Acessibilidade / Reportar erro

Influence of Different Concentration and Ratio of a Photoinitiator System on the Properties of Experimental Resin Composites

Abstract

The aim in this study was to evaluate the influence of different ratio of camphorquinone/tertiary amine concentration on the flexural strength (FS), elastic modulus (EM), degree of conversion (DC), yellowing (YL), water sorption (WS) and water solubility (WSL) of experimental composites. Thus, acrylate blends were prepared with different camphorquinone (CQ) and amine (DABE) concentrations and ratios by weight: (CQ/DABE%): 0.4/0.4% (C1), 0.4/0.8% (C2), 0.6/0.6% (C3), 0.6/1.2% (C4), 0.8/0.8% (C5), 0.8/1.6% (C6), 1.0/1.0% (C7), 1.0/2.0% (C8), 1.5/1.5% (C9), 1.5/3.0% (C10). For the FS and EM, rectangular specimens (7x2x1 mm, n=10) were photo-activated by single-peak LED for 20 s and tested at Instron (0.5 mm/min). Then, the same specimens were evaluated by FTIR for DC measurement. For YL, disks (5x2 mm, n=10) were prepared, light-cured for 20 s and evaluated in spectrophotometer using the b aspect of the CIEL*a*b* system. For WS and WSL, the volume of the samples was calculated (mm³). For WS and WSL, composites disks (5x0.5 mm, n=5) were prepared. After desiccation, the specimens were stored in distilled water for 7 days and again desiccated, in order to measure the WS and WSL. Data were submitted to one-way ANOVA and Tukey’s test (5%). The groups C8, C9 and C10 showed higher DC, EM and YL means, compared to other composites. Therefore, the FS and WS values were similar among all groups. Also, C1, C2 and C3 presented higher WSL in 7 days, compared to other composites. In general, higher concentrations of camphorquinone promoted higher physical-mechanical properties; however, inducing higher yellowing effect for the experimental composites

Key Words:
camphorquinone; dental resin; curing performance

Fundação Odontológica de Ribeirão Preto Av. do Café, S/N, 14040-904 Ribeirão Preto SP Brasil, Tel.: (55 16) 3602-3982, Fax: (55 16) 3633-0999 - Ribeirão Preto - SP - Brazil
E-mail: bdj@forp.usp.br