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Abstract
Maize (Zea mays L.) is of socioeconomic importance as an essential food for human and animal nutrition. However, 
cereals are susceptible to attack by mycotoxin-producing fungi, which can damage health. The methods most 
commonly used to detect and quantify mycotoxins are expensive and time-consuming. Therefore, alternative 
non-destructive methods are required urgently. The present study aimed to use near-infrared spectroscopy with 
hyperspectral imaging (NIR-HSI) and multivariate image analysis to develop a rapid and accurate method for 
quantifying fumonisins in whole grains of six naturally contaminated maize cultivars. Fifty-eight samples, each 
containing 40 grains, were subjected to NIR-HSI. These were subsequently divided into calibration (38 samples) 
and prediction sets (20 samples) based on the multispectral data obtained. The averaged spectra were subjected 
to various pre-processing techniques (standard normal variate (SNV), first derivative, or second derivative). The 
most effective pre-treatment performed on the spectra was SNV. Partial least squares (PLS) models were developed 
to quantify the fumonisin content. The final model presented a correlation coefficient (R2) of 0.98 and root mean 
square error of calibration (RMSEC) of 508 µg.kg-1 for the calibration set, an R2 of 0.95 and root mean square error 
of prediction (RMSEP) of 508 µg.kg-1 for the test validation set and a ratio of performance to deviation of 4.7. It 
was concluded that NIR-HSI with partial least square regression is a rapid, effective, and non-destructive method 
to determine the fumonisin content in whole maize grains.

Keywords: Zea mays L., mycotoxins, fumonisins, non-destructive analysis, hyperspectral image near infrared, 
partial least squares (PLS).

Resumo
O milho (Zea mays L.) possui importância socioeconômica por constituir um dos alimentos básicos na nutrição 
humana e animal. Porém, o cereal é suscetível ao ataque de fungos produtores de micotoxinas que podem causar 
danos à saúde. Os métodos mais utilizados para detectar e quantificar micotoxinas são caros e demorados e métodos 
alternativos para a detecção das micotoxinas são uma necessidade. O presente trabalho tem como objetivo utilizar 
espectroscopia no infravermelho próximo com imagem hiperespectral (NIR-HSI) e análise multivariada de imagens 
para desenvolver um método rápido e preciso para quantificação de fumonisinas em grãos inteiros de seis cultivares 
de milho naturalmente contaminadas. Cinquenta e oito amostras, cada uma contendo 40 grãos, foram submetidas 
ao NIR-HSI e posteriormente divididas em um conjunto de calibração (38 amostras) e um conjunto de predição 
(20 amostras) com base nos dados multiespectrais obtidos. Os espectros médios foram submetidos a diversas 
técnicas de pré-processamento (variação normal padrão – SNV, primeira derivada ou segunda derivada). O melhor 
pré-processamento dos espectros foi SNV e um modelo de mínimos quadrados parciais (PLS) foi desenvolvido para 
quantificar o teor de fumonisinas. O modelo final apresentou coeficiente de correlação (R2) de 0,98 e raiz quadrada 
do erro médio quadrático de calibração (RMSEC) de 508 µg.kg-1 para o conjunto de calibração, R2 de 0,95 e raiz 
quadrada do erro médio quadrático de predição (RMSEP) de 508 µg.kg-1 para o conjunto de validação do teste e 
relação desempenho/desvio de 4,7. Conclui-se que o NIR-HSI com regressão parcial de mínimos quadrados pode 
ser um método rápido, eficaz e não destrutivo para determinar o teor de fumonisinas em grãos integrais de milho.

Palavras-chave: Zea mays L., micotoxinas, fumonisinas, análise não-destrutiva, imagem hiperespectral no 
infravermelho próximo, mínimos quadrados parciais (PLS).
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variate (SNV) transformation to reduce the effects of noise 
on the signal. Partial least squares discriminant analysis 
(PLS-DA) was used to predict the level of contamination 
on the samples. A partial least squares regression (PLSR) 
method was applied to predict the amounts of fumonisins 
and DON. Based on the promising results of this study, the 
authors contend that HSI has the potential to be used as a 
preliminary test method for determining the mycotoxin 
content in feed materials.

NIR-HSI has also been employed to characterize 
parameters related to the seed quality of other cereals, 
legumes, and oilseeds (Feng et al., 2019; Jia et al., 2020; 
Freitag et al., 2022).

For example, Femenias  et  al., 2020 evaluated the 
detection of DON in wheat samples using an NIR-HSI 
approach. Herein, all the spectra were pre-treated and 
processed by PLSR and LDA. They obtained a root mean 
square error of prediction (RMSEP) of 501 µg.kg-1 for the 
analyte with an accuracy of 85.4% for the validation set.

In a recent study, Kim et al. (2023) proposed a method 
for classifying single contaminated and co-contaminated 
aflatoxin and fumonisin in ground maize samples by 
applying hyperspectral imaging techniques, including 
reflectance in the visible and near-infrared (VNIR) and 
short-wave infrared (SWIR) regions combined with machine 
learning algorithms. SWIR imaging with the support vector 
machine model resulted in higher classification accuracies 
compared to VNIR models. In addition, the results revealed 
that this technique can be used in routine analysis models.

Thus, NIR-HSI can assist in the early identification of 
fungal contamination. This factor may also contribute 
to the timely control of plant diseases and represents a 
viable technique for detecting and quantifying mycotoxins. 
Recent studies underline that such infrared spectroscopic 
platforms have great potential for the rapid analysis of 
mycotoxins (Freitag et al., 2022). Moreover, NIR-HSI can 
assist food and feed industries by providing a rapid and 
inexpensive strategy to distinguish between batches of raw 
materials that are free from fungi and those contaminated 
with mycotoxins. This would prevent the consumption of 
contaminated food (Femenias et al., 2020). This study aimed 
to develop a rapid and accurate method for quantifying 
fumonisins in whole maize kernels using NIR-HSI and 
chemometric techniques.

2. Material and Methods

2.1. Maize samples

For this study, fifty-eight corn grain samples with 
approximately 500 g were obtained from field plots where 
the grains were naturally contaminated with fumonisin. 
Therefore, these were representative of real situations 
observed in the field. The plots were established at Embrapa 
Maize and Sorghum (Sete Lagoas, MG, Brazil) in 2018. 
Each sample was homogenized to obtain a subsample 
of approximately 40 grains. Before the imaging, these 
grains were placed in a 10 x 20 cm Teflon holder (10 rows 
x 4 columns) for spectral scanning as described below in 
the section on NIR-HSI imaging system and acquisition 

1. Introduction

Maize (Zea mays L.) is rich in nutrients, vitamins, and 
minerals and is an essential food for human and animal 
nutrition. It confers significant health advantages to the 
organism. Although cereal maize is cultivated extensively 
and consumed worldwide, the highest grain production and 
consumption levels occur in the United States, China, and 
Brazil (Erenstein et al., 2022). However, cereals are highly 
susceptible to attack, both pre-harvest and during storage, 
by toxigenic fungi of the genera Fusarium and Aspergillus. 
The fungi produce a range of secondary metabolites known 
collectively as mycotoxins. These reduce the quality and 
nutritional value of food and represent a severe problem 
in food and feed security (Parrag et al., 2020). For example, 
the Fusarium species commonly observed in maize can 
produce various mycotoxins such as fumonisins and 
deoxynivalenol (DON). A few of these are known to cause 
fatal diseases in livestock and primary liver cancer risk in 
humans (Parrag et al., 2020; Claeys et al., 2020).

In this context, mycologists and phytopathologists 
are particularly concerned regarding the increase in the 
contamination of foodstuffs by the Fusarium species. 
Moreover, industrial food processors are seeking rapid, 
inexpensive methods to detect and quantify mycotoxins 
in primary source materials (Femenias  et  al., 2020). 
The maximum content of fumonisins B1 + B2 in maize is 
5,000 µg.kg-1 according to Brazilian legislation (Brasil, 2011) 
and 4,000 µg.kg-1 according to the European Commission 
(Khodaei et al., 2021).

Several techniques can be applied for the qualitative 
and quantitative analysis of mycotoxins. These include 
high-performance liquid chromatography (HPLC) coupled 
with fluorescence detection and/or mass spectrometry 
(MS), and enzyme-linked immunosorbent assay (ELISA). 
HPLC is the most commonly employed method because it 
provides remarkable sensitivity, selectivity, and precision. 
It requires extensive sample preparation, which is 
destructive, time-consuming, expensive, and results in 
a large amount of chemical waste (Khodaei et al., 2021; 
Femenias et al., 2020).

Near-infrared hyperspectral imaging (NIR-HSI) is 
a rapid, effective, non-invasive, and non-destructive 
method for analyzing a wide range of biological materials. 
This procedure generates a set of NIR spectral images 
representing a narrow wavelength band at all pixel points 
within a two-dimensional image plane.

Wang et al. (2014) verified the use of NIR-HSI to detect 
aflatoxin B1 (AFB1) contaminants in maize kernels. In this 
study, AFB1 solutions with concentrations of 10, 20, 100, 
and 500 ppb were applied to the surfaces of grains. 
The spectral data were subjected to principal component 
analysis (PCA) followed by stepwise discriminant factor 
analysis. The classification model achieved an accuracy 
of 88%. This demonstrated the efficiency of the method 
for detecting levels of AFB1 even at low concentrations.

In a recent study, Parrag et al. (2020) evaluated the 
use of NIR-HSI to detect cornmeal samples that had been 
naturally or artificially contaminated with F. graminearum, 
F. verticillioides, or F. culmorum. The sample spectra were 
subjected to Savitzky-Golay smoothing and standard normal 
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and multivariate analysis of images. After the maize 
subsamples were scanned, they were assayed using HPLC 
for the fumonisin concentration (µg.kg-1) described in the 
HPLC determination of fumonisin concentration in the 
maize samples section. The samples were divided into 
a 2/3 calibration set (38 samples) and 1/3 prediction set 
(20 samples) according to the Kennard-Stone algorithm 
(Kennard and Stone, 1969).

2.2. NIR-HSI imaging system

A SisuCHEMA-SWIR chemical imaging system (Specim, 
Spectral Imaging Ltd., Oulu, Finland) was employed to 
obtain hyperspectral images of the sample sets in the 
1000-2100 nm spectral range with 256 wavelength bands 
(6.25 nm spectral sampling) and a spatial resolution of 
10 nm. The high-performance camera was equipped with 
a 50 mm lens (50 mm field-of-view) and a frame rate of 
60 Hz to acquire images with a pixel size of 150 × 150 µm. 
A line-scan camera was employed for the signal acquisition. 
The signal intensity of the pixels (x-y spatial dimension) 
was recorded using ChemaDAQ software (Specim, Spectral 
Imaging Ltd.) to generate a sub-image cube comprising 
256 × 256 pixels at each wavelength.

2.3. Acquisition and multivariate analysis of images

The system was permitted to stabilize for 30 min before 
the collection of spectra to prevent interference from the 
surroundings and ensure consistency in the information 
derived from the samples. The acquisition of the NIR 
images of the samples included the digitization of 40 whole 
maize grains of the linear array by shifting the detector 
along the x- and y-axes (spatial dimensions) of the image 
at 256 wavelengths (spectral dimension). The spatial 
and spectral data from the resulting 3D hypercube were 
used to obtain the average spectrum for each sample set. 
The images were saved in the RAW format for further 
treatment to remove the average background and reveal 
the cleaned-up spectrum. The hyperspectral images were 
analyzed using Prediktera Evince v.2.6.0 analysis software 
(UmBio, Umeå, Sweden).

2.4. HPLC determination of fumonisin concentration in 
maize samples

2.4.1. Reagents and chemicals

Methanol and acetonitrile (HPLC grade) were supplied 
by Scharlab (Sentmenat, Spain). The analytical standard 
mixture of fumonisins B1 and B2 (50 μg. mL-1 of each in 
acetonitrile:water) was purchased from Sigma-Aldrich 
(St Louis, MO, USA; product #34143). Water was obtained 
from an ELGA® water purification system (Elga LabWater, 
High Wycombe, UK).

2.4.2. Quantification of fumonisins by HPLC

The maize samples were ground separately in an IKA 
(Campinas, SP, Brazil) model A11 basic analytical mill. 
For each sample set, 10 g of powdered material was 
extracted with 50 mL of water:methanol:acetonitrile 
(50:25:25 v / v) for 40 min with agitation (at 200 rpm) on 

an orbital shaker (model 109; Nova Ética, Vargem Grande 
do Sul, SP, Brazil). The extract was centrifuged at 3000 rpm 
for 10 min and filtered through a qualitative filter paper 
to remove the impurities. An aliquot (5 mL) of the filtrate 
was removed, mixed with 20 mL of phosphate-buffered 
saline (PBS), and filtered through a glass microfiber 
filter. A portion (10 mL) of the mixture was transferred 
to a syringe attached to a Vicam® (Waters, Milford, MA, 
USA) FumoniTest immunoaffinity column and washed 
under the action of gravity with 10 mL of PBS solution to 
remove impurities. The fumonisins were subsequently 
eluted with 2.5 mL of HPLC-grade methanol injected at 
one drop per second. The eluent was collected in a glass 
cuvette held in a water bath at 50-55 °C and subjected 
to a flow of dry compressed air until the solvent was 
removed entirely. The dried residue was resuspended 
in acetonitrile: water (1:1 v / v) and a 50 µL aliquot of 
the solution mixed with 50 µL of derivatizing reagent 
containing O-phthalaldehyde and 2-mercaptoethanol. 
The derivatized sample was injected into a Waters Alliance 
Model 2695 HPLC separation system equipped with a 
C18 reverse-phase column. The fluorescence detector 
was set at an excitation and emission of 335 nm and 
440 nm, respectively. The retention times of fumonisins 
B1 and B2 were approximately 4 and 9 min, respectively. 
The fumonisins were quantified using a calibration 
curve constructed using an analytical standard mixture 
of fumonisins B1 and B2. For each batch of 20 samples, a 
reference sample from the Trilogy Analytical Laboratory 
(Washington, MO, USA) with a total fumonisin content of 
4.1 ± 0.5 μg.kg-1 was analyzed.

2.5. Chemometric methods

The collected NIR-HSI spectra were preprocessed using 
mean centering. Additionally, the scattering and baseline 
deviations were corrected by standard normal variate (SNV) 
transformation, or first or second derivative and 11-point 
Savitsky-Golay filter (with or without variable selection) 
using The Unscrambler v. 10.5 software (AspenTech, 
Bedford, MA, USA). The spectral pre-treatment methods 
were used individually or in combination. The preprocessing 
technique was optimized according to the modeling 
performance.

Quantitative spectral analysis was performed using 
chemometric approaches based on the partial least squares 
(PLS) algorithm. PLS models were developed to quantify 
fumonisins in grains. PLS regression calibrations were 
evaluated 1) based on the coefficient of regression (R2), 
root mean square error of calibration (RMSEC), and RMSEP 
and 2) using the ratio of performance to deviation (RPD). 
The RPD is defined as the ratio between the measured 
standard deviation and prediction error (Haaland and 
Thomas, 1988).

3. Results and Discussion

3.1. Spectral analysis

Figure 1 shows the NIR raw spectra of the maize samples. 
The vibration bands associated with the O-H, N-H, and 
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C-H groups of the nutrients in the grains are broad and 
overlapped. The key absorption peaks of the maize samples 
at approximately 1200 and 1465 are attributed to the 
combination and overtones of the O–H and N–H stretching 
vibrations of the chemical information regarding maize 
composition (Caporaso et al., 2018). The absorption bands 
associated with the H-bonds of the O–H stretching from 
water and the O–H combination from polysaccharides are 
located at 1920 nm and 2090 nm, respectively (Figure 1). 
Less intense bands appeared at 1170/1270 nm (associated 
with polysaccharide components) in the C–H stretch 
second overtone and O–H stretch of the combination 
bands (Workman, 2021).

3.2. Fumonisins analysis in maize samples

For 58 ground maize samples, fumonisins were 
analyzed by the concentration range from 217 to 
12,411 µg.kg-1 contaminated maize. The concentration 
ranges of fumonisins of the naturally contaminated samples 
are used in this study. The minimum, maximum, and mean 
fumonisin levels determined by the HPLC analysis of the 
calibration and prediction sample sets of maize grains are 
shown in Table 1. The calibration set addressed the widest 
range of fumonisins B1 + B2 concentrations.

3.3. PLS model results

Based on the NIR-HSI data, the PLS algorithm was 
employed to develop models for predicting fumonisin 
levels in maize grains. The acquired spectra were subjected 
to three pre-processing procedures, and the performances 
of the quantitative determination models were compared 
(Table 2). The best pre-treatment of the spectra was selected 
based on the regression models that provided the lowest 

RMSEP and highest RER values. Consequently, the best 
models exhibited high correlation coefficients (R2) and low 
RMSEC, RMSEP, and bias (Pasquini, 2018). In addition, the 
RPD, which relates the squared error of the predictions 
to the variance and range in the original reference data, 
should preferably be at least 3.0 (Darren et al., 2022).

The present study obtained the best results for the 
calibration set containing the average spectra of 38 maize 
samples subjected to SNV pre-processing. To evaluate the 
prediction performance of the PLS models, the predicted 
fumonisins of the maize grains were plotted against the 
reference values for all the datasets (Figure 2). The samples 
are linearly distributed around a diagonal line in the plot 
of reference versus values predicted by the PLS model.

This model involved 10 latent variables and presented 
an R2

c of 0.98 and RMSEC of 508 µg.kg-1 for fumonisins 
B1 + B2 in maize grain. For the test set with 20 maize 
samples, the model presented an R2

p of 0.95 and RMSEP 
of 505 µg.kg-1. This measures the prediction’s average 
accuracy (i.e., the difference between the true and estimated 
values). The model displayed a good prediction capability, 
as indicated by the high values of R2 and the marginal 
difference between RMSEC and RMSEP.

The developed calibration models were also evaluated 
based on RPD and RER. The RPD of this model was 4.7. This 
indicates a remarkable predictive capability as verified by 

Table 1. Fumonisins content (µg.kg-1) of maize grains in the 
calibration and prediction sample sets as determined by the 
HPLC method.

Descriptive statistic Calibration set Prediction set

Number of samples (n) 38 20

Minimum value (µg.kg-1) 217 330

Maximum value (µg.kg-1) 12,411 9,151

Mean value (µg.kg-1) 4,925 2,316

Standard deviation (µg.kg-1) 3,917 2,390

Table 2. Performances of models for the quantitative determination of fumonisin developed using the PLS method from NIR-HSI spectra 
of sample sets subjected to different spectral pre-treatment procedures.

Pre-processing procedure LV R2
c

RMSEC 
(µg.kg-1)

R2
p

Bias  
(µg.kg-1)

RMSEP 
(µg.kg-1)

RPD RER

Standard normal variate 10 0.98 508 0.95 -0.018 505 4.7 17.5

1st derivative 13 0.86 1,447 0.78 -0.023 2,740 0.9 3.2

2nd derivative 12 0.92 1,088 0.72 -0.015 2,486 1.0 3.5

LV: latent variable, R2
c and R2

p: determination coefficients of calibration and prediction sets, respectively; RMSEC: root mean square error of 
calibration, RMSEP: root mean square error of prediction, RPD: ratio to performance deviation, RER: range error ratio.

Figure 1. Raw mean absorbance spectra obtained by NIR-HSI from 
the 58 samples of whole maize grains.
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the predicted versus reference plot (Figure 2) for fumonisins 
B1 and B2 in maize grains. According to Xing et al. (2019), RPD 
> 2.5 indicates remarkable models and/or predictions. This 
is because a larger RPD value indicates a higher capability of 
the model to precisely predict adulteration in new samples. 
The RER value was 17.5. RER > 10 is considered a good 
predictability for multivariate calibration (Rambo et al., 
2020). AACC Method 39-00.01 (AACC, 1999) provides 
quality thresholds for model performance based on the RER 
values: For RER > 4, the calibration is reasonable for sample 
screening; for RER > 10, the calibration is reasonable for 
quality control; and for RER > 15, the calibration is suitable 
for quantification. This model may be used to screen the 
fumonisin content in maize grains. However, it should 
be emphasized that the model’s accuracy depends on its 
application and prediction errors (RMSEP).

According to Yang et al. (2022), starches, sugars, and 
other food matrix components interact with the amino 
and tricarboxylic acid groups in fumonisin structures. 
In this context, interpreting the regression coefficients 
is necessary to avoid possible accidental correlations 
(Rambo  et  al., 2020). The NIR spectral region between 
1100 and 1300 nm (Figure  3) is influenced by the 
bending modes of the -CH2 and -CH3 groups in proteins, 
carboxylic acids, esters, and starches (Caporaso  et  al., 
2018). Meanwhile, multiple bands in the 1200-1540 nm 
region involve -CH2, C-H, and O-H in-plane deformations 
(De Géa Neves et al., 2022).

The regression vector displays positive peaks at 
1131 nm, 1273, 1556, 1891, and 2036 nm (Figure  3). 
Laubscher et al. (2023) concluded that FB1 absorbs NIR 
energy at approximately these wavelengths. The band at 
1131 nm corresponds to the absorption of carbohydrates 
(first harmonic of C-H stretching). Meanwhile, the bands 
at 1381 and 1556 nm correspond to the second harmonic 
of C-H stretching, which is related to the symmetrical 
elongation of C=O and COO in carbohydrates and the 
deformation angles of the -CH2 and -CH3 groups in fatty 
acids. These indicate the presence of starch and sucrose (first 
harmonic of O-H stretch) (López et al., 2017). The second 
overtone of the C=O bond in the carboxylic acids was 
identified at approximately 1900 nm. Therefore, it could 
be responsible for the peak at 1837 nm. Figure 3 shows 
the negative regression vectors at 1381 nm and 1943 nm. 
Here, the significant bands are assigned to water, the first 
harmonic of O-H stretching, and deformations in the O-H 
group combined with hydroxyl. The band at 1662 nm 
corresponds to the absorption of proteins, starches, and 
the second harmonic of N-H stretching (Workman, 2021). 
The prominent peak profile shown in Figure 3 indicates 
that the main cause of the variation in contaminated maize 
grains was the variation in the composition or structure 
of starch and protein. This, in turn, indicates a decrease 
in the levels of stored food reserves, as observed earlier 
by Williams et al. (2012).

Most initial studies involving the application of NIR 
technology to quantify fumonisins employed Fourier-
transform (FT)-NIR spectroscopy. For example, Tyska et al. 
(2021) quantified the contamination level of total 
fumonisins, i.e., B1 + B2 and zearalenone, in 200 unknown 
maize samples, and no significant difference was observed 
in predicted values using NIR and reference values obtained 
by Liquid Chromatographic Coupled to Tandem Mass 
Spectrometry (LC-MS/MS). Kim et al. (2023) developed 
a short-wave infrared (SWIR) method for screening 
fumonisin-contaminated milled maize, considering the 
European legal limit. However, these applications used 
ground samples.

The application of multispectral imaging employing 
10 wavelength bands in the NIR range of 720-940 nm 
to predict the fumonisin content of milled maize was 
first described by Firrao et al. (2010). The results showed 
a significant correlation between the image analysis 
predictions and the mycotoxin concentrations as determined 
by a chemical analysis. More recently, hyperspectral 
imaging employing over 100 wavelength bands in the NIR 
region has become an essential nondestructive technique 
for investigating mycotoxin contamination in cereals 
(Caporaso et al., 2018). Nevertheless, several studies have 
been conducted in this area by scanning individual grains 
subjected to artificial contamination. This procedure can 
modify the final level of contamination and interactions 
between grains, molds, and mycotoxins. Stasiewicz et al. 
(2017) described the potential use of a multispectral sorter 
(470-1550 nm) for identifying and removing aflatoxin- and 
fumonisin-contaminated grains from bulk mature maize 
kernels in Kenya. The authors reported that statistically 
significant (p < 0.001) reductions of up to 83% were achieved 
for grains contaminated with each toxin.

Figure 2. Predicted versus reference plot for the PLS calibration 
(blue) and validation (red) sets of grain maize samples.

Figure 3. Regression coefficients for fumonisin PLS model of 
maize samples.
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The results obtained in the present study show that 
NIR-HSI combined with multivariate regression may be a 
suitable alternative method for determining the fumonisin 
content in whole maize grains. The technique described 
circumvents the grinding step that is generally required 
and is faster and less complex than other machine learning 
methods. This would facilitate the analysis of many samples 
in an industrial process.

4. Conclusion

This study demonstrated that a multivariate calibration 
of the average spectra obtained from whole maize grains 
using the NIR-HSI technique is an advantageous method 
for determining fumonisins. It has applications in the 
identification of contaminated batches and prevention of 
cross-contamination during maize storage. Nevertheless, 
because fumonisin levels vary considerably among different 
cultivars, climatic conditions, and agronomic regions, new 
samples should be analyzed using this model. Such studies 
would enable updating of this technology and increase its 
robustness in quantifying fumonisins. This would, in turn, 
provide remarkable safety in using maize for human and 
animal nutrition.

Acknowledgements

This  study was funded by Embrapa Nos . 
25.14.04.001.00.03.007 and 20.18.03.006.00.05 and the 
Conselho Nacional de Desenvolvimento Científico e 
Tecnológico (CNPq) (INCTAA No. 465768/2014-8).

References

AMERICAN ASSOCIATION OF CEREAL CHEMISTS – AACC, 1999. 
AACC 39-00.01: near-infrared methods: guidelines for model 
development and maintenance. Minnesota: AACC Press.

BRASIL. Agência Nacional de Vigilância Sanitária – ANVISA, 2011. 
Resolução n° 7, de 2011. Dispõe sobre limites máximos tolerados 
(LMT) para micotoxinas em alimentos. Diário Oficial da República 
Federativa do Brasil, Brasilia, 18 fev. Seção 1, p. 66.

CAPORASO, N., WHITWORTH, M.B. and FISK, I.D., 2018. Near-Infrared 
spectroscopy and hyperspectral imaging for non-destructive 
quality assessment of cereal grains. Applied Spectroscopy 
Reviews, vol. 53, no. 8, pp. 667-687. http://doi.org/10.1080/05
704928.2018.1425214.

CLAEYS, L., ROMANO, C., DE RUYCK, K., WILSON, H., FERVERS, B., 
KORENJAK, M., ZAVADIL, J., GUNTER, M.J., DE SAEGER, S., DE 
BOEVRE, M. and HUYBRECHTS, I., 2020. Mycotoxin exposure 
and human cancer risk: A systematic review of epidemiological 
studies. Comprehensive Reviews in Food Science and Food Safety, 
vol. 19, no. 4, pp. 1449-1464. http://doi.org/10.1111/1541-
4337.12567. PMid:33337079.

DARREN, J., MURPHY, B.B., MICHAEL, D., TOMAS, C. and MICHAEL, 
D.M., 2022. A near infrared spectroscopy calibration for the 
prediction of fresh grass quality on Irish pastures. Information 
Processing in Agriculture, vol. 9, pp. 243-253. http://doi.
org/10.1016/j.inpa.2021.04.012.

DE GÉA NEVES, M., POPPI, R.J. and BREITKREITZ, M.C., 2022. 
Authentication of plant-based protein powders and classification 

of adulterants as whey, soy protein, and wheat using FT-NIR 
in tandem with OC-PLS and PLS-DA models. Food Control, vol. 
132, pp. 108489. http://doi.org/10.1016/j.foodcont.2021.108489.

ERENSTEIN, O., JALETA, M., SONDER, K., MOTTALEB, K. and 
PRASANNA, B.M., 2022. Global maize production, consumption 
and trade: trends and R&D implications. Food Security, vol. 14, no. 
5, pp. 1295-1319. http://doi.org/10.1007/s12571-022-01288-7.

FEMENIAS, A., GATIUS, F., RAMOS, A.J., SANCHIS, V. and MARÍN, 
S., 2020. Use of hyperspectral imaging as a tool for Fusarium 
and deoxynivalenol risk management in cereals: a review. 
Food Control, vol. 108, pp. 106819. http://doi.org/10.1016/j.
foodcont.2019.106819.

FENG, L., ZHU, S., LIU, F., HE, Y., BAO, Y. and ZHANG, C., 2019. 
Hyperspectral imaging for seed quality and safety inspection: a 
review. Plant Methods, vol. 15, no. 1, pp. 91. http://doi.org/10.1186/
s13007-019-0476-y. PMid:31406499.

FIRRAO, G., TORELLI, E., GOBBI, E., RARANCIUC, S., BIANCHI, G. 
and LOCCI, R., 2010. Prediction of milled maize fumonisin 
contamination by multispectral image analysis. Journal of Cereal 
Science, vol. 52, no. 2, pp. 327-330. http://doi.org/10.1016/j.
jcs.2010.06.017.

FREITAG, S., SULYOK, M., LOGAN, N.T.C. and KRSKA, E.R., 2022. The 
potential and applicability of infrared spectroscopic methods for 
the rapid screening and routine analysis of mycotoxins in food 
crops. Comprehensive Reviews in Food Science and Food Safety, 
vol. 21, pp. 5199-5224. http://doi.org/10.1111/1541-4337.13054

HAALAND, D.M. and THOMAS, E.V., 1988. Partial least-squares 
methods for spectral analyses. 1. Relation to other quantitative 
calibration methods and the extraction of qualitative 
information. Analytical Chemistry, vol. 60, no. 11, pp. 1193-1202. 
http://doi.org/10.1021/ac00162a020.

JIA, B., WANG, W., NI, X.Z., CHU, X., YOON, S.C. and LAWRENCE, K.C., 
2020. Detection of mycotoxins and toxigenic fungi in cereal 
grains using vibrational spectroscopic techniques: a review. 
World Mycotoxin Journal, vol. 13, no. 2, pp. 163-178. http://doi.
org/10.3920/WMJ2019.2510.

KENNARD, R.W. and STONE, L.A., 1969. Computer aided design of 
experiments. Technometrics, vol. 11, no. 1, pp. 137-148. http://
doi.org/10.1080/00401706.1969.10490666.

KHODAEI, K., JAVANMARDI, F. and KHANEGHAH, A.M., 2021. The 
global overview of the occurrence of mycotoxins in cereals: a 
three-year survey. Current Opinion in Food Science, vol. 39, pp. 
36-42. http://doi.org/10.1016/j.cofs.2020.12.012.

KIM, Y.K., BAEK, I., LEE, K.M., KIM, G., KIM, S., KIM, S.Y., CHAN, D., 
HERRMAN, T.J., KIM, N. and KIM, M.S., 2023. Rapid detection 
of singleand co-contaminant aflatoxins and fumonisins in 
ground maize using hyperspectral imaging techniques. Toxins, 
vol. 15, no. 7, pp. 472. http://doi.org/10.3390/toxins15070472. 
PMid:37505741.

LAUBSCHER, A., ROSE, L.J. and WILLIAMS, P.J., 2023. Determination 
of potential absorbance bands of fumonisin B1 in methanol 
with near infrared spectroscopy. Journal of Near Infrared 
Spectroscopy, vol. 31, no. 4, pp. 211-223. http://doi.
org/10.1177/09670335231183098.

LÓPEZ, M.G., GARCÍA-GONZÁLEZ, A.S. and FRANCO-ROBLES, 
E., 2017. Carbohydrate analysis by NIRS-chemometrics. 
In: K. KONSTANTINOS and J. SKVARIL, eds. Developments 
in near-infrared spectroscopy. London: InTech. http://doi.
org/10.5772/67208.

PARRAG, V., GILLAY, Z., KOVÁCS, Z., ZITEK, A., BÖHM, K., 
HINTERSTOISSER, B., KRSKA, R., SULYOK, M., FELFÖLDI, J., 
FIRTHA, F. and BARANYAI, L., 2020. Application of hyperspectral 
imaging to detect toxigenic Fusarium infection on cornmeal. 

https://doi.org/10.1080/05704928.2018.1425214
https://doi.org/10.1080/05704928.2018.1425214
https://doi.org/10.1111/1541-4337.12567
https://doi.org/10.1111/1541-4337.12567
https://pubmed.ncbi.nlm.nih.gov/33337079
https://doi.org/10.1016/j.inpa.2021.04.012
https://doi.org/10.1016/j.inpa.2021.04.012
https://doi.org/10.1016/j.foodcont.2021.108489
https://doi.org/10.1007/s12571-022-01288-7
https://doi.org/10.1016/j.foodcont.2019.106819
https://doi.org/10.1016/j.foodcont.2019.106819
https://doi.org/10.1186/s13007-019-0476-y
https://doi.org/10.1186/s13007-019-0476-y
https://pubmed.ncbi.nlm.nih.gov/31406499
https://doi.org/10.1016/j.jcs.2010.06.017
https://doi.org/10.1016/j.jcs.2010.06.017
https://doi.org/10.1111/1541-4337.13054
https://doi.org/10.1021/ac00162a020
https://doi.org/10.3920/WMJ2019.2510
https://doi.org/10.3920/WMJ2019.2510
https://doi.org/10.1080/00401706.1969.10490666
https://doi.org/10.1080/00401706.1969.10490666
https://doi.org/10.1016/j.cofs.2020.12.012
https://doi.org/10.3390/toxins15070472
https://pubmed.ncbi.nlm.nih.gov/37505741
https://pubmed.ncbi.nlm.nih.gov/37505741
https://doi.org/10.1177/09670335231183098
https://doi.org/10.1177/09670335231183098
https://doi.org/10.5772/67208
https://doi.org/10.5772/67208


Brazilian Journal of Biology, 2024, vol. 84, e277974 7/7

Determination of fumonisin content in maize using near-infrared hyperspectral imaging (NIR-HSI)

Progress in Agricultural Engineering Sciences, vol. 16, no. 1, pp. 
51-60. http://doi.org/10.1556/446.2020.00009.

PASQUINI, C., 2018. Near infrared spectroscopy: a mature analytical 
technique with new perspectives—a review. Analytica Chimica 
Acta, vol. 1026, pp. 8-36. http://doi.org/10.1016/j.aca.2018.04.004. 
PMid:29852997.

RAMBO, M.K.D., FERREIRA, M.M.C., MELO, P.M., SANTANA JUNIOR, 
C.C., BERTUOL, D.A. and RAMBO, M.C.D., 2020. Prediction of 
quality parameters of food residues using NIR spectroscopy 
and PLS models based on proximate analysis. Food Science and 
Technology, vol. 40, no. 2, pp. 444-450. http://doi.org/10.1590/
fst.02119.

STASIEWICZ, M.J., FALADE, T.D., MUTUMA, M., MUTIGA, S.K., 
HARVEY, J.J.W., FOX, G., PEARSON, T.C., MUTHOMI, J.W. and  
NELSON, R.J., 2017. Multi-spectral kernel sorting to reduce 
aflatoxins and fumonisins in Kenyan maize. Food Control, vol. 
78, pp. 203-214. http://doi.org/10.1016/j.foodcont.2017.02.038.

TYSKA, D., MALLMANN, A.O., VIDAL, J.K., ALMEIDA, C.A.A.D., 
GRESSLER, L.T. and MALLMANN, C.A., 2021. Multivariate method 
for prediction of fumonisins B1 and B2 and zearalenone in 
Brazilian maize using Near Infrared Spectroscopy (NIR). PLoS 
One, vol. 16, no. 1, e0244957. http://doi.org/10.1371/journal.
pone.0244957. PMid:33412558.

WANG, W., HEITSCHMIDT, G.W., NI, X., WINDHAM, W.R., HAWKINS, 
S. and CHU, X., 2014. Identification of aflatoxin B1 on maize 
kernel surfaces using hyperspectral imaging. Food Control, vol. 
42, pp. 78-86. http://doi.org/10.1016/j.foodcont.2014.01.038.

WILLIAMS, P.J., GELADI, P., BRITZ, T.J. and MANLEY, M., 2012. 
Investigation of fungal development in maize kernels using 
NIR hyperspectral imaging and multivariate data analysis. 
Journal of Cereal Science, vol. 55, no. 3, pp. 272-278. http://doi.
org/10.1016/j.jcs.2011.12.003.

WORKMAN, J., 2021. Spectral interpretation. In: E.W. CIURCZAK, 
B. IGNE, J. WORKMAN JUNIOR and D.A. BURNS, eds. Handbook 
of near-infrared analysis. Boca Raton: CRC Press. http://doi.
org/10.1201/b22513-5.

XING, F., YAO, H., LIU, Y., DAI, X., BROWN, R.L. and BHATNAGAR, D., 
2019. Recent developments and applications of hyperspectral 
imaging for rapid detection of mycotoxins and mycotoxigenic fungi 
in food products. Critical Review Food Science and Nutrition, vol. 
59, pp. 173-180. http://doi.org/10.1080/10408398.2017.1363709.

YANG, Y., REN, M., XU, X., HAN, Y., ZHAO, X., LI, C. and ZHAO, Z., 
2022. Recent advances in simultaneous detection strategies 
for multi-mycotoxins in foods. Critical Reviews in Food Science 
and Nutrition, vol. 64, no. 12, pp. 3932-3960. http://doi.org/1
0.1080/10408398.2022.2137775. PMid:36330603.

https://doi.org/10.1556/446.2020.00009
https://doi.org/10.1016/j.aca.2018.04.004
https://pubmed.ncbi.nlm.nih.gov/29852997
https://pubmed.ncbi.nlm.nih.gov/29852997
https://doi.org/10.1590/fst.02119
https://doi.org/10.1590/fst.02119
https://doi.org/10.1016/j.foodcont.2017.02.038
https://doi.org/10.1371/journal.pone.0244957
https://doi.org/10.1371/journal.pone.0244957
https://pubmed.ncbi.nlm.nih.gov/33412558
https://doi.org/10.1016/j.foodcont.2014.01.038
https://doi.org/10.1016/j.jcs.2011.12.003
https://doi.org/10.1016/j.jcs.2011.12.003
https://doi.org/10.1201/b22513-5
https://doi.org/10.1201/b22513-5
https://doi.org/10.1080/10408398.2017.1363709
https://doi.org/10.1080/10408398.2022.2137775
https://doi.org/10.1080/10408398.2022.2137775
https://pubmed.ncbi.nlm.nih.gov/36330603

