Acessibilidade / Reportar erro

Penetration Capacity, Color Alteration and Biological Response of Two In-office Bleaching Protocols

Abstract

Hydrogen peroxide (H2O2) penetrates into the dental hard tissues causing color alteration but also alterations in pulpal tissues. Hard-tissue penetration, color alteration and the pulp response alterations were evaluated for two in-office bleaching protocols with H2O2. For trans-enamel/dentin penetration and color alteration, discs of bovine teeth were attached to an artificial pulp chamber and bleached according to the groups: BLU (20% H2O2 - 1x50 min, Whiteness HP Blue); MAX (35% H2O2 - 3x15 min, Whiteness HP Maxx); Control (1x50 min, placebo). Trans-enamel/dentin penetration was quantified based on the reaction of H2O2 with leucocrystal violet and the color analyzed by CIELab System. Twenty Wistar rats were divided into two groups (BLU and MAX) and their maxillary right molars were treated according to the same protocols of the in vitro study; the maxillary left molars were used as controls. After 2 days, the animals were killed and their maxillae were examined by light microscopy. The inflammation of pulp tissue was scored according to the inflammatory infiltrate (1, absent; 2, mild; 3, moderate; 4, severe/necrosis). Data were analyzed by statistical tests (α=0.05). MAX showed higher trans-enamel/dentinal penetration of H2O2 (p<0.05). The color alteration was similar for both groups (p>0.05), and different when compared to Control group (p<0.05). MAX showed severe inflammation in the upper thirds of the coronal pulp, and BLU showed moderate inflammation (p<0.05). In-office bleaching protocols using lower concentrations of hydrogen peroxide should be preferred due to their reduced trans-enamel/dentinal penetration since they cause less pulp damage and provide same bleaching efficiency.

Key Words:
hydrogen peroxide; in-office bleaching; pup inflammation.

Fundação Odontológica de Ribeirão Preto Av. do Café, S/N, 14040-904 Ribeirão Preto SP Brasil, Tel.: (55 16) 3602-3982, Fax: (55 16) 3633-0999 - Ribeirão Preto - SP - Brazil
E-mail: bdj@forp.usp.br