu3 - ORCID: 0000-0002-2500-8581

Mustafa Tevfik Özlüdemir1 - ORCID: 0000-0002-1413-9244
Burak Başoğlu1 - ORCID: 0000-0002-3702-1257
Rasim Deniz1 - ORCID: 0000-0003-1519-1025

Allison RB Tyler4 - ORCID: 0000-0002-0350-7267
Mohammed Mohseni Aref1,5 - ORCID: 0000-0003-3735-178X

1 Istanbul Technical University, School of Civil Engineering, Department of Geomatics Engineering, Istanbul, Turkey. 
E-mail: albayrakmug@itu.edu.tr; tozlu@itu.edu.tr; basoglub@itu.edu.tr; denizr@itu.edu.tr

2 The Ohio State University, School of Earth Sciences, Columbus, OH, USA. 
E-mail: albayrak.6@osu.edu 

3 Freie Universität Berlin, Institute of Mathematics, Berlin, Germany. 
E-mail: kerem.halicioglu@fu-berlin.de

4 University of Michigan, School of Information, Ann Arbor, MI, USA. 
E-mail: arbtyler@umich.edu 

5 Postdam University, Institute of Geosciences, Postdam, Germany. 
E-mail: mohseniaref@uni-postdam.de

Received in 06th September 2019
Accepted in 22nd September 2019

Abstract: 

The Digital Zenith Camera Systems (DZCSs) are dedicated astrogeodetic instruments used to obtain highly accurate 
astrogeodetic vertical deflection (VD) data. The first Turkish DZCS, the Astrogeodetic Camera System (ACSYS), was 
developed in Istanbul, Turkey in 2015. The ACSYS was capable of determining astrogeodetic VDs with an accuracy of 
~0.3 arcseconds. However, it had some limitations in observation duration: because of the semi-automated mechanical 
design, levelling the system towards zenith was a time-consuming process. Since 2016, the ACSYS has been modernized 
through system upgrades and new technological components. In this paper, we describe the instrument design of 
the new DZCS—ACSYS2—observation procedures, evaluation of the test data and calculations of these data. The 
preliminary ACSYS2 astrogeodetic test observations were conducted at Istanbul Technical University (ITU) test station. 
The standard deviation results of the repeated observations reveal a VD measurement precision of ~0.3 arcseconds for 
both the North-South and East-West components. To investigate the accuracy of the system, a lightweight total station 
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based-geodetic system—QDaedalus—was also used at the ITU test station. The comparison of the VDs data between 
ACSYS2 and QDaedalus system shows that the ACSYS2 can produce reliable VDs data.

Keywords: Vertical deflections, Astrogeodetic Measurement, Geodetic instrumentation, Digital zenith camera 
system, QDaedalus, Accuracy and precision.

1. Introduction 

The Helmert definition of vertical deflection (VD) is the angular difference between the direction of the 
gravity vector or plumbline at a point of the Earth’s surface, and the ellipsoidal surface’s normal through the same 
point for a particular ellipsoid (Jekeli 1999; Featherstone and Rüeger 2000). The Helmert VD is the most common 
VD (Jekeli 1999). Therefore, it is also often referred to as an astrogeodetic VD (Hirt 2010). The other two kinds of 
VDs—Molodensky and Pizetti—differ slightly from the Helmert VDs by the curvature of the plumbline (Jekeli 1999; 
Torge and Müller 2012).

Astrogeodetic VDs provide valuable information about the structure of Earth’s gravity field. For this 
reason, astrogeodetic observations are essential gravity field observables. Currently, research teams in several 
countries have developed modern instruments, such as Digital Zenith Camera System (DZCS) or the total-
station based QDaedalus system, both of which are operated at field stations at night, that are used to observe 
astronomical coordinates (astronomical latitude Φ and longitude Λ). GNSS receivers located at the same 
benchmark provide geocentric geodetic coordinates (geodetic latitude ϕ and longitude λ). From these, the 
North-South (ξ= Φ - ϕ) and East-West (η= (Λ-λ) cos ϕ) components of VDs can be calculated (e.g., Heiskanen 
and Moritz 1967; Voigt 2013; Schack et al. 2018). Second- and higher-order terms, which are neglected here, 
are provided in Pick et al. (1973) and Jekeli (1999).

DZCSs have created a dynamic research environment, particularly for astronomical research, and have 
lent new motivation to astronomy and geodesy. The motivation gained during this period of rapid technological 
change and development has contributed to more efficient data collection and analysis efforts: e.g., astrogeodetic 
applications, such as geometric-astronomical levelling (Hirt and Bürki 2006; Hirt et al. 2011), astrogeodetic geoid 
determination (Smith et al. 2013; Wang et al. 2017), validation of height unifications and gravity field models (Hirt 
and Flury 2008; Schack et al. 2018), local geodetic network applications (Volařík et al. 2013; Halıcıoğlu et al. 2016), 
and monitoring of anomalous refraction research (Hirt 2006; Hirt 2012), among others. The main purpose of a DZCS 
in this study is for local geoid determinations, which are particularly beneficial for measurements in coastal and 
mountainous areas (Hirt and Bürki 2003; Hirt et al. 2010a).

The first DZCS in Turkey, the Astro-geodetic Camera System (ACSYS), was developed in 2015. The ACSYS was 
capable of determining astronomical coordinates (Φ, Λ) with an accuracy of ~0.3”. However, it had significant limitations, 
especially in observation duration. Since the beginning of 2016, the ACSYS has been modernised through a series of 
system upgrades, including new technological components, hardware and software, and is known as the ACSYS2.

 In this paper, we describe the modernisation process, the instrument design of the ACSYS2, the observation 
procedures, evaluation of the test data and calculations of these data. Five nights of preliminary astrogeodetic 
test observations were conducted with the ACSYS2 at the Istanbul Technical University (ITU) station. The results of 
the repeated and comparative VD observations indicate a VDs measurement precision of approximately 0.3”. To 
investigate the accuracy, we used the lightweight total station-based geodetic measurement system, ‘QDaedalus’, 
developed at ETH Zurich (Bürki et al. 2010; Guillaume et al. 2012; Charalampous et al. 2015; Tóth and Völgyesi 2018).
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2. Historical background of the Digital Zenith Camera System 

Classical geodetic astronomy (astrogeodesy) is concerned with the determination of astronomical observables, 
such as astronomical latitude and longitude, and azimuth from ground-based optical direction measurements to 
fixed stars, processes which also require precise time determination (Müller 1969; Schödlbauer 2000; Torge and 
Müller 2012). Several types of observational instruments have been used for this purpose. Until the 1970s, geodetic 
astronomical observations were done with optical observation instruments, such as Astrolabes, T4, and DKM3A 
theodolites (Figure 1). The use of these instruments required not only well-trained and skilled observers but also 
long observation durations (Hirt and Bürki 2006; Hirt et al. 2010a). 

 
 
 
 
 
 
 
 

 

 
                                     (a) Kern DKM3-A                                     (b) Zeiss Ni2 level with prism astrolabe 
 Figure 1: Optical observation instruments (Torge and Müller 2012, p. 164).

After the 1970s, the major improvements of astrogeodetic observation techniques were achieved through 
the development of photographic zenith cameras at the University of Hannover (Gessler 1975; Wissel 1982) and 
ETH Zurich (Bürki 1989). The ETH Zurich photographic (analogue) zenith camera (Figure 2) consisted of a telescope, 
a microprocessor-control camera, two electronic levels of Talyvel Ш, and an electronic control unit and a level 
display (Bürki and Marti 1991). Moreover, Italian (Birardi 1976) and Austrian (Chesi 1984) institutions developed 
similar instruments for astrogeodetic observations. Photographic zenith cameras minimized operator-related 
observational errors. Because of the fully automated registration of exposure epochs and level readings, there 
were high levels of precision and simplified observation procedures with these systems as compared to the old 
systems.  These systems were used in many European and American countries (e.g., Switzerland, Austria, Germany, 
Denmark, Greece, Canada, Brazil, Venezuela).  However, the acquisition of star coordinates from the images was 
performed manually or semi-automatically using a comparator, and the process at a single station usually took 3-5 
hours. As well, due to the development of efficient satellite positioning and gravity field determination methods, the 
importance of astrogeodetic methods decreased (Hirt and Bürki 2006; Hirt et al. 2010a). 

Astrogeodesy studies were revolutionised in the 2000s by the invention of the digital imaging sensor 
technology (charged-couple device-CCD). The most common existing photographic zenith cameras—Transportable 
Zenith Cameras (TZK2 and TZK3)—which were using photographic films were re-designed and equipped with CCD 
cameras (Figure A1 in the Appendix). The TZK2 at the University of Hannover is called the Transportable Zenith 
Camera 2 - Digital system (TZK2-D), whereas the CCD-implemented system at ETH Zurich is called the Digital 
Astronomical Deflection Measuring system (DIADEM). CCD integrated, and fully automated digital systems are 
generally called DZCSs. They were extensively used for local and regional gravity field determinations (Hirt and 
Bürki 2006; Hirt et al. 2010a). 
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Figure 2: ETH Zurich photographic zenith camera. The electronic control unit is on the right-hand side of the photo, 
and the level display is mounted on a small tripod, left-hand side of the photo (Bürki and Marti 1991).

As effective and fully automated systems, the development of the DZCSs in Germany and Switzerland (e.g., Hirt 
and Bürki 2003; Bürki et al. 2004; Hirt 2004; Müller et al. 2005; Hirt and Seeber 2008; Hirt et al. 2010a) have inspired 
many other researchers in geodesy, particularly astrogeodesy. Scientists in several countries have developed their 
own DZCSs: Poland (Kudrys 2007), Latvia (Abele et al. 2012; Zariņš et al. 2016; Zarins et al. 2018), Turkey (Halıcıoğlu 
et al. 2012; Halıcıoğlu et al. 2016), China (Wang et al. 2014; Tian et al. 2014) and Hungary (Hirt et al. 2014). Each of 
these systems has unique design features, including hardware components and automation software. Moreover, 
technological changes have affected all versions of the DZCS. The DIADEM was redesigned by the Institute of 
Geodesy and Photogrammetry of ETH Zurich and renamed the Compact Digital Astronomical Camera (CODIAC) 
(Guillaume 2015; Wang et al. 2017). Its main purpose in replacing the DIADEM is to reduce instrument size and cost 
and to meet industry standards to facilitate use by non-astrogeodetic experts. The CODIAC (an accuracy level of up 
to ~0.05”) has been successfully utilised in many important projects, such as the Geoid Slope Validation Surveys in 
Iowa (Wang et al. 2017) and Colorado (Westrum et al. 2019) in the USA.

As an alternative to the DZCS, a light-weight TS-based geodetic measurement system, QDaedalus, was 
designed and built at the Institute of Geodesy and Photogrammetry at ETH Zurich. The QDaedalus system consists 
of a TS, CCD camera, mountable front lens, low-cost u-blox LEA-6T single-frequency GNSS receiver, and a computer 
for instrument control, imaging and processing (Bürki et al. 2010; Guillaume et al. 2012; Charalampous et al. 2015; 
Tóth and Völgyesi 2018).  The QDaedalus system’s user manual not only explains system installation and how to 
conduct observations, but it also provides the formulae for VD calculation (Guillaume et al. 2015). The QDaedalus 
hardware components and measurements process are also explained in Tóth and Völgyesi (2017) and Hauk et. 
al (2017), and the first investigations of the precision (internal accuracy) and accuracy of the QDaedalus system 
are given by Hauk et al. (2017). The QDaedalus system has also been used for daytime terrestrial applications, 
such as engineering surveying and deformation, vibration, and frequency analysis (Bürki et al. 2010; Charalampous 
et al. 2015; Guillaume et al. 2016), the short-term characteristics of terrestrial refraction (Hirt et al. 2010b), and 
photographic documentation (Bürki et al. 2010).          
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3. Instrumental design and observation procedure of the astrogeodetic 
camera system 2

The first Turkish DZCS, the Astrogeodetic Camera System (ACSYS), was developed in Turkey in 2015 (Figure 3). 
The system components include a telescope, a CCD camera, two tiltmeters with the resolution of 0.01 milliradian 
[mrad], a focuser, a single frequency GPS receiver (the CNS Clock II), which is used for determining time, a GNSS 
receiver for highly accurate geodetic coordinates and a substructure (Halıcıoğlu et al. 2012). 

Figure 3: ACSYS: The First Turkish Digital Zenith Camera System (Halıcıoğlu et al. 2016).

The precision of the ACSYS was determined to be ~0.3” when determining both the astronomical latitude 
and longitude (Halıcıoğlu et al. 2016) through repeated observations at the test station of Boğaziçi University, the 
Kandilli (KNDL) station, on the Asia side of Istanbul. Halıcıoğlu et al. (2016) determined the accuracy of this ACSYS 
(~0.3”) by comparing the GNSS/levelling geoid height differences with the derived geoid height differences using 
the astronomical levelling technique. This was done while establishing the test network with four benchmarks 
(Figure 4); however, there were some limitations of the ACSYS based on the observation durations. Because of the 
semi-automated mechanical design, use of the standard industrial tribrach for the levelling was a time-consuming 
process (Albayrak et al. 2017 and 2018a).

Figure 4: The first version of the ACSYS’ test network in Istanbul (Halıcıoğlu et al. 2016).
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The utilisation of a tribrach as the supporting substructure not only prolonged the levelling process but 
had many other disadvantages.  The total weight of the instrument (approximately 30kg) and design of the 
system produce a tilting effect that needed to be adjusted through a system-specific levelling procedure: iterative 
levelling (Halıcıoğlu et al. 2017a, 2017b). Also, the total weight of the system made transport logistically difficult 
and required a wheeled substructure design. Therefore, work began in 2016 to automate the observation and 
data processing procedure, with the support of the Scientific and Technological Research Council of Turkey 
(TUBITAK). In the scope of this project, a supporting substructure was designed based on the lessons learned 
from previous measurement campaigns that would facilitate the utilisation of the ACSYS during observations 
(Figure 5). The trolley of the new design was influenced by the success of the CODIAC design (Guillaume 2015), 
one of the most recently designed DZCS.

Figure 5: The new design of the Astrogeodetic Camera System 2.

The modernization and upgrade process of the new design of the ACSYS—ACSYS2—includes precise 
digital sensors: installation of a high-resolution tiltmeter (HRTM) with a resolution of 1 nano-radians (10-6 mrad), 
implementation of a temperature compensating focuser (TCF, resolution of 0.1° C) and a fully automated substructure 
system (Figure 6). The system components are controlled by specially designed and unified astrogeodetic data 
processing software (ADAPS).

The technical components of ACSYS and ACSYS2 are provided in Table 1. With the realization of ACSYS2 
design, the levelling process, which previously took a long time and required significant user experience, has been 
automated. The installation and levelling process takes an average of 20 min. thanks to this supporting substructure 
design, as compared to an average of 40 min. with the ACSYS.
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Figure 6: The realisation of the Astrogeodetic Camera System 2.

Table 1: The technical components of ACSYS and ACSYS2.

Component ACSYS ACSYS2
CCD camera Apogee 32 Apogee 32

Telescope Meade LX200 GPS (8”,f/10) Meade LX200 GPS (8”,f/10)
GPS receiver for timing CNS Clock II CNS Clock II

Tiltmeter Leica Nivel 210 [0.01 mrad] Leica Nivel 210 [0.01 mrad]
  HRTM* (1 nano-rad)

Focuser Meade Focuser TCF**
Substructure Industrial Tripod Specially designed

HRTM*: High-resolution tiltmeter, TCF**: Temperature compensating focuser
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3.1 The industrial design of the ACSYS2 

Levelling

In order to reduce the levelling time, the levelling procedure of the system was automated through linear 
actuator motors in the ACSYS2. First, a rectangular plaque was installed on the carriage. Three linear actuator motors, 
their linear actuator connecting apparatus, and their ball joint created a link between the rectangular plaque and 
the bottom round plaque (cf. Figure 6). Three apparatus supplied with three linear actuators were observed to 
hinder the stability of the system. Therefore, another three apparatus that would increase the rigidity of the system 
was provided. By re-positioning the upper round plaque to a horizontal position, the system can be made level with 
the assistance of three linear actuator motors.

The levelling procedure of the system is a two-stage process. The first one aims to level the base plane 
(substructure) of the system using linear actuator motors. The second stage is to level the system using an iterative 
process until the threshold value, provided by the observer, is reached. The second step is done by the linear 
actuator motors as follows: two of the three linear actuator motors are moved up and down until the circular level 
bubble sets of tiltmeters are in the centre. The motionless third linear actuator motor is set to an upright position 
relative to the other two. By only moving this linear actuator motor up and down, the X-tilt and Y-tilt values of the 
tiltmeters and the upper round plaque are set in a horizontal position. The threshold value for our observations 
was set to be less than 0.02 mrad. Levelling is performed for each azimuthal direction that the measurements are 
performed. The whole process is controlled and analysed by modified ADAPS developed for this study (Uluğ et 
al. 2017; Albayrak et al. 2018a). Tilt values for each azimuthal direction conform to radial symmetrical behaviour 
and are calculated using an iterative approach in the least square adjustment, using the iterative levelling process 
(Halıcıoğlu 2015; Halicioglu et al. 2016).  The tilt values are constantly saved and correlated to image epochs, and 
the end values are obtained by correcting the levelling. 

To increase the accuracy of the levelling, we used the high-resolution electronic inclination sensor, HRTM, 
which has a nano-radian resolution. While the HRTM was used for the first time in Turkey in 2016, the Hannover 
DZCS research group first integrated it into the Hannover DZCS TZK2-D in 2002 (Hirt 2004; Kahlmann et al. 2004; Hirt 
and Kahlmann 2004). Hirt and Kahlmann (2004) preferred the HRTM because it not only had the highest accuracy, 
but it also had extremely low noise characteristics. In their work, they investigated the HRTM’s sensor behaviour 
under changing temperatures. We also followed their practices when we tested the HRTM’s characteristics and 
sensor stability under different environmental conditions by comparing it to the Nivel210 tiltmeter (Uluğ et al. 
2017; Uluğ 2017). We conducted test measurements at Boğaziçi University’s Kandilli Observatory and Earthquake 
Research Institute (KOERI) for 30 days. In that study, the air chamber and vibration table were also used to investigate 
the correlation between temperature and tilt values (Figure 7). We found that the HRTM sensor achieves very high 
accuracy under various challenging conditions and that it can be used for the ACSYS2 (Uluğ et al. 2017; Uluğ 2017). 
In addition, the HRTM has been used in many scientific and engineering research projects across Europe, such as the 
development of CODIAC, where four HRTMs were integrated into that DZCS (Guillaume 2015).

Azimuth calibration

To eliminate instrumental axis misalignment errors, images are taken in different azimuths. For this reason, the 
azimuth calibration in the ACSYS2 is performed for four azimuthal directions separated by 90⁰ using an Arduino-system. 

Focuser

The clarity of the star images acquired with ACSYS2 carries critical importance for identifying the stars and 
the resolution process. The clarity of the star images varies depending on temperature. Therefore, the analogue 
focuser of the present system was upgraded to one that is sensitive to temperature changes, called the temperature 
compensating focuser.
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4. Observation principle and data processing strategy 

4.1 Observation principle 

There is a specific procedure that must be followed before observations which include levelling and hardware 
tests. For levelling, X-tilt and Y-tilt values of the tiltmeters are recorded in 0⁰, 90⁰, 180⁰ and 270⁰ azimuthal directions 
values. It is expected that tilt values would have a radial symmetrical behaviour around the zenith. It is necessary 
to determine the best fitting circle in least-squares sense. The whole iterative process is controlled and analysed by 
software until the predefined threshold value is reached. 

The radius of the best fitting circle is used to realign the system towards the zenith, the iterative levelling 
process defined in Halıcıoğlu et al. (2016). The radius correction is done by the linear actuator motors attached to the 
substructure. The levelling software and the graphics display of tilt values can also be examined during the levelling 
procedure (Figure 8). Therefore, it is possible to analyse any potential gross error during the observation. Furthermore, 
the software controls the observation procedure and analyses if there is a need to repeat the levelling procedure. After 
the system is levelled and a successful instrumental alignment towards the zenith, the observation process begins. 

Figure 7: Air chamber and vibration table (Uluğ et al. 2017).

Figure 8: The circle fit codes prepared for levelling the system (Başoğlu 2019).
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During the observations, the exposure time for the CCD camera is chosen as 0.3 seconds. 4 series of 10 
images each are obtained at each azimuth, leading to a total of 160 time- and tilt-tagged images captured during a 
standard observation night. The images are tagged using the epoch-dependent tilt values and used as corrections 
to the final coordinates. 

4.2 Data processing

The stars in the acquired images are identified with the help of precision star catalogues such as the USNO 
CCD astrograph Catalogue 4 (UCAC4). The first step in data evaluation follows the astrometric reduction process, 
and therefore the stars in the captured images are ident﻿ified. The possible stars in the images are identified using 
star centroiding algorithms, such as the point-spread function (PSF) method (Lauer 1999; Lafreniere et al. 2007). 
Detected time-tagged stars are associated with the stars in the star catalogues. A star exactly located at zenith (Figure 
9), astronomical coordinates (Φ, Λ) and equatorial coordinates (α, δ) of a BM can be linked with the Greenwich 
Apparent Sidereal Time (GAST [θ]) using these equations (Torge and Müller 2012, p. 168):  

Φ = δ,     Λ= α - θ      (1)

For this action, approximate coordinates of the image center must be known in the equatorial system.  The 
star is identified by the system’s focus distance, local sidereal time and CCD camera geometry, which are then 
matched with the star coordinates in the UCAC4 catalogue (Zacharias et al. 2013). Determining potential stars 
and comparing them to catalogue information is comparatively done using pinpoint astrometric engine (Pinpoint 
Astrometric Engine 2019), WCSTools (WCSTools 2019) software and the software package for ACSYS2, modified 
from the first version of the ADAPS (see Halıcıoğlu et al. 2016).  

Figure 9: Zenithal star field and direction of the local plumb line (modified from Hirt et al. 2010a).

After the astrometric reduction process (Smart 1977), detected image stars and identified catalogue stars 
are compared through the standard deviations (SDs) of the matched stars. In practice, the SD is selected to be less 
than 0.3 arcseconds, and the stars that exceed this threshold value are not taken into account for the determination 
of zenithal coordinates. This process is calculated using software based on the USNO NOVAS C libraries developed 
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by the USNO (Kaplan et al. 2011). To calculate apparent topocentric coordinates, algorithms given by Kaplan et 
al. (1989) and the Greenwich Apparent Sidereal Time (GAST) is calculated using the algorithms given by Kaplan 
(2005). Apparent Topocentric Coordinates are then used to calculate equatorial coordinates of the zenithal point 
through astrometric reduction procedure using an iterative approach. Astronomical coordinates, calculated as 
a result of the star images, and the geodetic coordinates are used to obtain the VD components. The simplified 
steps of ACSYS are shown in Figure 10. The calculation of the VD components is explained by Halıcıoğlu et al. 
(2012 and 2016) and the lengthy process will not be replicated in this paper.

Figure 10: Data processing steps of ACSYS (Halıcıoğlu et al. 2016).

5. Results

5.1 Investigation of the precision of the ACSYS2 

Astrogeodetic test observations were conducted with the ACSYS2 at ITU’s Ayazaga Campus, European side of 
Istanbul, Turkey (Figure 11). The geodetic coordinates of the ITU test station were used to calculate the astrogeodetic 
VDs data, and were obtained via rapid static GNSS measurement, with reference to the ITRF96 reference frame and 
2005.0 epoch (ϕ= 41⁰ 06’ 12.80635”, λ= 29⁰ 01’ 10.82185”, σϕ,λ ≤ ± 2cm). 

Five nights of preliminary astrogeodetic test observations were conducted with the ACSYS2 at the ITU test 
station to determine the precision of the instrument. The observed VDs were obtained through 2-4 observation 
sessions, resulting in 80-160 time- and tilt-tagged images (10 images are obtained at each of the four azimuths) at 
0.3 seconds exposure time each night. The mean of each night’s VDs data and the difference between the mean 
values and the average values can be seen in Table 2. Overall, the differences between the mean and average 
values are satisfactory for both the North-South and East-West components. The average SD across the 5 nights of 
measurements (for nightly mean values) is 0.30” for the North-South (ξ) and 0.27” for the East-West (η) components.

We intended to conduct 4 observation sessions per night. As seen in Table 2, in February, four sessions of 
VDs observations were conducted. Then, we extended the exposure times up to 60 seconds to investigate the best 
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solutions for acquiring accurate astronomical coordinates (Halıcıoğlu et al. 2018 and 2019). However, in March, 
technical malfunctions and inclement weather precipitated the premature end to observations.

Figure 11: Location of the Istanbul Technical University (ITU) test station.

Table 2: The obtained nightly mean VDs data using ACSYS2 at the ITU test station.

Date Sessions ξ [”] η [”] vξ [”] vη [”]
09-02-18 4 1.70 2.97 0.02 0.16
13-02-18 4 1.96 3.02 -0.24 0.11
11-03-18 3 1.54 3.16 0.18 -0.03
29-03-18 2 2.06 3.58 -0.34 -0.45
30-03-18 3 1.33 2.90 0.39 0.23

Average  1.72 3.13    

5.2 Investigation of the accuracy of the ACSYS2

The total station-based QDaedalus system was used to investigate the accuracy of the ACSYS at the ITU test 
station. The QDaedalus system developer created various combinations of the CCD camera that can be clipped onto 
the different types of total station (Guillaume et al. 2016). In this study, we used the Leica TCRM1101 total station, 
which was tested at the Technical University of Munich (TUM) control station repeatedly before, during, and after 
the observations were made at the ITU test station (Albayrak et al. 2018c). Hauk et al. (2017) investigated the 
optimum length of astrogeodetic observations and determined that 15 min. observation sessions were adequate 
to provide good VD results (0.15”-0.20”). For this reason, the astrogeodetic measurements were executed at ~15 
min. session duration, and 3 or 4 sessions were carried out at the TUM control site and ITU test station as weather 
permitted.  We found the precision and accuracy of the system at the TUM control site to be ~0.20” for both the 
North-South and East-West components (Albayrak et al. 2018c and 2019). 

The QDaedalus (TCRM1101 TS) astrogeodetic observations were conducted on six different nights to collect 
VDs data at the ITU test station (Albayrak et al. 2019), which can be seen in Table 3. The system was installed seven 
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times; due to cloud cover on August 3, 2018, which interrupted observations, the system was installed twice. We 
were unable to do a second series of observations from either installation. Overall, the differences between the 
nightly mean and average values (from the 7 installations) are satisfactory for both the North-South and East-West 
components. The SDs for the measurements (calculated from each installation’s mean solutions) is 0.20” and 0.14” 
for the North-South (ξ) and East-West (η) components, respectively.

Table 3: The obtained nightly mean VDs data using the Leica TCRM1101 TS integrated QDaedalus system at the 
ITU test station.

Date Sessions ξ [”] η [”] vξ [”] vη [”]
08-02-18 2 1.45 3.56 0.09 -0.23
09-03-18 4 1.92 3.27 -0.38 0.06
20-03-18 4 1.57 3.12 -0.03 0.21
09-06-18 3 1.66 3.31 -0.12 0.02
30-07-18 2 1.39 3.38 0.15 -0.05

03-08-18 (1) 1 1.32 3.43 0.22 -0.10
03-08-18 (2) 1 1.47 3.23 0.07 0.10

 Average 1.54 3.33    

These data from the QDaedalus system were then compared against the ACSYS2 VDs data at the ITU test 
station. The VD results of both systems are plotted in Figure 12, and both systems were deployed on the same night 
(March 20, 2018) in order to have directly comparable results (the system set-ups can be seen in Figure A2 in the 
Appendix). Due to weather conditions, we could not conduct the observation with ACSYS2 on March 20, 2018.

Figure 12: Measured VDs from the night-time observations at the ITU test station using the ACSYS2 and Leica 
TCRM1101 total station integrated QDaedalus system.

5.3 VD Comparisons at the Istanbul Technical University 

Astrogeodetic VDs from the Global Gravity Model plus (GGMplus) gravity field maps (Hirt et al. 2013) and 
EGM2008 (Pavlis et al. 2012, 2013) were used for comparisons with the observed astrogeodetic VDs from ACSYS2 and 
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QDaedalus at the ITU test station. The GGMplus VDs are based on satellite (GRACE, GOCE) and EGM2008 gravimetric 
gravity field observations, entirely independent from the astrogeodetic techniques (Albayrak et al. 2019).

The QDaedalus astrogeodetic VDs accuracy is ~0.20” for both the North-South and East-West components. 
Because of the high accuracy of the QDaedalus VDs, they were preferred as the reference VD values for comparison 
with the other astrogeodetic VDs data at the ITU test station (Table 4, Figure 13).

Table 4: Comparison of astrogeodetic VDs (measured with the QDaedalus system and ACSYS2, and modelled with 
GGMplus and EGM2008).

Method ξ [”] η [”] νξ [”] νη [”]
QDaedalus (reference) 1.54 3.33    

ACSYS2 1.72 3.13 -0.18 0.20
GGMplus 1.71 3.46 -0.17 -0.13
EGM2008 2.13 3.09 -0.59 0.24

Figure 13: Comparison of astrogeodetic VDs.

6. Discussions

6.1 Modernization process of the ACSYS2

The DZCS development studies in Turkey began in 2008 (Halıcıoğlu et al. 2008), and the development process 
and the first results from the ACSYS were published in 2016 (Halıcıoğlu et al. 2016). Since 2016, the modernization 
of the ACSYS has been ongoing by the Istanbul DZCS research group. In this paper, we have reported on the 
modernization process and the first obtained results of this 3 years process.

Aspects of the modernization process have been published in various venues: (a) the testing and calibration 
of the ACSYS2 components (Halıcıoğlu et al. 2017b; Uluğ et al. 2017; Uluğ 2017), (b) star catalogs and centroiding 
algorithm (Başoğlu et al. 2017; Başoğlu 2019), (c) the modernization and upgrading process of the ACSYS2 (Albayrak 
et al. 2017, 2018a and 2018b; Başoğlu 2019), and (d) the first astrogeodetic test observation results (Albayrak et 
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al. 2018a and 2018b). The research team has obtained star images at various exposure times in order to test the 
best solutions for acquiring highly accurate astronomical coordinates. In this paper, we obtained the astrogeodetic 
coordinates with 0.3 second exposure times. These coordinates’ accuracies not only depend on the precision of 
sensors, but they also depend on the image processing method. The new method to increase the number of stars 
in the images—extending the exposure time up to 60 seconds—was investigated by Halıcıoğlu et al. (2018, 2019). 
With this method of image processing, it is possible to improve the accuracy of the astronomical coordinates using 
fitting functions of the star trails.

6.2 The precision and accuracy of the ACSYS2

The precision of the first version of the ACSYS was determined to be ~0.3” through repeated observations 
at the test station of Boğaziçi University, on the Asian side of Istanbul. However, in this study, we could not use 
that test station at Boğaziçi University, due to the inaccessibility of the station (obstructed by the construction of a 
new building). We established a new test station for ACSYS2 at ITU, on the European side of Istanbul. The ACSYS2’s 
precision was determined to also be ~0.3” through repeated observations at that ITU test station.

The conventional method of determining the accuracy of the astrogeodetic instrument is to conduct 
comparative and repeated measurements with other astrogeodetic instruments: for example (a) the accuracy of 
the Hannover DZCS TZK2-D was determined by using existing Hamburg photographic zenith tube (PZT) station (Hirt 
et al. 2005) and parallel measurements with DIADEM in Switzerland (Müller et al. 2005; Hirt et al. 2010a); and 
(b) the Leica TCA2003 TS integrated QDaedalus system’s accuracy was determined using existing TZK2-D VDs data 
(Hauk et al. 2017).  However, the accuracy of the first version of the ACSYS was determined by comparing the 
GNSS/levelling geoid height differences with the derived geoid height difference using the astronomical levelling 
technique (Halıcıoğlu et al. 2016). This method, by Halıcıoğlu et al. (2016), is an alternative method which can be 
used in countries devoid of accurate astrogeodetic VD datasets. 

The accuracy of the ACSYS2 was investigated by a conventional method, using the Leica TCRM1101 total station 
integrated QDaedalus system. This QDaedalus system was tested at the TUM control site and the obtained accuracy 
was ~0.20” for both the North-South and East-West components. The accuracy was also compared with Leica TCA2003 
and TDA5005 TS integrated QDaedalus system at the TUM control site (Albayrak et al. 2018b). These accuracies of the 
QDaedalus system provide a more reliable accuracy for the ACSYS2. The average VD differences between ACSYS2 and 
QDaedalus at the ITU test station are -0.18” and 0.20” for the North-South and East-West components, respectively 
(cf. Table 4). These satisfactory results of the ACSYS2 show that the ACSYS2 produces accurate VDs data. However, we 
plan to carry out comprehensive VD measurements of the ACSYS2 at the same ITU test station before its full use in 
fieldwork. This additional testing will develop more reliable measures of precision and accuracy of the system. 

The comparison between the observed VDs from QDaedalus measurements and the modelled VDs from 
GGMplus and EGM2008 at the ITU test station show that the GGMplus and EGM2008 VDs data have very good 
agreement with the QDaedalus system (cf. Table 4). Albayrak et al. (2019) found that the GGMs have good agreement 
with observed VDs data in the internal zone (i.e., far from the coastline) of Istanbul. 

6.3 The importance of the astrogeodetic observation 

The main purpose of the ACSYS2 in Turkey is for local geoid determination, though it can also contribute to 
regional and national geoid models. For instance, the Turkish National Geodesy Commission’s on-going project for 
height modernisation in Turkey. Since 2015, the goal of the project has been to develop a high-accuracy Turkish 
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geoid model using terrestrial and airborne gravity data, GNSS/levelling data, etc. (TNUGG 2011; Simav et al. 2015). 
In order to create such a high-precision geoid model, homogenous data derived from various techniques can be 
validated by astrogeodetic VDs from the ACSYS2 or QDaedalus system.

The VDs obtained through astrogeodetic instruments are very important for the validation and development 
of geoid models, especially in coastal and mountainous regions (Hirt and Bürki 2003; Hirt et al. 2010a). In comparison 
with other techniques—gravimetric and geodetic techniques—the astrogeodetic technique has many advantages, 
such as its requirements for shorter observations times. Also, as it is possible to reach optimum accuracy with fewer 
benchmarks (5-10 BMs/1000km2) with astrogeodetic methods when compared to gravimetric geoid determination 
methods (Gerstbach 1996), we will save time and energy in geoid modelling development studies. In addition to 
contributing to geoid determinations, the observed VDs from astrogeodetic instruments can be used for the quality 
assessment of existing and future GGMs. Therefore, the obtained VDs data from ACSYS2 are valuable tools for 
independently investigating the quality of gravity data sets and gravity field products.

The astrogeodetic VDs can be estimated by geoid height using GNSS/Levelling data (Heiskanen and Moritz 1967; 
Ceylan 2009; Vittuari et al. 2016), while the geoid height can be calculated by the astrogeodetic VDs data (Halicioglu 
et al. 2016). When the astrogeodetic observations are completed for the established GNSS/levelling network, the 
geoid heights or astrogeodetic VDs can be compared for these purposes. Furthermore, the astrogeodetic VDs can 
be used to calculate the astrogeodetic geoid (Ayhan and Alp 1995) and many other astrogeodetic applications (cf. 
Section 1). However, it should be noted that astrogeodetic VDs can also be used for other geoscience research. 
In geophysics, astrogeodetic VDs can be used to identify the density of anomalies below the Earth’s surface (Hirt 
2001). In tectonic and geodynamic research, astrogeodetic VDs can be used to detect VDs changes before and after 
earthquakes (presumably M8 earthquake). For example, Bevis et. al (2016) show that the vertical displacements 
of the geoid and the crust are in opposite directions. In addition to these, Soler et. al (2013) emphasised that 
astrogeodetic VDs, accompanied by terrestrial gravity, gradiometric observations, and localized seismology, could 
disclose shallow underground mass anomalies.

7. Conclusions

This paper has described the recent progress of the first Turkish DZCS used to obtain astrogeodetic VDs. The 
new DZCS design resulted from an effort to update and modernise the ACSYS2. The instrument design of the new 
DZCS, observation procedures, evaluation of the test data and calculations with these data have been described. 
The preliminary astrogeodetic test observations were conducted with the ACSYS2 at the main observing station at 
ITU on five nights. Results of the repeated, comparative VDs observations reveal a VD measurement precision of 
around 0.3”, which indicate the precision of the instrument. 

The determination of DZCS accuracy is one of the biggest challenges for DZCS developers. The most reliable 
method to establish DZCS accuracy is to use another astrogeodetic instrument with known reliable accuracy. We 
demonstrate here that it can be done by using the QDaedalus system developed at ETH Zurich. The accuracy level of 
the QDaedalus is 0.15-0.20” (Hauk et al. 2017; Albayrak et al. 2018c and 2019), which is a satisfactory VDs accuracy. 
The QDaedalus was used at the ITU test station, which is the same test station used for the ACSYS2. The obtained 
VD results show that the ACSYS2 produces reliable VDs data (see section 5.2).

The ACSYS2’s precision was not improved during the modernisation process. However, accuracy can be found 
through a more reliable method. The installation and levelling of the ACSYS2 are two-times shorter than for the ACSYS. 
ACSYS2 is also more stable and user-friendly, and the transportation of the system is easier than the first version.

The ACSYS2 was intended to be used in the Istanbul astrogeodetic network (IAN) for astrogeodetic geoid 
determinations.  The IAN was created using 30 BMs from the Istanbul GPS Triangulation Network (IGTN) and the 
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Istanbul Levelling Network (ILN) to avoid the need to run new GPS and levelling measurement campaigns (Ayan 
et al. 2006). Half of the BMs are pillar BMs which can be re-used for future repeated observations. However, the 
ACSYS2 cannot be installed on pillar BMs. Therefore, users need to establish new BMs close to the pillar that can 
use by the ACSYS2. New GPS measurements and levelling should be done for these changed BMs. Many of the 
IAN’s BMs are also located very far from infrastructure. For these reasons, the ACSYS2 is not suitable for use in the 
IAN. The planned network measurements were done instead with the QDaedalus system (Albayrak and Hirt 2018; 
Özlüdemir 2018; Albayrak et al. 2019). The observed astrogeodetic VDs from the QDaedalus system in Istanbul can 
then be used to compare the VDs results which will be obtained by the ACSYS2. 

8. Appendix

Figure A1: Historical background of the Digital Zenith Camera Systems (Images from Hirt and Bürki 2006). 

Figure A2: The ACSYS2 and QDaedalus system is deployed at the ITU test station on the same night.
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