Abstract
This study evaluated the fracture strength of endodontically treated teeth submitted to reconstructive techniques through dynamic and static tests. Forty human anterior teeth were divided into 4 groups (n=10): GNW (non-weakened) - root restored with glass fiber post (GFP), GW - weakened root restored with GFP, GDA - weakened root restored with direct anatomic GFP, and GIA - weakened root restored with indirect anatomic GFP. The teeth were endodontically treated considering that experimental groups (GW, GDA and GIA) simulated weakened roots for restoration with GFP using different techniques. The GFP was luted with resin cement and the coronal portion was restored with composite resin and metallic crowns. All samples were submitted to chewing simulation at 60 cycles/min in a total of 300,000 cycles. The survival samples were further exposed to compressive loading at a crosshead speed of 1.0 mm/min in a universal testing machine. The load was applied at 135° to the long axis of the tooth until failure. Data were analyzed by ANOVA (a=0.05). After chewing simulation were observed: GNW: 100% of survival roots; GW: 70% of survival roots, and GDA and GIA: 80% of survival roots. The mean fracture strength values (N) were 280.6 (GNW), 239.0 (GW), 221.3 (GDA), and 234.1 (GIA) without significant difference among the groups (p=0.7476). The results suggested similar fracture strength in both weakened and non-weakened teeth regardless the reconstructive technique of root internal wall. Higher incidence of catastrophic fracture was observed in weakened teeth without restoration of the root internal wall.
Key Words: compressive strength; fatigue; post and core technique; tooth root