Open-access Baru (Dipteryx alata): uma revisão abrangente do seu valor nutricional, alimentos funcionais, composição química, etnofarmacologia, atividades farmacológicas e benefícios para a saúde humana

bjb Braz J Biol Brazilian Journal of Biology Braz. J. Biol. 1519-6984 1678-4375 Instituto Internacional de Ecologia Resumo O baru (Dipteryx alata Vogel), Fabaceae, é reconhecido como uma espécie brasileira de ampla distribuição, e suas amêndoas e polpa ganharam destaque comercial devido ao seu valor nutricional. Todas as partes do baru são importantes para o meio ambiente e são utilizadas por comunidades tradicionais no tratamento de várias doenças. Esta revisão fornece uma visão abrangente e atualizada da composição nutricional, aplicações alimentares humanas, usos etnofarmacológicos e propriedades químicas e biológicas de Dipteryx alata, “baru”. Este estudo seguiu as recomendações da metodologia Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Estudos foram buscados nas bases de dados Medline (PubMed), Scopus, SciELO e ScienceDirect usando os descritores “Dipteryx alata” OU “baru nut” OU “baru almond” OU “cumaru” OU “Coumarouna”. Os critérios de exclusão incluíram artigos duplicados, artigos de revisão, relatos de casos, comunicações breves, documentos de conferências, acesso incompleto ao texto e artigos não relacionados ao objetivo desta revisão. A busca inicial resultou em 822 artigos, dos quais 127 atenderam aos critérios de inclusão. A amêndoa foi a parte mais extensivamente estudada (59,8%), enquanto as folhas receberam menos atenção (1,6%). A amêndoa de baru é uma fonte rica em proteínas (19 a 30 g.100 g-1), ácidos graxos insaturados (75 a 81%) e aminoácidos essenciais, enquanto a polpa é rica em carboidratos (22,5 a 75,4%), fibra alimentar (4,4 a 41,6 g.100 g-1) e vitamina C (113,48 e 224,5 mg.100 g-1). Compostos fenólicos foram os principais metabólitos, com um maior conteúdo na amêndoa (3,1 a 1.306,34 mg GAE g-1) do que na polpa (186 a 477 mg GAE g-1). Terpenos também foram detectados na amêndoa, polpa e casca. A atividade biológica mais avaliada foi a atividade antioxidante (n = 32,1%), seguida pelos efeitos sobre o estresse oxidativo (n = 12,5%). Portanto, o destaque para o cultivo de baru e a bioprospecção poderiam beneficiar a nutrição e a saúde humana, fortalecer a agricultura familiar em várias regiões do país e favorecer o alcance da Fome Zero e Agricultura Sustentável e Saúde e Bem-Estar na Agenda 2030 da ONU para os Objetivos de Desenvolvimento Sustentável. 1. Introduction The Cerrado is the second largest biome in South America (which encompasses 15 states), occupying an area of approximately 25% of the Brazilian territory, and has the second greatest biodiversity richness (Brasil, 2024a). It is considered a global hotspot (areas particularly rich in species) and has vast social importance (Brasil, 2024b). Many populations, such as indigenous people, quilombolas, riverine dwellers, and floodplains, use their natural resources for food, medicinal purposes, local survival, and income generation. Together, these communities are part of the Brazilian historical and cultural heritage and hold traditional knowledge of local biodiversity (Brasil, 2024b). The exchange of knowledge that has taken place for decades between indigenous, riverside, and descendant peoples from the northeast, north, and south regions of Brazil has made the microregion north of Araguaia, Mato Grosso, Brazil, a source of ethnocultural diversity and propagation of traditional knowledge (Ribeiro et al., 2017). In this context, Dipteryx alata Vogel., Fabaceae, is a leguminous native plant to the Brazilian Cerrado that is popularly known as “baru” or “cumaru” (Carvalho et al., 2022; ITIS Catalogue of Life, 2019). It is a fruit tree that can reach more than 25 meters in height, and fruit production per tree can reach up to 5 thousand units (Sano et al., 2016; Rinaldi et al., 2021). Leaves promote an increase in organic matter in the soil due to the high level of nitrogen, and baru wood is utilized in civil construction (Bispo and Braga, 2021). Souza et al. (2023) underscore the positive impact of the symbiotic relationship between arbuscular mycorrhizal fungi and baru, enhancing both biomass production and seedling quality, thus highlighting baru's potential for forest recovery (Bispo and Braga, 2021). Baru (bark, stem, leaves, fruits, and seed) is used by microregion Norte do Araguaia and traditional communities of other regions in Brazil for various applications in human food (Ferreira et al., 2020a; Rojas et al., 2019), extractive income sources, forest recovery (Bispo and Braga, 2021), and traditional medicine (Ribeiro et al., 2017; Bueno et al., 2020; Guimarães et al., 2022; Paim et al., 2023). The present review discusses the nutritional value and traditional uses of the bark, stem, leaves, fruits, and almond of D. alata. Encouraging the use of this plant could benefit human nutrition and health and strengthen family farming in various regions of the country. A bibliographical survey of the phytochemical composition and biological activities of this plant is also presented to better understand its potential for use and perspectives for future applications. 2. Materials and Methods 2.1. Search strategy This review followed the recommendations of the methodology Preferred Reporting Items for Systematic reviews and Meta-Analyses - PRISMA. The flow diagram for data collection was described in Scheme 1. The review was performed by two independent evaluators (J.M.D.S. and J.A.T.B.) in the Medline (PubMed), Scopus, Scielo, and ScienceDirect databases using the descriptors “Dipteryx alata” OR “baru nut” OR “baru almond” OR “cumaru” OR “Coumarouna”, during May and July 2023. No restrictions on language or date were made. All selected studies were imported into the Mendeley reference manager. Scheme 1 Identification of eligible studies for this review (PRISMA, 2020 flow diagram). 2.2. Eligibility, exclusion, and inclusion criteria Exclusion criteria were: i) review articles; ii) case reports, short communication, and conference documents; iii) incomplete text access, and iv) not related to the goal articles (e.g.: agriculture). Inclusion criteria were: i) original studies covering one or more of the goals: nutritional value and application on human food, ethnopharmacological use, chemical composition, and biological properties of D. alata Vogel; ii) studies published in journals with a rigorous peer review, and iii) books published online. 2.3. Study selection and data collection process Two independent reviewers (J.M.D.S., J.A.T.B, and S.M.D.S.) performed an initial screening. Duplicates were excluded. Then, the title and abstract were read to apply the exclusion criteria. In case of discrepancies, a third evaluator (A.S.N.F.) judged the inclusion or exclusion of the study. Furthermore, articles found by a manual search performed in the reference list of the selected studies were included in this review. After reading each article in full (J.M.D.S; R.M.M.F.S.; V.D.K; A.S.N.F.), the studies were included in this review if they met one or more of the inclusion criteria. At the end of the selection, all articles were organized in Microsoft Excel software, by date of publication, descending (J.M.D.S and V.D.K). 2.4. Studies included Scheme 1 summarizes the study selection strategy. The initial electronic database se-arch yielded 822 results. After removing duplicates (n = 276) and inaccessible text (n = 01), a total of 545 records were screened by title and abstract. After applying the exclusion criteria (n = 443), 102 records were eligible. Additionally, the manual bibliography yielded 25 records, totalling 127 studies. All the included articles with titles, authors, publication years, and collection sites are detailed in Table S1 in the supplementary material. 3. Results and Discussion 3.1. Distribution of studies by collection site We observed that all the articles were performed with plants collected in Brazil. The main baru collection site was in the state of Goiás (41.73%), followed by Mato Grosso (13.39%), Mato Grosso do Sul (11.81%), Minas Gerais (7.87%), Tocantins (7.09%), and Distrito Federal (5.51%). The least sought-after locations were São Paulo (3.15%) and Paraná (0.79%). In addition, one study compared more than one state (0.79%), and 7.87% of the studies did not report the collection site or reported the species in general. Furthermore, the most studied part of the plant was the almond, while the leaves were the least studied (Figure 1). Figure 1 Number of articles included by plant part. 3.2. Taxonomy, botanical aspects, and distribution Dipteryx alata Vogel, basionym Dipteryx pterota Benth, Dipteryx pteropus Mart., Coumarouna alata (Vogel) Taub., and Cumaruna alata (Vogel) Kuntze, is commonly known as “baru”, “baruzeiro”, “barujó”, “coco-feijão”, “cumaru”, “cumaruna”, “cumarurana”, “cambaru”, and “almendro” (Carvalho et al., 2022; Tropicos, 2022; Bueno et al., 2020; ITIS Catalogue of Life, 2019). The scientific classification (I) class: Equisetopsida C. Agardh; (II) subclass: Magnoliidae Novák ex Takht.; (III) superorder: Rosanae Takht.; (IV) order: Fabales Bromhead; (V) family: Fabaceae Lindl.; (VI) subfamily: Papilionoideae; (VII) tribe: Dipterygeae; (VIII) genus: Dipteryx Schreb., and (IX) species: Dipteryx alata Vogel (The Plant List, 2013; Tropicos, 2022). Baru is a fruit tree (Figure 2) that can reach more than 25 meters in height. The stem can be smooth or irregularly shaped, with scaling plaques that are light grey or cream in colour. The leaves alternate, except for the primordial leaves, compound pinnate, petiolate, without stipules, and winged rachis, which give rise to the species name. The number of leaflets can vary from 7 to 12, and they can be alternate or subopposite, subsessile, or with a petiole up to 2 mm long. The panicle-like inflorescence is formed at the terminal part of the branches and in the axils of the upper leaves, with approximately 200 to 1000 flowers; valve bracts with translucent pits are deciduous before anthesis. The flowers are hermaphroditic. The fruit is of the drupe type, ovoid, slightly flattened, and brown in colour, with no change in colour when ripe. It is approximately 3 to 6 cm long. The endocarp is woody and hard and darker in colour than the fibrous mesocarp. There is a single almond per fruit, rarely more than one. The almonds are ellipsoidal, yellowish-brown, or reddish to almost black, occasionally with darker spots or transverse slits highlighted by lighter cotyledons. They are approximately 2.5 cm in length and 1.0 cm in width, with masses between 1 and 1.2 g and a harder consistency than roasted peanuts. These characteristics may be variable between trees but are uniform across a tree (Sano et al., 2016; Rinaldi et al., 2021). Figure 2 Baru (Dipteryx alata Vogel). Tree, bark, leaves, flowers, pulp, and almonds. Original images from Santos, J.M. Baru is a native plant from Bolivia, Paraguay, Peru and Brazil (ITIS Catalogue of Life, 2019). In Brazil, it is found in the states of Rondônia, Tocantins, Bahia, Maranhão, Minas Gerais, São Paulo, Goias, Mato Grosso, and Mato Grosso do Sul and is considered a fast-growing plant that requires few nutrients from the soil, developing well in ciliary forests or Gallery, seasonal semideciduous forests, and the Amazon Savanna (Carvalho et al., 2022). Baru trees have favourable characteristics for planting, such as high germination and seedling survival rates (Sano et al., 2016). This species is sensitive to postflooding stress, and although it can adjust and recover its metabolic characteristics (after 100 days) after water stress, the quality of the seedlings does not recover (Linné et al., 2021). Furthermore, baru has the ability to form symbiotic relationships with mycorrhizal fungi, contributing positively to biomass production and seedling quality (Souza et al., 2023). This species has a long flowering period, occurring from November to February, during the rainy season. Its fruits ripen when the tree is almost leafless, from July to October, varying from year to year and by location. The physiological maturation of the seed occurs at the beginning of fruit and leaf fall (Sano et al., 2016). Although Sano et al. (2016) claim that fruit production per tree can reach up to 5 thousand units, production may vary by region and year, as reported by Rinaldi et al. (2021), who reported a production of fewer than 2 thousand fruits. In this context, the characteristics of sustainable exploitation and dependence on seasonal production cause economic devaluation (Egea and Takeuchi, 2020). 3.3. Nutritional value of baru almond and pulp Baru almond is consumed in human food and has high nutritional value because it is rich in proteins, total lipids, and several minerals. Macronutrients such as carbohydrates, proteins, and fats are essential for the body's structure and operation. They provide energy through oxidation, generating adenosine triphosphate (ATP) along with carbon dioxide and water as byproducts. ATP serves as the cell's primary energy currency. Carbohydrates are broken down into glucose, the main energy source. Proteins, which are composed of amino acids, contribute to muscle building. Lipids are crucial for cell membrane structure and function, aid in fat-soluble vitamin absorption, and serve as the body's primary long-term energy storage (Matthewman and Costa-Pinto, 2022). In this sense, previous studies characterized the proximal composition of baru almonds (Table 1). The carbohydrate content of the raw almond (15 to 37%) was greater than that of the roasted almond (9 to 29%). Studies have reported that the carbohydrate content of raw almond is up to two times greater of one study (Campidelli et al., 2019) to another (Siqueira et al., 2015) and two to three times greater than that of roasted almond. According to Campidelli et al. (2019) and Oliveira-Alves et al. (2020), the sum of the values of the proximal component was greater than 100, and the value of dietary fiber was not subtracted from the carbohydrate content. Gonçalves et al., and Filbido (2020) reported a low lipid content (24.2 g.100-1), and the carbohydrate content differed. In these cases, the adjusted carbohydrate content would be similar to that in other studies (Table 1). Table 1 Proximal composition of baru almonds. Content (%) Raw almonds Roasted almonds Moisture 6.63 ± 2.31 9.9 ± 0.1 7.38 ± 0.19 3.99 6.10 ± 0.20 5.80 2.07 ± 0.03 2.17 ± 0.10 3.20 ± 0.04 6.8 ± 0.10 3.17 ± 0.11 3.58 ± 0.24 1.98 ± 0.23 3.49 ± 0.08 Protein 22.96 ± 0.32 21.3 ± 0.1 19.72 ± 0.11 26.25 23.9 ± 0.60 23.45 24.95 ± 0.68 24.30 ± 0.30 27.06 ± 0.08 22.9 ± 0.20 28.94 ± 0.30 30.92 ± 1.10 27.96 ± 0.53 29.92 ± 0.37 Lipid 31.73 ± 2.09 36.3 ± 1.4 38.37 ± 0.07 33.28 38.20 ± 0.40 41.65 41.69 ± 1.21 24.20 ± 0.30 45.80 ± 0.05 40.6 ± 1.10 42.40 ± 0.65 41.25 ± 1.72 42.69 ± 1.69 41.95 ± 0.44 Carbohydrate % 37.13 ± 0.54 18 ± 1.0 19.47 ± 0.22 - 15.80 ± 0.60 23.02 - 29.40 ± 0.50 20.71 ± 0.02 11.0 ± 1.0 10.79 9.20 ± 1.61 10.03 12.25 Dietary fiber 14.44 ± 0.98 12 ± 0.4 12.60 ± 0.30 - 13.40 ± 0.30 - - 16.60 ± 0.40 6.10 ± 0.09 16.0 ± 1.0 11.70 ± 0.20 12.08 ± 1.44 14.26 ± 0.13 9.21 ± 0.21 Soluble fiber - - - - 2.50 ± 0.20 - - - - - 2.40 ± 0.10 1.31 0.90 2.03 Insoluble fiber - - - - 10.90 ± 0.30 - - - - - 9.30 ± 0.10 10.77 13.35 ± 0.17 7.18 Ash 1.55 ± 0.30 2.7 ± 0.1 2.46 ± 0.43 - 2.70 ± 0.06 2.85 3.10 ± 0.17 3.06 ± 0.10 3.24 ± 0.03 3.1 ± 0.0 3.01 ± 0.04 2.98 ± 0.90 3.08 ± 0.25 3.18 ± 0.01 Energy (Kcal.100 g-1) - 483 ± 1.0 502 ± 0.22 - 502 ± 3.00 561 - - 603 ± 0.07 501 ± 9.0 574 ± 6.15 531 ± 12.50 536 546 Minerals (mg.100 g-1) Calcium 240 ± 0.49 - 88 ± 3.00 300 140 ± 4.00 82 638 - - - - 129 ± 9.42 - 110 ± 1.36 Copper 2.8 ± 0.64 - 1.00 ± 0.04 1.67 1.45 ± 0.06 1.08 0.96 1.80 ± 0.10 - - - - - - Iron 6.5 ± 0.10 - 3.00 ± 0.30 19.81 4.24 ± 0.08 5.35 9.53 8.65 ± 0.60 - - - 3.18 ± 0.15 - 3.57 ± 0.09 Magnesium 330 ± 0.67 - 107 ± 3.00 130 178 ± 3.00 143 200 8.85 ± 0.20 - - - - - 164.81 ± 1.29 Selenium - - - - - - - - - - 0.26 ± 0.03 - - - Sodium - - 2.00 ± 0.02 - - 3.30 - - - - - 9.83 ± 2.74 - 7.46 ± 1.51 Zinc - - 2.00 ± 0.10 2.36 4.1 ± 0.10 1.04 2.26 4.83 ± 0.30 - - 6.74 ± 0.04 3.46 ± 0.48 - 4.29 ± 0.16 Potassium 1810 ± 0.69 - - 920 827 ± 46.00 811 943 - - - - - - 980.35 ± 5.31 Phosphor - - - 730 358 ± 6.00 317 331 - - - - - - 832.80 ± 2.66 Reference Campidelli et al. (2019) Santiago et al. (2018) Cruz et al. (2011) Vera et al. (2009) Takemoto et al. (2001) Vallilo et al. (1990) Lima et al. (2021a) Gonçalves et al., and Filbido (2020) Oliveira-Alves et al. (2020) Santiago et al. (2018) Fernandes et al. (2015) Czeder et al. (2012) Freitas et al. (2012) Cardoso et al. (2016) (-) not determined. A high protein content in baru almonds (19 to 30 g.100 g-1) has been reported (Table 1). In comparison with other seeds, the protein content in baru almonds is higher than that in Brazil nuts (16 g.100 g-1) (Cardoso et al., 2016) and similar to that in cashew nuts (23 g.100 g-1) and peanuts (32 g.100 g-1) (Freitas et al., 2012). In addition, baru almond showed a high in vitro digestibility relative to that of casein, with higher levels of globulins (61.7%), albumin (14%), and globulin (3.3%) (Cruz et al., 2011). In contrast to the findings of most studies, Gonçalves et al., and Filbido (2020) reported that the lower lipid content of roasted almond (24 g.100-1) (Table 1) may be related to the use of the Goldfish method, since other studies that showed superior lipid content used Soxhlet or Bligh & Dyer for the determination of lipids (Fernandes et al., 2015; Santiago et al., 2018; Oliveira-Alves et al., 2020). Furthermore, the lipid content (24 to 45 g.100 g-1) and total energy (458 to 603 Kcal.100 g-1) in baru almonds were lower than those in Brazil nuts (67 g.100 g-1; 714 Kcal.100 g-1) (Cardoso et al., 2016) and pequi almonds (50 g.100 g-1; 570 Kcal.100 g-1) (Cruz et al., 2011). Consequently, almonds are less caloric than these oilseeds. The dietary fiber content in almond is high (6 to 16 g.100 g-1), especially insoluble fiber (7 to 13 g.100 g-1) (Table 1). The reported values were similar between studies, except for Oliveira-Alves et al. (2020), who reported a lower dietary fiber content (6.1 g.100 g-1), although the analysis method was the same as that used in other studies. Moreover, almond had a greater dietary fiber content than other oilseeds, such as cashew nuts (3 to 6 g.100 g-1) and peanuts (5 to 10 g.100 g-1) (Sousa et al., 2011; Freitas et al., 2012). Dietary fibers are complex carbohydrates that resist breakdown by the body's internal enzymes in the small intestine, thus not contributing to energy intake. Fibers offer various health advantages, such as lowering the chances of cardiovascular disease and promoting stool bulkiness and softness (Matthewman and Costa-Pinto, 2022). The proximal composition of baru pulp has also been studied (Table 2). Baru pulp is rich in carbohydrates (22.5 to 75.4%) and dietary fiber (4.4 to 41.6 g.100 g-1) (Table 2). When the carbohydrate content was higher (75.4%), this difference was indirectly detected (Almeida et al., 2019). This is the case, as the adjusted values of carbohydrate content would be similar between studies. Table 2 Proximal composition of baru pulp. Content Peel Pulp Peel and pulp Moisture % 16.30 ± 0.40 14.11 ± 0.02 10.28 ± 0.39 20.84 ± 0.16 19.30 ± 0.28 17.1 ± 0.40 14.90 ± 0.10 20.00 ± 0.09 13.76 ± 0.57 24.45 ± 0.18 20.23 9.64 ± 0.17 21.05 ± 0.05 Protein % 2.50 ± 0.10 10.05 ± 0.37 8.84 ± 0.22 15.60 ± 0.24 6.72 ± 0.13 5.00 ± 0.70 3.20 ± 0.10 5.60 ± 0.30 4.17 ± 0.70 5.88 ± 0.10 5.00 3.19 ± 0.47 4.45 ± 0.06 Lipid % 2.70 ± 0.20 1.79 ± 0.01 3.54 ± 0.08 4.40 ± 0.09 3.00 ± 0.10 0.90 ± 0.10 3.70 ± 0.10 3.10 ± 0.03 3.73 ± 0.14 3.57 ± 0.10 4.13 4.82 ± 0.67 3.30 ± 0.26 Carbohydrates % 51.50 ± 0.70 70.05 ± 0.09 39.87 ± 0.42 55.29 ± 0.45 67.44 ± 0.22 75.40 ± 0.80 57.00 ± 2.0 63.19 ± 0.05 54.90 22.50 - 77.43 ± 0.40 65.01 ± 0.19 Glucose - - 6.32 ± 0.70 - - - - 5.90 ± 0.65 - - 23.09 - - Sucrose - - - - - - - 30.91 ± 0.50 - - 7.71 - - Fructose - - 7.76 ± 0.82 - - - - 22.50 ± 0.22 - - - - - Starch - - - 25.10 ± 0.34 - - - - - - 32.38 - - Dietary fiber 24.10 ± 0.50 - 32.90 ± 0.42 6.32 ± 0.31 - - 18.00 ± 2.0 4.61 ± 0.40 19.10 ± 0.20 41.60 ± 0.10 5.71 - 4.39 ± 0.16 Soluble fiber - - <0.10 - - - - - - 2.10 ± 0.17 - - - Insoluble fiber - - 32.90 ± 0.42 - - - - - - 39.50 ± 0.20 - - - Ash 2.90 ± 0.10 - 4.56 ± 0.03 - 3.54 ± 0.04 1.80 ± 0.10 3.10 ± 0.10 3.50 ± 0.03 4.34 ± 0.30 2.00 ± 0.06 1.70 4.44 ± 0.16 1.79 ± 0.01 Energy (Kcal.100 g-1) 240 ± 3.00 336.49 ± 0.94 226.73 ± 1.73 322.30 323 ± 0.47 328 ± 2.00 276 ± 6.00 - 269 145.65 310 366 - Minerals (mg.100 g-1) - Calcium - - - - - - - - - - 75.20 115.88 ± 6.97 - Copper - - - - - - - - - 3.54 3.38 ± 0.39 - Iron - - - - - - - - - - 5.94 3.59 ± 1.39 - Magnesium - - - - - - - - - - 3.90 80.00 ± 7.50 Sodium - - - - - - - - - - 1.74 - - Zinc - - - - - - - - - - 1.08 8.75 ± 1.70 - Potassium - - - - - - - - - - 572 1187 ± 272.0 - Phosphor - - - - - - - - - 82.20 113.63 ± 6.19 - Reference Santiago et al. (2018) Viana et al. (2023) Alves-Santos et al. (2023) Silva et al. (2021a) Silva et al. (2021b) Almeida et al. (2019) Santiago et al. (2018) Araujo et al. (2013) Alves et al. (2010) Lima et al. (2010) Vallilo et al. (1990) Silva et al. (2019) Rocha and Cardoso Santiago (2009) (-) not determined. Pulp is a source of several sugars, such as glucose, sucrose, and starch. However, the content differed between studies (Table 2). This variation between studies may be associated with the different regions of fruit origin (Vallilo et al., 1990; Silva et al., 2021b) and the fact that Vallilo et al. (1990) evaluated the starch content by difference. Considering the low number of articles, further studies are needed to determine which sugars are present in pulp and their respective amounts. The lower lipid content in the pulp (0.90 ± 0.10 g.100 g-1) (Almeida et al., 2019) may be associated with the different methods used to analyse the lipids, such as the AOAC (method 920.39) versus the methods of Bligh & Dyer chosen by the other two studies (Santiago et al., 2018; Silva et al., 2021b) (Table 2). The relatively high dietary fiber content in the pulp and peel makes the baru an interesting source, especially insoluble fiber. However, the dietary fiber contents have diverged among studies (Table 2). This variation may be related to the local collection and maturation of the pulp. In addition, the dietary fiber in pulp (4 to 40%) is greater than that in other Cerrado fruits, such as cagaita (1.56%), buriti (2.65%), araçá (9.30%), and yellow mombin (15.23%) (Schiassi et al., 2018). The intake of approximately 21 to 38% of daily dietary fiber is recommended for the maintenance of health at different stages of life (IOM, 2011). In Brazil, the daily reference value for dietary fiber consumption is 25 g.100 g-1 of food (Brasil, 2020). Thus, baru pulp is an ideal option for supporting the adequate consumption of dietary fiber. Pulp is a good source of energy (Table 2). Compared with those of the other Cerrado fruits, the total energy of baru was greater (145 to 366 Kcal.100 g-1) than that of araçá (38 Kcal.100 g-1), cagaita (39 Kcal.100-1), yellow mombin (53 Kcal.100 g-1), mangaba (67 Kcal.100 g-1) buriti (93 Kcal.100 g-1), marolo (113 Kcal.100 g-1) (Schiassi et al., 2018), and macauba (258 Kcal.100 g-1) (Almeida et al., 2019). Although baru almond and pulp exhibit distinct nutritional compositions, both serve as sources of essential nutrients and energy; the almond is rich in lipids, proteins, and essential amino acids, while the pulp is rich in dietary fibers, sugars, and vitamin C. In this regard, baru is considered a sociobiodiverse species with nutritional value, and its acquisition in the National School Feeding Program is encouraged by public policies (Brasil, 2021a, 2023) (Figure 3). Figure 3 Amount of essential nutrients (grams.100 g-1) and energy (kilocalories.100 g-1) in baru almond and pulp. 3.4. Vitamins in almond and pulp Studies have detected ascorbic acid and tocopherol in almond (Fiorini et al., 2017; Gonçalves et al., and Filbido, 2020; Campidelli et al., 2020a) and ascorbic acid in pulp (Leite et al., 2020; Silva et al., 2021a). The ascorbic acid content in the pulp (113.48 and 224.5 mg.100 g-1) (Almeida et al., 2019; Leite et al., 2020) was greater than that in the raw (18.80 and 39 mg.100-1) and roasted (18.5 to 37.8 mg.100 g-1) almond. This outcome was expected, given that ascorbic acid is hydrophilic (Tiozon et al., 2021). Peixoto et al. (2022) used different methods and solvents for the extraction of almond oil and obtained better results for tocopherol (3 to 212 mg.100 g-1) than reported in the literature (0.19 to 11 mg.100 g-1) (Lemos et al., 2016; Fetzer et al., 2018; Campidelli et al., 2020a). Vitamins are vital to human health (Tiozon et al., 2021). It acts as an enzyme cofactor and performs catalytic functions in organism (Askin et al., 2021), ensuring physiological and metabolic homeostasis (Tiozon et al., 2021). Tocopherol is fat soluble and acts synergistically with endogenous antioxidant components to scavenge reactive species (Mattioli et al., 2021), while ascorbic acid is a water-soluble vitamin. Both are natural antioxidants that act on the body as detoxifiers and ensure the protection of vital organs such as the liver and kidneys (Shotop and Al-Suwiti, 2021). 3.5. Minerals in almond and pulp Nutritional studies with baru almond and pulp also related the presence of several minerals, such as potassium, copper, zinc, and phosphor, and the presence of calcium, iron, magnesium, selenium, and sodium. However, there was variation between studies (Tables 1 and 2). This variation may be related to the region and time of harvest of the plant, sample preparation, and method chosen for the analysis. In this way, it is possible to optimize the extraction of a certain nutrient based on the analysis of the reports of previous studies. The potassium content of baru almond (811 to 1810 mg.100 g-1) was greater than that of pequi almond (835 mg.100 g-1), cashew nut (556 mg.100 g-1), and peanut (668 mg.100 g-1) (Sousa et al., 2011). The iron content (3 to 19 mg.100 g-1) was greater in baru almonds than in Brazil nuts (2.2 mg.100-1), cashew nuts (5.4 mg.100 g-1), hazelnuts (2.5 mg.100 g-1), and walnuts (2.1 mg.100 g-1). The zinc content (1 to 6 mg.100 g-1) was greater in baru almonds than in Brazil nuts (2.4 mg.100 g-1), cashew nuts (3.0 mg.100 g-1), hazelnuts (25.1 mg.100 g-1), and walnuts (1.8 mg.100 g-1). The calcium content (82 to 638 mg.100 g-1) was greater than that of cashew nuts (25.1 mg.100 g-1) and walnuts (73.1 mg.100 g-1). The selenium content (260 µg.100 g-1) was greater than that of Brazil nuts (57.7 µg.100 g-1) (Cardoso et al., 2016), Pequi almonds (1.40 µg.100 g-1), cashew nuts (1.02 µg.100 g-1) and peanuts (2.51 µg.100 g-1), and the phosphorus content was less than that of Pequi nuts (2214 mg.100 g-1) and cashew nuts (1101 mg.100 g-1) (Sousa et al., 2011). However, the magnesium content (8 to 200 mg.100 g-1) was less than that of Brazil nuts (221.2 mg.100 g-1) and cashew nuts (195.7 mg.100 g-1) (Suliburska and Krejpcio, 2014). In our organism, these minerals are necessary for important biochemical functions, such as forming structural components of bones (calcium, magnesium, phosphorus), red blood cell formation, blood coagulation (copper, iron, calcium), electrolytes, neuromuscular functions (potassium, sodium, calcium, magnesium, phosphorus), protein synthesis (zinc and potassium), glucose and glycogen synthesis (potassium and phosphorus), fatty acid synthesis (magnesium), enzymatic cofactors and antioxidants (selenium and copper), cardiovascular excitability (magnesium), endocrine secretory function and cell membrane integrity (calcium), immunity and growth of genital organs (zinc) and pH maintenance (phosphorus) (Doley, 2017; NIH, 2022). In addition, evaluating the gastrointestinal bioaccessibility of minerals is important for understanding the nutritional value of Brazilian Cerrado fruits and almond. Mineral bioaccessibility represents how much of a certain mineral will be released from food and may be absorbed by the gastrointestinal tract during the digestion process (Gonçalves et al., and Filbido, 2020). Gonçalves et al., and Filbido (2020) evaluated the in vitro bioaccessibility of some minerals present in baru almond using a gastrointestinal simulation. The bioaccessibility was 16.8%, 21.4%, 80.3%, and 81.3% for copper, iron, manganese, and zinc, respectively. Pearson's correlation coefficient verified that phytic acid and ascorbic acid can influence bioaccessibility (Gonçalves et al., and Filbido, 2020). A form of better bioaccessibility is to inhibit phytate activity by roasting almond (Feizollahi et al., 2021). In contrast, ascorbic acid facilitates the absorption of Fe (Cilla et al., 2018). Thus, baru almond and pulp are natural sources of minerals that are bioaccessible to the human body. 3.6. Amino acids in almond All the essential amino acids in the baru almond were compatible with or superior to the recommended dietary allowances (RDAs) established by the Dietary Reference Intakes (IOM, 2005) (Table 3). Table 3 Amino acids composition of baru almonds. Amino acids (mg.g protein-1) Raw almonds* Roasted almonds DRI/RDA (mg.kg-1) Essentials Histidine 29.07 26.42 ± 0.26 25.70 23.40 23.40 14 Isoleucine 41.92 25.61 ± 0.25 29.80 32.50 37.50 19 Leucine 85.37 79.22 ± 0.47 83.00 74.40 77.80 42 Lysine 59.36 54.42 ± 0.32 36.20 66.40 48.40 38 Methionine+Cysteine 27.36 27.00 ± 0.11 21.20 29.80 22.00 15 Phenylalanine+Tyrosine 89.35 76.09 ± 0.12 79.90 88.50 77.20 33 Threonine 36.72 44.47 ± 0.11 43.40 55.30 44.90 20 Tryptophan 20.20 18.10 ± 0.41 13.90 11.20 20.20 05 Valine 47.74 32.99 ± 0.03 38.30 55.60 51.80 24 Total 416.89 384.32 371.30 437.10 403.20 - Non-essentials Asparagine 116.59 103.68 ± 0.92 - 91.40 101.60 - Glutamine 250.61 214.26 ± 0.16 - 176.9 216.80 - Alanine 41 46.81 ± 0.21 - 42.60 46.10 - Arginine 100.98 95.82 ± 0.21 - 151.40 85.60 - Glycine 43.15 49.11 ± 0.41 - 41.70 47.20 - Proline 40.70 57.03 ± 0.19 - 3.80 55.30 - Serine 48.65 48.99 ± 0.22 - 58.40 44.10 - Total 641.68 - - 566.20 - - Reference Siqueira et al. (2015) Czeder et al. (2012) Freitas et al. (2012) Sousa et al. (2011) Fernandes et al. (2010) IOM (2005) * In natura BAF = partially defatted baru almond flour (BAF); (-) not determined. In addition, almond exhibited excellent protein digestibility-corrected amino acid score (PDCAAS) values (73 and 91%) (Sousa et al., 2011; Fernandes et al., 2010), outperforming other oilseeds, such as Brazil nut and peanut (63 and 69%, respectively) (Freitas et al., 2012). The PDCAAS has been recommended by the FAO/WHO as a tool for evaluating the nutritional value of protein for human consumption (WHO, 2007). According to the PDCAAS criteria, baru almond has a high nutritional protein content. Thus, it can be an alternative protein source, especially for people who follow a vegetarian or vegan lifestyle, to increase protein intake. 3.7. Fatty acids in almond Baru almond oil contains approximately 50% monounsaturated fatty acids, 30% polyunsaturated fatty acids (PUFAs), and 20% saturated fatty acids, with high concentrations of oleic acid (C18:1) and linoleic acid (C18:2), respectively (Table 4). Fetzer et al. (2018), using supercritical CO2 with ethanol, and Soxhlet, using ethanol and hexane for the extraction of almond oil, reported similar results for oleic acid (50 to 53%) and less linoleic acid (23 to 25%) when compared with other studies (Lemos et al., 2016; Siqueira et al., 2016; Oliveira-Alves et al., 2020). Martins et al. (2013) reported that the extraction method affects the linolenic acid content; when the oil was extracted by Bligh & Dyer, it contained 94.70% more linolenic acid than that obtained by the Shoxlet method. The efficiency of extraction depends on the solvent characteristics. Soxhlet uses hexane, which is known for its effectiveness with apolar acids, although continuous heating may risk lipid oxidation. Bligh & Dyer employed a mixture of methanol and chloroform to efficiently extract a variety of fatty acids, including neutral, polar, and apolar fatty acids (Saini et al., 2021). Table 4 Fatty acids composition of baru almonds. Fatty acid (g.100 g lipid-1) Raw almonds Roasted almonds Oil almonds Lauric (C12:0) 0.24 ± 0.06 - - - - - 0.08 ± 0.06 - - 0.12 ± 0.01 - - - Myristic (C14:0) 0.16 ± 0.03 - 0.03 - - - 0.05 ± 0.02 - - 0.18 ± 0.03 - 0.03 ± 0.00 - Palmitic (C16:0) 6.59 ± 0.04 6.57 ± 0.00 6.10 7.40 9.44 6.80 ± 0.01 6.16 ± 0.01 6.61 ± 0.2 7.16 ± 1.69 5.94 ± 0.48 6.45 ± 0.05 5.52 6.32 ± 0.12 6.4 ± 0.14 Heptadecanoic (C17:0) 0.09 ± 0.03 - - - - - 0.08 ± 0.01 - 0.06 ± 0.02 0.04 ± 0.00 - - 0.08 ± 0.00 - Stearic (C18:0) 4.39 ± 0.21 4.89 ± 0.20 5.27 3.12 7.46 4.70 ± 0.01 5.22 ± 0.12 4.84 ± 0.2 4.97 ± 0.00 5.42 ± 0.26 1.62 ± 0.18 5.12 4.88 ± 0.04 3.9 ± 0.14 Arachidic (C20:0) 1.06 ± 0.07 1.52 ± 0.20 1.39 0.82 0.40 1.20 ± 0.01 1.21 ± 0.16 1.48 ± 0.2 0.86 ± 0.01 1.27 ± 0.03 1.20 ± 0.01 4.23 1.26 ± 0.00 - Heneicosanoic (C21:0) - - 0.09 - - - - - - - - 0.06 ± 0.01 - Behenic(C22:0) 3.47 ± 0.25 2.26 ± 0.10 4.39 2.12 6.34 3.40 ± 0.01 3.73 ± 0.43 2.34 ± 0.1 0.51 ± 0.00 - 3.70 ± 0.02 - 4.16 ± 0.08 - Lignoseric (C24:0) - 3.38 ± 0.30 5.42 - 9.24 4.80 ± 0.01 - 3.31 ± 0.1 1.90 ± 0.00 - 4.30 ± 0.08 - 4.94 ± 0.11 - Palmitoleic (C16:1) 0.08 ± 0.01 - - - - 0.07 ± 0.02 - 0.11 ± 0.00 - - - 0.08 ± 0.01 - Heptadecenoic (C17:1) 0.15 ± 0.02 - - - - - 0.13 ± 0.76 - - 0.05 ± 0.01 - - - - Oleic (C18:1) 48.99 ± 0.07 47.34 ± 0.10 47.15 50.17 11.81 47.20 ± 0.01 51.01 ± 0.62 47.40 ± 0.1 51.45 ± 0.03 41.41 ± 2.08 50.76 ± 0.05 50.52 45.81 ± 0.05 49.2 ± 0.00 Linoleic (C18:2) 24.28 ± 0.23 31.34 ± 0.00 25.51 30.70 30.73 28.20 ± 0.01 26.89 ± 0.04 31.42 ± 0.1 28.57 ± 0.01 24.40 ± 1.31 28.87 ± 0.17 23.66 28.95 ± 0.02 27.3 ± 1.20 Linolenic (C18:3) 0.14 ± 0.01 - 0.13 - - 0.05 ± 0.01 0.12 ± 0.05 - 3.14 ± 0.01 - 014. ± 0.01 3.48 - 4.2 ± 0.07 Eicosenoic (C20:1) 2.40 ± 0.87 2.68 ± 0.10 2.71 - 1.05 2.70 ± 0.01 2.56 ± 0.19 2.60 ± 0.0 - 0.13 ± 0.00 2.66 ± 0.03 - 2.83 ± 0.01 - Erucic (C22:1) 0.26 ± 0.06 - 0.05 - 0.57 0.30 ± 0.01 - - - - 0.30 ± 0.03 - - - Docasadienoic (C22:2) 3.93 ± 0.35 - - - - - 4.13 ± 0.32 - - 0.10 ± 0.02 - - - DHA (22:6) - - - - - - - - - 0.29 ± 0.02 - - - - Σ saturated fatty acid 16.32 ± 0.71 18.62 22.92 - 33.67 21.10 ± 0.01 16.79 ± 0.65 18.58 15.47 ± 0.04 12.98 ± 0.76 17.27 ± 0.7 - 21.72 ± 0.01 - Σ MUFA 51.91 ± 1.98 - - - 36.72 50.65 ± 0.01 54.08 ± 1.54 - 51.57 ± 0.03 45.49 ± 2.01 53.72 ± 0.01 - 49.07 ± 0.04 - Σ PUFA 31.50 ± 1.04 - - - 31.01 28.25 ± 0.01 31.25 ± 0.69 - 31.71 ± 0.01 24.79 ± 1.31 29.01 ± 0.18 - 29.16 ± 0.02 - Σ unsaturated fatty acid - 81.36 75.58 - - - - 81.42 - - - - - - Reference Campidelli et al. (2020b) Lemos et al. (2016) Vera et al. (2009) Vallilo et al. (1990) Bidô et al. (2023) Oliveira-Alves et al. (2020) Campidelli et al. (2020b) Lemos et al. (2016) Alves et al. (2016) Fernandes et al. (2015) Peixoto et al. (2022) Fetzer et al. (2018) Borges et al. (2015) Siqueira et al. (2016) DHA, Docosahexaenoic acid; MUFA, Monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; Σ, Sum, (-) not determined. The oleic acid content was greater in baru almond (~ 50%) than in Brazil nut (27%), peanut (41%), and pequi almond (44%). The linoleic acid content was greater than that in cashew nuts (0.03%) (Alves et al., 2016). The relatively high concentration of unsaturated fatty acids present in almond makes it an interesting source of these fatty acids. Linoleic acid is not synthesized in the human body (Chañi-Paucar et al., 2021). Oleic and linoleic acids promote anti-inflammatory effects (Mohammadi et al., 2020; Pegoraro et al., 2021), and linoleic acid promotes cardiovascular protection (Marangoni et al., 2020) and antidiabetic effects (Yoon et al., 2021). Moreover, the Atherogenic Index of the raw (0.09 ± 0.09) and roasted almond (0.08 ± 0.34) samples were very low. Although no parameter has been established for Atherogenic Index, the smaller the result is, the greater the chances that food will promote cardiovascular protection (Campidelli et al., 2020a). 3.8. Anti-nutrients Baru pulp has low amounts of antinutrients such as tannins (472 mg quercitannic acid, 100 g pulp-1 and 440 to 609 mg catechin, 100 g pulp-1) (Marin et al., 2009; Silva et al., 2021a) and phytic acid (0.43% to 1%) (Marin et al., 2009; Gonçalves et al., and Filbido, 2020). For baru almond, trypsin inhibitors were used for sequencing (Kalume et al., 1995). It is known that the interaction of tannins with carbohydrates, proteins, and microelements may reduce the bioavailability of these nutrients (Das et al., 2022). Phytic acid may reduce the bioavailability of copper, iron, and manganese (Gonçalves et al., and Filbido, 2020), and the presence of trypsin inhibitors can reduce the digestive activity of this enzyme (Nath et al., 2022). Unbalanced concentrations cause adverse effects, such as reduced bioavailability of minerals and digestibility of protein, and may also lead to toxicity (Nath et al., 2022). Most secondary metabolites, which act as antinutrients, elicit very harmful biological responses, while some of them are widely applied in nutrition and as pharmacologically active agents; for example, tannins have been reported to have strong antioxidant and bactericidal effects (Pizzi, 2021). In an attempt to minimize the concentration of tannins or be used as a pretreatment to remove part of the tannins (Silva et al., 2021a) and improve the acceptability of the pulp flour and products developed, researchers have reported the combination of methodologies (Ferreira et al., 2020b). Phytic acid can be inactivated by heat treatment (3 h at 100 °C or 1.5 h at 121 °C) (Feizollahi et al., 2021). Therefore, partial, or total elimination depends on the purpose of the application of the food. 3.9. Applications in human food and ethnopharmacological uses Whether for health reasons or because of concerns about the environment, eating less or no meat is becoming more popular around the globe (WHO, 2021a). Thus, new sources of protein need to be explored. In this sense, baru almonds are rich in protein and amino acids (Siqueira et al., 2015; Sousa et al., 2011; Czeder et al., 2012). This vantage has been explored in the elaboration of functional foods. Flour and defatted flour (Siqueira et al., 2015; Reis et al., 2018a; Alves et al., 2021a; Arruda-Silva et al., 2022; Aracava et al., 2022), concentrates, and protein isolates constitute potential sources of proteins (Guimarães et al., 2012a; Nunes et al., 2017). The process of producing autoclaved partially defatted baru almond flour (autoclaved BAF), which involves removing a portion of the lipids, results in a protein content greater than 50%, a dietary fiber content of 40%, and a phenolic compound content of 70% compared to that of whole almond flour. The autoclaved partially defatted baru almond flour (autoclaved-BAF) results in a protein content greater than 50%, 40% greater dietary fiber, and 70% greater phenolic compound content than whole almond, which in part involves removing a portion of the lipids. In addition, autoclaved BAF is 30% less caloric and has a lower phytate content (Siqueira et al., 2015). BAF has been used in the preparation of various nutritious and functional foods, such as cookies (Freitas et al., 2014; Pineli et al., 2015a; Caetano et al., 2017) and cakes (Pineli et al., 2015b; Paglarini et al., 2018). Moreover, when used as a substitute for wheat flour, baru flour can benefit individuals with gluten intolerance (Freitas et al., 2014; Silva et al., 2015; Pineli et al., 2015b). Protein isolates from BAF presented higher protein content than soybean, casein, and albumin commercial protein isolates and showed high in vitro digestibility. The technological properties, which include water absorption capacity, oil absorption capacity, emulsifying properties, and foamability, indicate the possibility of their use for the development of functional foods (Guimarães et al., 2012b; Nunes et al., 2017). The BAF was also used to develop a fermented flavoured drink with probiotics that presented nutritional characteristics and good acceptability in sensory tests (Fioravante et al., 2017; Coutinho et al., 2021; Fernandes et al., 2021). Another common approach is the addition of crushed almond to improve the nutritional and functional quality of preparations such as cereal bars (Lima et al., 2010; Mendes et al., 2013; Campidelli et al., 2020a; Lima et al., 2021a), granola (Souza and Silva, 2015), sweets (Santos et al., 2012; Pinho et al., 2015; Silva et al., 2018; Cruz et al., 2019; Jesus et al., 2023), and frozen yogurt (Arelhano et al., 2019). The addition of almond to a dairy dessert preserved the antioxidant capacity of the product (Cruz et al., 2019). Considering the high content of unsaturated fatty acids in almonds, baru oil has been extracted by different methods, most of which employ organic solvents (Martins et al., 2013; Fetzer et al., 2018), authorized as adjuvant technologies (Brasil, 2021b). Several studies have shown the advantages of the supercritical extraction process (SFE), which is a highly selective method using pressurized fluids as solvents (Santos et al., 2016; Fetzer et al., 2018; Chañi-Paucar et al., 2021; Peixoto et al., 2022). In SFE, temperature, pressure, type of solvent, and flow, among other factors, can be controlled to maximize the total yield of the oil or a specific compound. In addition, the SFE can be combined with other techniques (Santos et al., 2016; Chañi-Paucar et al., 2022). In this sense, ultrasound assisted SFE increased the initial extraction rate for all groups of fatty acids without modifying the fatty acid composition (Santos et al., 2016). Compared with the normal SFE, SFE assisted by cold pressing results in a baru oil rich in unsaturated fatty acids and bioactive compounds with a higher yield and lower manufacturing cost (Chañi-Paucar et al., 2021). Subsequently, SFE-integrated mechanical cold pressing was as efficient as the Soxhlet method for oil extraction but had the advantage of significantly reducing the extraction pressure used (Chañi-Paucar et al., 2022). With increasing market interest in new sources of vegetable oils, ensuring oil quality is essential. In this sense, analysis by 1H and 13C NMR (Nascimento et al., 2021; Prestes et al., 2007) and ATR-FTIR (Nascimento et al., 2021) spectroscopy can provide information about the chemical composition and adulteration. Considering the feasibility and cost of this methodology, it is interesting that new techniques have been explored to ensure a quality product at an affordable cost for the final consumer. Fernandes et al. (2020) reported that roasted baru almonds maintain the composition of unsaturated fatty acids when packaged in different packages and stored for up to 150 days. Futhermore, after 180 days of storage, the sensory characteristics and chemical composition of baru oil were preserved, and it presented acceptable peroxide and acidity values (Pineli et al., 2015c). For flour, storage at a temperature between 25 and 35 °C is recommended, according to water and lipid content (Alves et al., 2021b), making it an excellent alternative for the development of foods rich in polyunsaturated fatty acids. Mayonnaise formulated with microencapsulated oil showed good protection against oxidative degradation and high added nutritional value (Rojas et al., 2019). In addition to functional foods, research has tested the technological potential of almonds and oil for other products, such as lamellar gel phase emulsions for cutaneous application (Moraes et al., 2018), in the production of bio-oil, biochar (Rambo et al., 2020), or epoxidized oil that can be used as a lubricant (Alarcon et al., 2020). Recently, Prando et al. (2023) developed a nanoemulsified system from baru oil, enhancing the antioxidant activity of the plant extract of Oenocarpus bacaba Mart. Baru pulp is consumed less than the whole almonds (Silva et al., 2021c). Normally, the peel and pulp are considered byproducts and are discarded during almond extraction (Alves-Santos et al., 2023). The pulp can be consumed in natura. It presents a variation in texture, from farinaceous to pasty, and the taste can be sweet to bitter (Sano et al., 2006). A high content of tannins can give it an astringent and bitter taste and thus reduce the palatability and acceptability of the pulp for consumption (Ferreira et al., 2020b). With the increased interest in foods that are beneficial to human health, the use of baru pulp for the production of flour (Resende and Franca, 2019; Oliveira et al., 2018) and the development of functional foods such as cookies (Viana et al., 2023; Ferreira et al., 2020b), bread (Rocha and Cardoso Santiago, 2009), bars (Lima et al., 2010), cupcakes (Ortolan et al., 2016), and fermented beverages (Silva et al., 2021b) has increased. When used for the production of cake, it becomes dark, resembling chocolate (Sano et al., 2016). Studies have sought to establish the thermodynamic properties of pulp. Araujo et al. (2013) observed that sugar extraction was optimized at 35 °C for 90 minutes; Resende et al. (2017, 2018) established the best drying conditions (266.3 hours for a temperature of 40 °C and 22.8 hours for a temperature of 100 °C); and Ferreira et al. (2020a) revealed that drying extends the storage time (80 days without microorganism growth) of products developed from it, increases their technological application, and reduces waste. Furthermore, different parts of baru are used as medicine by Brazilian communities (Ribeiro et al., 2017; Paim et al., 2023). Ethnopharmacological studies have reported the use of different baru parts, such as almond, pulp, leaves, and bark, to treat several illnesses. However, we observed that some ethnopharmacological studies do not specify the part of the plant used and/or the preparation method for that specific disease. Table 5 shows the medicinal uses of this species in Brazil. Table 5 Ethnopharmacological uses of baru. Medicinal use Part plant used Form ofpreparation Brazilian state/population Reference Back, muscle and body pains, diuretic, kidney pains, kidneys, infections, intestine infection, vaginal discharge, uterus and ovary infection, vaginal infection, uterine inflammation, prolonged menstruation, menstrual regulation, prostate, sexual impotence, depurative, hemorrhage, thrombosis, gallstones, sinusitis, gastritis, ulcer, high cholesterol, diabetes, osteoporosis, rheumatism, wound healing, bone healing, snake bites, and memory. Bark, stem, leaves, fruits, seed Decoction, infusion, maceration, fresh,cataplasm Mato Grosso/riverine Ribeiro et al. (2017) Back pain. Food and treatment of intoxication for cattle Wood chip ND Goias /residents and livestock farmers Paim et al. (2023) Kidney stones and kidney problems Bast fruit, seeds Infusion Goias/rural Guimarães et al. (2022) Uric acid, gout, and rheumatism ND ND Mato Grosso/healers Bueno et al. (2020) Column Stem Decoction Goias/healers Souza et al. (2016) Cardiac problems ND ND Tocantins/rural Bessa et al. (2013) Bronchitis, healing, diarrhea, dysentery, pain, throat, flu, snakebite, and cough ND Infusion Mato Grosso/urban Bieski et al. (2012) High fevers and snakebite Almond Oil Tocantins/urban Puebla et al. (2010) Anti-rheumatic, tonic, regulator menstrual ND ND Goias/urban Souza and Felfili (2006) ND, Not determined. 3.10. Secondary metabolites of almond, pulp, and bark Phytochemical screenings of the almond and pulp revealed the presence of total phenolic compounds (TPC) (Lemos et al., 2012; Siqueira et al., 2012, 2013; Santos et al., 2016; Santiago et al., 2018; Almeida et al., 2019; Silva et al., 2019; Oliveira-Alves et al., 2020; Campidelli et al., 2020a; Leite et al., 2020; Barizão et al., 2021; Barros et al., 2021; Silva et al., 2021a; Alves-Santos et al., 2023; Bidô et al., 2023) and carotenoids (Fiorini et al., 2017; Almeida et al., 2019; Silva et al., 2019; Gonçalves et al., and Filbido, 2020). The reported TPC values range from 3.1 to 1,306.34 mg GAE g-1 for almond (Siqueira et al., 2012; Campidelli et al., 2020a) and from 186 to 477 mg GAE g-1 for pulp (Santiago et al., 2018; Silva et al., 2019). Factors such as the solvent used and heat treatment can influence the TPC of almond and pulp. Silva et al. (2021a) reported the effect of different solvents on the extraction of phenolic compounds from baru pulp flour (BFF), with acetone being the least efficient (6.60 ± 0.15 mg GAE g-1) and sodium hydroxide 3%/sodium sulfite 3% being the most efficient (360.50 ± 0.69 mg GAE g-1). Heat treatment at 105 °C for 30 min did not seem to affect the TPC (Campidelli et al., 2020a), but heat treatment at 140 °C for 30 min reduced the TPC by 34% compared to that of raw almond (Santiago et al., 2018). On the other hand, BFF had a 2.3 times greater TPC when heated to 100 °C (Silva et al., 2019). In this sense, the baru almond and the pulp are a great source of phenolic compounds, and knowing the influencing factors, their extraction can be optimized according to the application of interest. High-performance liquid chromatography (HPLC) revealed more than thirty phenolic compounds, especially phenolic acids, and flavonoids in extracts from almond (Lemos et al., 2012; Oliveira-Alves et al., 2020), pulp or pulp+peel (Leite et al., 2020; Barizão et al., 2021), and bark (Ferraz et al., 2014; Nazato, et al., 2010; Puebla et al., 2010). The compounds identified from the different parts of the baru are described in Table 6 and Figures 4 to 9. Table 6 Phytochemical composition of baru. Part Extract type Compounds Reference Almond No determined gallic acid, catechin, chlorogenic acid, caffeic acid, vanillin, p-coumaric acid, ferulic acid, m-coumaric acid, o-coumaric acid, trans-cinnamic acid, quercetin and rutin Campidelli et al. (2020b) Methanolic gallic acid, ferrulic acid, ellagic acid, hydroxybenzoic acid, caffeic acid, epicatechin, quercetin, myricetin, coumarin, kaempferol Lemos et al. (2012) Oil caryophyllene, elemene, caryophyllene, and limonene, sitosterol, stigmasterol, campesterol, and cycloartenol Marques et al. (2015) Hydromethanolic;Hydrolyzed extract quinic acid derivative, galloylglucose, gallic acid, mono- to pentagalloylglucose, methyl gallate-glucoside, gallic acid–galloylglucose, p-coumaric acid, isoferulic acid, digallic acid, methyl gallate, methylgalloyl–galloylglucose, ethyl gallate, ellagic acid, gallic acid–methyl gallate, gallic acid–ethyl gallate, 3-methyl-1-butanol, hexanal, methyl-pyrazine, 2-furanmethanol, 1-hexanol, 2-heptanone, heptanal, 2,5-dimethyl pyrazine, 2-heptenal, 1-heptanol, 1-octen-3-ol, 2-pentyl-furan, 2-ethyl-5-methylpyrazine, trimethyl-pyrazine, octanal, methyl hexanoate, d-limonene, 2-acetylpyridine, pantolactone, 4-hydroxy-2,5-dimethyl-3-(2h)-furanone, 2-octenal, benzeneaceltaldehyde, 1-octanol, 3-ethyl-2,5-dimethylpyrazine, 2-ethyl-3,5-dimethyl-pyrazine, tetramethyl-pyrazine, 2,5-diethyl-pyrazine, nonanal, 2,3-diethyl-5-methylpyrazine, 3,5-diethyl-2-methylpyrazine, 1-nonanol, decanal Oliveira-Alves et al. (2020) pulp Lyophilized pulp di-O-hexoside acid, O-hexosyl, protocatechuic acid, vicenin 2, coumaric acid, luteolin, di-O-methoxydihydroxiisoflavone, hexadecanoic acid, octadecenoic acid, diterpene Leite et al. (2020) Freeze-dried pulp caffeic acid, chlorogenic acid, p-coumaric acid, syringic acid, catechin, epicatechin gallate, epigallocatechin gallate, procyanidin B1, procyanidin B2, hesperidin, myricetin, quercetin-3-glucoside, rutin, cis-resveratrol Alves-Santos et al. (2023) pulp and peel Aqueous; methanol; ethanol; hydromethanolic; hydroethanolic gallic acid, protocatechuic acid, hydroxybenzoic acid, chlorogenic acid, vanillic acid, (–)-epicatechin, caffeic acid, syringic acid, (–)-epicatechin gallate, p-coumaric acid, sinapic acid, ferulic acid, rutin, trans-resveratrol, ellagic acid, myricetin, quercetin, luteolin, naringenin, trans-cinnamic acid, apigenin Barizão et al. (2021) Bark Hydroethanolic extract hexane fraction; CH2Cl2 fraction. Hexane; dichloromethane; ethyl acetate; methanolic lupane, betulin, lupeol, lupenone, 28-hydroxylup-20(29)-en-3-one, betulin, 8-O-methylretusin, 7-hydroxy-5,6,4’-trimethoxyisoflavone, afrormosin, 7-hydroxy-8,3’,4’-trimethoxyisoflavone, sulfuretin, caffeic acid, odorotin, 7,3’-dihydroxy-8,4’-dimethoxyisoflavone, vanillic acid, dipteryxin, 7,8,3’-trihydroxy-4’-methoxyisoflavone, vanillin, rutin, tannic acid, isoliquiritigenin, 7,8,3’-trihydroxy-6,4’-dimethoxyisoflavone, protocatechuic acid, apigenin, quercetin, chlorogenic acid Puebla et al. (2010), Nazato et al. (2010) Leaves No determined Figure 4 Chemical structures of compounds found in different parts of the baru - part 1. Figure 5 Chemical structures of compounds found in different parts of the baru - part 2. Figure 6 Chemical structures of compounds found in different parts of the baru - part 3. Figure 7 Chemical structures of compounds found in different parts of the baru - part 4. Figure 8 Chemical structures of compounds found in different parts of the baru - part 5. Figure 9 Chemical structures of compounds found in different parts of the baru - part 6. Phenolic compounds have the ability to eliminate and stabilize reactive species, chelate, or complex with metals (El-Megharbel and Hamza, 2022; Boudou et al., 2019) and inhibit peroxidation reactions (Shokry et al., 2022). Furthermore, some phenolics have been described in the literature for their antioxidant (El-Megharbel and Hamza, 2022), antimicrobial (Sorrentino et al., 2018), and anti-inflammatory effects (Lee et al., 2020) and for their ability to control body weight gain (Santamarina et al., 2019a). Terpenes are volatile compounds known for their antimicrobial (Li et al., 2021), anti-inflammatory (Yang and Liao, 2021), and antioxidant potential (Dzoyem et al., 2017). Phytosterols and their derivatives can reduce the concentration of low-density lipoprotein-cholesterol (LDL-C) in human plasma (Bai et al., 2021). In this sense, the compounds present in baru may be, at least in part, responsible for its biological properties. 3.11. Biological activities It is common knowledge that plant products are used to maintain good health. Plants contain chemical compounds that possess medicinal and healing properties (Parveen et al., 2021). In this context, baru is used for the treatment and prevention of many diseases. Almond and stem bark are the most commonly evaluated parts, although leaves and fruits are also used in traditional medicine. Due to the widespread use of these terms, in this review, the biological effects were grouped into 12 categories (Figure 10) and subsequently described. Figure 10 Biological effects category grouped of baru. (TXE) Toxicological evidence, (AOX) antioxidant activity, (EOS) effects on oxidative stress, (CVE) cardiovascular effects, (AA) Antiophidic activity, (OBE) overweight and obesity, (GR) gastrointestinal regulation, (APA) Antiproliferative activity, (ALA) Antimicrobial and leishmanicidal activities, (WHP) Wound Healing potential, (ANA) Anti-inflammatory activity, (MAB) Memory and anxiolytic-like behavior. 3.11.1. Toxicological evidence (TXE) and antiproliferative activity (APA) The hydroethanolic extract from the pulp + peel showed weak cytotoxicity against nontumor (HaCaT and L929) cell lines (0.7 mg.mL-1) (Barizão et al., 2021). The lyophilized pulp was not toxic to the nematodes (Leite et al., 2020). The hexane and ethanol extracts from the leaves were not toxic to the macrophages (Ribeiro et al., 2014). The ethanolic extract of the bark had no toxic effect on the Chinese hamster ovary (CHO) cell Line K1131 and did not cause abnormalities in the offspring of pregnant rats (500 mg.mL-1) (Esteves-Pedro et al., 2012). When exposed to the ethanolic extract of the bark, different strains of Salmonella sp. showed no mutagenicity (Esteves-Pedro et al., 2012). However, in the presence of the metabolic activation system and hydroalcoholic extract of bark (0.016 and 0.05 mg.mL-1), CHO cells showed an increase in micronucleus frequency, which can indicate genotoxicity (Esteves-Pedro et al., 2011). However, a hyperlipidic diet supplemented with almond (30%) for 35 days did not show genotoxicity (Campidelli et al., 2022). The antiproliferative potential of these compounds was also investigated. Extracts from almond and their phenolic compounds reduced the proliferation of monolayer and spheroid human colorectal cancer cell lines (Oliveira-Alves et al., 2020), while the hydroethanolic extract from the pulp+peel inhibited the growth of cervical cancer cell lines (SiHa and C33A) (Campidelli et al., 2022). Considering that several plants are used as medicines in traditional communities, evaluating the safety of medicinal plants is essential. Recently, a review revealed evidence that many species and compounds from Cerrado plants, despite having high cytotoxicity against tumour cells, showed low toxicity, genotoxicity, and mutagenicity against nontumor cells and no toxic effects on murine models of acute and chronic treatments (Rocha et al., 2022). 3.11.2. Antimicrobial and leishmanicidal activities (ALAs) Hydroalcoholic extracts from baru exhibited moderate antimicrobial potential, showing minimum inhibitory concentrations (620 to > 1000 μg.mL-1) and minimum microbicidal concentrations (620 to > 1000 μg.mL-1) against Staphylococcus aureus and Escherichia coli. Interestingly, the peel (2.6 to 3.3) and pulp (4.0) extracts displayed greater inhibition zones for S. aureus than did the almond (Santos et al., 2017). However, the authors did not investigate the chemical composition of the extracts to clarify this difference. Hexanic extracts of the leaves of baru were as effective as amphotericin B (IC50 = 0.08 μg.mL-1) and were more effective than extracts from 15 other Brazilian plants of the genera Campomanesia, Cecropia, Diospyros, Syzygium, Eugenia, Hymenaea, Jacaranda, Licania, Vernonia and Melancium against leishmaniasis (IC50 = 4.69-199.4 μg.mL-1) (Ribeiro et al., 2014). In addition, the inhibitory effect against Leishmania amazonensis promastigotes internalized by macrophages occurred in a dose-dependent manner (up to 95%) (Ribeiro et al., 2014). As suggested by researchers, the leishmanicidal potential may be related to the presence of phenolic and terpene compounds (Garcia et al., 2019; Shilling et al., 2020). Microbial resistance is a global public health problem (WHO, 2021b), similar to leishmaniasis, which is a neglected tropical disease with more than one million new cases each year and up to 30,000 deaths (WHO, 2022). Both conditions motivate the search for treatments that can replace antibiotics (Santos et al., 2017) and are effective against parasites (Gervazoni et al., 2020). Several species from the Cerrado contain bioactive compounds with antimicrobial and leishmanicidal potential (Rocha et al., 2022). Studies suggest that baru extracts can be used to develop antimicrobial and antiparasitic products. 3.11.3. Wound Healing potential (WHP) The ethanolic extract of baru almond improved wound healing in human pulmonary epithelial cell lines (NCI-H441 and A549) (Coco et al., 2021). However, the topical use of ointment with hydroethanolic extracts of almond or bark (10%) for 21 days did not affect the speed of wound closure, quality of reepithelialisation, neovascularization, or collagenization in mice and did not demonstrate its applicability for wound healing (Gouveia et al., 2021). Thus, future studies exploring other forms of administration and doses are needed to elucidate whether baru has wound healing potential, mainly because it is one of the most popular uses of this plant. 3.11.4. Antiophidic activity (AA) Snakebite envenomation is a neglected tropical disease with a high economic cost, particularly in low- and middle-income countries (WHO, 2019). In Brazil, the limited supply of antivenom for public health (Schneider et al., 2021) has stimulated the discovery of new plants and molecules with antiophidic potential (Trento et al., 2021). Extracts from the bark of baru were able to reduce the neuromuscular blockade caused by Bothrops jararacussu venom in the phrenic nerve-diaphragm. Methanolic extract from the bark had a greater protective effect on neuromuscular capacity (Puebla et al., 2010; Nazato et al., 2010). In addition, the bark reduced myonecrosis (Nazato et al., 2010). To clarify the possible causes of these effects, some bioactive compounds isolated from the bark were also investigated for their effects on snake venom. 7,8,3’-Trihydroxy-4’-methoxyisoflavone and the triterpenoids betulin, lupeol, lupenone, and 28-OH-lupenone showed a high protective effect against the neuromuscular blockade, and myotoxicity caused by snake venom (Ferraz et al., 2012; Ferraz et al., 2014). In addition, betulin, and lupenone are protective against Crotalus durissus terrificus envenomation (Ferraz et al., 2012). Posteriorly, betulin was efficient in attenuating the neuromuscular effects of B. jararacussu venom in vivo (Ferraz et al., 2015). These studies indicate that the bark of baru has the potential to be applied as an antiophidic product. 3.11.5. Antioxidant activity (AOX) Various methods of i) radical scavenging, such as 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+), ii) inhibition of peroxidation as a β-carotene/linoleate bleaching system, iii) ability to reduce an Fe(3) complex to an Fe(2) complex containing 2,4,6-tri(2-pyridyl)-1,3,5-triazine (TPTZ) ligand, as in the ferric reducing antioxidant power method (FRAP), and iv) the elimination of the peroxyl radical generated by the thermal reaction between 2,2’-azobis-(2-methylpropionamidine)-dihydrochloride (AAPH) and atmospheric oxygen (pH 7.4) at 37 °C (Marchi et al., 2022), have been used to evaluate the antioxidant potential and distinguish the mechanism of baru. Table 7 shows the antioxidant potential of baru almond, pulp, and leaves against different oxidant agents. Was observed that raw almond showed greater antioxidant activity (81, 100, and 157 μMol.TE g-1) than did roasted almond (76, 77, and 136.8 μMol. TE g-1) in the DPPH, ABTS, and FRAP methods, respectively (Santiago et al., 2018). Studies have reported that heat treatment at 100 °C or more can reduce the antioxidant capacity by 36% to 56% and that heat treatment at 65 °C for 30 minutes did not affect the antioxidant capacity compared to that of raw almond (Campidelli et al., 2020a; Silva et al., 2022). Table 7 Antioxidant activity of baru. Part Assay Antioxidant activity Reference Raw almond ABTS 186.64 ± 3.37 µMol Trolox g-1 Lima et al. (2021a) 473 ± 20 µMol Trolox g-1 Barros et al. (2021) 100 ± 4 µMol.TE g-1 Santiago et al. (2018) β-Carotene/linoleate 91.72 ± 3.35% protection Campidelli et al. (2020a) 66.5 ± 1.9% protection Barros et al. (2021) DPPH 81 ± 0.8 µMol.TE g-1 Santiago et al. (2018) 100.08 ± 1.44 µMol Trolox g-1 Lima et al. (2021a) 69.02 ± 2.86%SRL Campidelli et al. (2020a) FRAP 157 ± 3 µMol.TE g-1 Santiago et al. (2018) 357 ± 21.5 FeSO4 μMol.g-1 Barros et al. (2021) ORAC 4.06 ± 0.76 µM g-1 Campidelli et al. (2020a) Roasted almond ABTS 77 ± 0.6 µMol.TE g-1 Santiago et al. (2018) 1,179 ± mg.GAE Kg-1 Cruz et al. (2019) 170.72 µMol.TE g-1 Silva et al. (2020) β-Carotene/linoleate 0.6 and 6.0% g-1 Siqueira et al. (2012) 86.10 to 89.94% protection Campidelli et al. (2020a) DPPH 67.00 ± 6.31 µMol.TE g-1 Siqueira et al. (2015) 76 ± 1 µMol.TE g-1 Santiago et al. (2018) 8,342 ± 11.0 mg.GAE kg−1 Cruz et al. (2019) 0.6 and 0.8 µMol.TE g-1 Siqueira et al. (2012) 79.68 to 84.38%SRL Campidelli et al. (2020a) 0.18 to 0.42 mg.mL-1 (EC50) Borges et al. (2014) 259.10 µMol.TE g-1 Silva et al. (2020) FRAP 1.2 and 8.3 FeSO4 μMol.g-1 Siqueira et al. (2012) 126.8 ± 0.6 µMol.TE g-1 Santiago et al. (2018) 144.49 µMol.TE g-1 Silva et al. (2020) ORAC 2.96 to 3.43 µM.g-1 Campidelli et al. (2020a) 88.71 ± 0.51 µMol.TEAC g-1 Oliveira-Alves et al. (2020) Oil from almond ABTS 9.98 to 96.57 μM.Trolox g-1 Fetzer et al. (2018) pulp ABTS 13 to 34 µMol Trolox g-1 Silva et al. (2019) 49 ± 2.0 µMol.TE g-1 Santiago et al. (2018) 416.0 ± 28.00 μg.mL-1 Leite et al. (2020) 4.1 ± 0.2 µM.g-1 Almeida et al. (2019) DPPH 9 to 12 µMol.Trolox g-1 Silva et al. (2019) 21.2 ± 0.1 µMol.TE g-1 Santiago et al. (2018) 23.91 ± 0.82 µMol.TE g-1 Alves-Santos et al. (2023) 2,306.33 ± 101.83 μg.mL-1 Leite et al. (2020) 68.6 ± 4.1% of discoloration Almeida et al. (2019) 1,021 ± 86.8 g.Kg-1 (EC50) Siqueira et al. (2013) 31.60 ± 1.85 µMol.TE g-1 Araujo et al. (2013) FRAP 24.2 ± 0.2 µMol.TE g-1 Santiago et al. (2018) Peel ABTS 60 ± 2 µMol.TE g-1 Santiago et al. (2018) DPPH 45 ± 2 µMol.TE g-1 FRAP 50 ± 0.2 µMol.TE g-1 pulp with peel DPPH 6.70 ± 0.23 µMol.TE g-1 Barizão et al. (2021) ORAC 28.7 ± 4.5 µMol.TE g-1 Leaves DPPH 52.9 to 169.1 ppm Silverio et al. (2013) Bark ND ND ND EC50, Effective concentration forinhibit 50%; GAE, Gallic acid equivalents; ND, not determined; %SRL, percentage of free radical sequestration; ppm, Parts per million; TEAC, trolox equivalents antioxidant capacity; TE, Trolox equivalent. The antioxidant capacity of the raw almond (100 to 473 μM. Trolox g-1) (Santiago et al., 2018; Lima et al., 2021a; Barros et al., 2021) was also greater than that of almond oil (Fetzer et al., 2018) in the ABTS assay. Antioxidant activity can be influenced by the chosen method for the extraction of the sample evaluated. Therefore, Fetzer et al. (2018) evaluated the antioxidant capacity of baru almond oil extracted by different methods. The oil obtained by the supercritical CO2 method using propane as the solvent showed greater antioxidant activity (96.57 μM. Trolox g-1) than the oil extracted by Soxhlet using hexane (9.98 μM. Trolox g-1). Posteriorly, Peixoto et al. (2022) proposed the extraction of almond oil using the supercritical CO2 method with water as a cosolvent and showed greater extraction of antioxidant compounds. The baru pulp flour exhibited weak DPPH free radical scavenging potential (9 to 12 μMol. Trolox g-1) and ABTS (13 to 34 μMol. Trolox g-1) (Silva et al., 2019), while the IC50 values for lyophilized pulp were 416.0 ± 28.00 and 2306.33 ± 101.83 μg.mL-1 for the ABTS and DPPH methods, respectively (Leite et al., 2020). The hydroethanolic extract also had a low antioxidant effect on the pulp (21.2 to 49 μMol. TE g-1) and to the peel of fruit (45 to 60 μMol. TE g-1) in different methods (Santiago et al., 2018). These findings corroborate the results obtained with different peel+pulp extracts (2 to 29 μMol. TE g-1) evaluated by the DPPH and ORAC methods (Barizão et al., 2021) (Table 7). The ethanolic and hexanic extracts of the baru leaves demonstrated antioxidant potential (52 to 169 ppm) and effective tyrosinase inhibition (Silvério et al., 2013) (Table 7). Tyrosinase is a key enzyme in skin hyperpigmentation and food browning. Thus, the discovery of natural inhibitors has been of interest to the pharmaceutical, cosmetic, and food industries (Zolghadri et al., 2019). Previous studies have demonstrated that phenolic compounds are effective tyrosinase inhibitors (Nguyen et al., 2012; Sasaki et al., 2018). Thus, at least partially, this inhibitory effect on baru leaves may be associated with the presence of phenolic compounds. However, as the leaves did not show a copper chelating capacity, it is suggested that there are other mechanisms involved (Silvério et al., 2013). In addition, the antioxidant activity of bark has not yet been reported. Some bioactive compounds present in plant species are natural antioxidants capable of maintaining the redox balance in the organism (Carvalho and Conte-Júnior, 2021). Thus, the presence of phenolic compounds and terpenes supports the antioxidant potential showed in baru almond, pulp, and leaves. 3.11.6. Effects on oxidative stress (EOS), overweight/obesity (OBE), and the cardiovascular system (CVE) Oxidative stress is a biological condition of disbalance between the production of reactive species and antioxidant defense (Maurya et al., 2016). This condition can be responsible for protein damage (Siqueira et al., 2012), lipid peroxidation, and a reduction in endogenous antioxidant defences, such as glutathione peroxidase (GPx) levels and superoxide dismutase (SOD) and catalase (CAT) activities. Consequently, oxidative stress is associated with the development of chronic diseases, such as diabetes, dyslipidaemia (Erukainure et al., 2020), obesity, and metabolic syndrome (Ruiz-Ojeda et al., 2018). Baru almond and almond oils have been suggested to reduce oxidative stress (Siqueira et al., 2012; Fernandes et al., 2015; Reis et al., 2018b; Souza et al., 2018, 2019). Supplementation of almond in iron-induced oxidative stress in rats was effective in preventing lipid oxidation in the liver and spleen and reducing carbonyl levels in the liver, spleen, and heart (Siqueira et al., 2012). Roasted almond decreased lipid oxidation and increased vitamin E in the liver of hyperlipidaemic rats (Fernandes et al., 2015). Its oil promoted hepatoprotective effects and decreased peroxidation in the aorta of rats (Reis et al., 2018b). Dietary supplementation with baru almond (30%) improved the antioxidant capacity (FRAP), increased the glutathione reductase content, and reduced the malondialdehyde (MDA) content in the rat liver (Campidelli et al., 2022). Daily consumption of 20 g of almond increased GPx activity and serum copper levels but did not improve MDA or cytokine levels in overweight or obese women (Souza et al., 2019). The intake of the same serving of almond by mildly hypercholesterolaemic individuals also did not promote changes in SOD activity, thiobarbituric acid reactive substance concentration, or serum antioxidant status (Bento et al., 2014). Baru pulp promoted the control of oxidative stress and increased the expression of SOD and the nuclear translocation of DAF-16, resulting in an increase in life expectancy in the nematode Caenorhabditis elegans (Leite et al., 2020). Bioactive compounds that are present in almond and pulp can be responsible for their antioxidant potential. Phenols are known for their ability to scavenge reactive species (Yu et al., 2021). Phytic acid can prevent tissue protein damage (Siqueira et al., 2012). Ascorbic acid reduces lipid peroxidation and restores the levels of liver enzymes, kidney function, and glutathione (Shotop and Al-Suwiti, 2021). Tocopheryl acetate (a-tocopherol) and PUFA (n-3) reduce lipid peroxidation in different tissues, and PUFA (n-3) increases GPx activity (Mattioli et al., 2021). The use of native Brazilian foods and plants with antioxidant and protective effects against oxidative stress can improve human health in the face of various metabolic diseases (Carvalho and Conte-Junior, 2021). Considering the ethnopharmacological applications of this species, several studies have investigated the effects of the consumption of baru almond and almond oils on metabolic diseases. The consumption of a dessert made with the almond (14%) for two weeks reduced triglyceride (TG) and very low-density lipoprotein (VLDL-c) levels and increased high-density lipoprotein-cholesterol (HDL-c) levels in rats (Cruz et al., 2019). The intake of a hyperlipidic diet supplemented with almond (30%) for 35 days prevented the increase in total cholesterol (TC) and low-density lipoprotein cholesterol. In addition, HDL-c levels were similar to those in the control group (Campidelli et al., 2022). Almond diet supplementation (35%) for 63 days reduced the serum TC and TG levels in rats fed a high-fat diet (Fernandes et al., 2015). A similar intake (20 to 40%) of baru almond for 40 days reduced the serum TG, LDL-c, VLDL-c, and alanine aminotransferase levels and increased the HDL-c level in rats (Fiorini et al., 2017). However, almond oil did not alter the lipid profile in hypercholesterolaemic rats (Reis et al., 2018b). Supplementation with 20 g of baru almond for six weeks reduced TC and LDL-c in mildly hypercholesterolaemic individuals (Bento et al., 2014). The same serving of almond for eight weeks reduced the serum TC, TG, LDL-c, and non-HDL-c levels and increased the HDL-c level in overweight or obese women (Souza et al., 2018). The intake of baru oil (7.2 mL.kg-1) for ten days exerted an antithrombotic effect, reduced platelet aggregation, decreased reactive oxygen species production, and improved vascular function in rats, suggesting its use in the prevention and treatment of cardiovascular conditions (Silva-Luis et al., 2022). The effects of baru almond on the lipid profile may be related to its chemical and nutritional composition. The intake of soluble and insoluble dietary fiber (Wu et al., 2020; Liu et al., 2021) and phytosterols (Salehi et al., 2021) promotes cholesterol adsorption and decreases TC levels. Moreover, unsaturated fatty acids, such as oleic (Piccinin et al., 2019) and linoleic acids (Maki et al., 2018), are already well described in the literature as bioactive compounds that contribute to improving lipid profiles and preventing cardiovascular diseases. Preclinical and clinical studies have reported normal body weight gain or a reduction in adiposity after the consumption of baru almond. After nine weeks, the consumption of almond (15% lipids) promoted less body weight gain and TC and TG levels than did the consumption of Brazil nut (15% lipids) in rats (Fernandes et al., 2015). Araújo et al. (2017) reported a reduction in body weight and glycaemic levels in obese mice fed 8% almond in food for eight weeks. These effects may be related to the presence of alpha-amylase inhibitors in baru almond (Bonavides et al., 2007). Consistent with these findings, the consumption of 20 g of almond per day for eight weeks increased HDL-c and reduced abdominal adiposity in obese women (Souza et al., 2018). Obesity is a chronic disease that can be the cause and/or consequence of other metabolic disorders, such as dyslipidaemia and glycaemic dysregulation (Safaei et al., 2021). Different nutritional and functional interventions can mitigate obesity and associated metabolic disorders. Several bioactive compounds have been isolated from the baru almond and pulp, and their synergistic effects can explain the nutritional and functional benefits already observed for this species. Soluble fiber can absorb water and form a mucilage that promotes satiety, regulates gut microbiota function (Soukoulis et al., 2018), and reduces the bioaccessibility of total lipids, cholesterol, and bile salts simultaneously (Tamargo et al., 2020). Furthermore, it inhibits β-amylase and reduces blood glucose (Liu et al., 2021). Insoluble fiber promotes less body weight gain, decreases serum TC and LDL-c concentrations, improves glucose homeostasis, and is able to modulate the gut microbiota, preventing high-fat diet-induced obesity in rats (Chang et al., 2017). The fats in the diet can influence adipokine levels (Nasir et al., 2021). Leptin, an adipokine produced by adipose tissue, regulates energy intake and metabolism. In individuals with obesity, excess circulating leptin leads to resistance (Mishra et al., 2017). In this case, leptin plays a role as a proinflammatory adipokine (Pérez-Pérez et al., 2017). The intake of PUFAs, eicosapentaenoic acid, and docosahexaenoic acid (DHA) reduces circulating leptin levels (Paz et al., 2021). Moreover, increased DHA intake by obese women was associated with low levels of retinol-binding protein 4 (Nasir et al., 2021), an adipokine related to the development of inflammation and insulin resistance (Majerczyk et al., 2016). Supplementation with polyphenol-rich pulp prevented inflammatory pathway activation, body weight gain, and liver damage in rats (Santamarina et al., 2019a). These anti-inflammatory effects were subsequently confirmed in a placebo-controlled, randomized, double-blind trial with obese adults (Santamarina et al., 2019b). Thus, we believe that the antioxidant and dyslipidaemic properties mediated by the nutritional and phytochemical composition of baru, especially almond, seem to favour obesity and glycaemic control by reducing the activation of inflammatory pathways. 3.11.7. Gastrointestinal regulation (GR) The consumption of a dessert made with almond (14%) for two weeks reversed gastrointestinal effects caused by high milk consumption (>40% in the diet), promoting slowed gastric emptying and preventing the delay of intestinal transit time in healthy rats (Cruz et al., 2019). Bidô et al. (2023) demonstrated beneficial modulation of the faecal microbiota with a reduction in the abundance of the pathogenic genus Clostridia_UFC-014. In another study, a supplementation diary of 5 g of oil for 12 weeks improved bowel habits and reduced the force required for evacuation in haemodialysis patients (Schincaglia et al., 2021). These data demonstrate that baru almond and oil seem to modulate the gastrointestinal system, preventing gastrointestinal disorders caused by dairy desserts (Cruz et al., 2019) and improving the quality of life of haemodialysis patients (Schincaglia et al., 2021). It is suggested that the high fiber content present in baru pulp can favour the modulation of the intestinal microbiota (Silva et al., 2021b). However, to date, no studies have investigated which compounds or compounds are responsible for this effect. Recently, the prebiotic potential of the pulp was reported. The growth of the probiotic strains was observed. Furthermore, pulp increased the abundance of Lactobacillus-Enterococcus, Bifidobacterium, and Bacteroides-Prevotella and improved the production of lactate and metabolites derived from the fermentation of nondigestible carbohydrates, such as propionate, butyrate, and acetate, in the human colonic microbiota (Alves-Santos et al., 2023). 3.11.8. Anti-inflammatory activity (ANA) and memory and anxiolytic-like behaviour (MAB) Rats fed an elaborate hyperlipidic diet supplemented with baru almond (30%) showed reduced levels of cyclooxygenase-2 in the brain, suggesting that this diet is an effective neuroprotector (Campidelli et al., 2022). In a randomized, double-blind, 12-week placebo-controlled clinical study, the intake of baru almond oil (5 g/day) decreased the level of ultrasensitive C-reactive protein in haemodialysis patients (Schincaglia et al., 2020). Recently, the consumption of baru almond (2 g) alone or in combination with goat milk whey (mix) increased the deposition of MUFAs, PUFAs, and oleic acid in the brains of elderly animals, improving memory and anxiolytic-like behaviour in rats during ageing (Bidô et al., 2023). Considering that few studies have explored the anti-inflammatory and behaviour modulator potential of these compounds, additional studies need to be performed to confirm these effects. 4. Conclusion In summary, almond and bark are the parts most commonly used in traditional medicine for various ailments. However, a large number of studies have focused on almond as a hypolipidaemic agent and bark for the treatment of snakebites (Figure 11). In this sense, we observed that several indications of popular use have not yet been investigated, leaving an important field to be explored in future studies, mainly regarding other parts of the plant, such as the pulp, flowers, and leaves. Figure 11 Frequency of indication in popular use and main nutrients, chemical class, and biological activity reported for each part of the plant (number of articles). (A) almond; (B) pulp; (C) bark; (D) leaves. Research and incentives for baru bioprospecting could favour the discovery and development of new products that benefit human nutrition and health. Supplementary Material Supplementary material accompanies this paper. Table S1 Baru studies included in this review. This material is available as part of the online article from https://doi.org/10.1590/1519-6984.278932 References ALARCON R.T. GAGLIERI C. LAMB K.J. NORTH M. BANNACH G. 2020 Spectroscopic characterization and thermal behavior of baru nut and macaw palm vegetable oils and their epoxidized derivatives Industrial Crops and Products 154 112585 http://doi.org/10.1016/j.indcrop.2020.112585 ALARCON, R.T., GAGLIERI, C., LAMB, K.J., NORTH, M. and BANNACH, G., 2020. Spectroscopic characterization and thermal behavior of baru nut and macaw palm vegetable oils and their epoxidized derivatives. Industrial Crops and Products, vol. 154, pp. 112585. http://doi.org/10.1016/j.indcrop.2020.112585. ALMEIDA A.B.D. SILVA A.K.C. LODETE A.R. EGEA M.B. LIMA M.C.P.M. SILVA F.G. 2019 Assessment of chemical and bioactive properties of native fruits from the Brazilian Cerrado Nutrition & Food Science 49 3 381 392 http://doi.org/10.1108/NFS-07-2018-0199 ALMEIDA, A.B.D., SILVA, A.K.C., LODETE, A.R., EGEA, M.B., LIMA, M.C.P.M. and SILVA, F.G., 2019. Assessment of chemical and bioactive properties of native fruits from the Brazilian Cerrado. Nutrition & Food Science, vol. 49, no. 3, pp. 381-392. http://doi.org/10.1108/NFS-07-2018-0199. ALVES A.M. MENDONÇA A.L. CALIARI M. CARDOSO-SANTIAGO R.A. 2010 Avaliação química e física de componentes do baru Dipteryx alata Vog. para estudo da vida de prateleira Pesquisa Agropecuária Tropical 40 3 266 273 http://doi.org/10.5216/pat.v40i3.6343 ALVES, A.M., MENDONÇA, A.L., CALIARI, M. and CARDOSO-SANTIAGO, R.A., 2010. Avaliação química e física de componentes do baru Dipteryx alata Vog. para estudo da vida de prateleira. Pesquisa Agropecuária Tropical, vol. 40, no. 3, pp. 266-273. http://doi.org/10.5216/pat.v40i3.6343. ALVES A.M. FERNANDES D.C. BORGES J.F. SOUSA A.G.O. NAVES M.M.V. 2016 Oilseeds native to the Cerrado have fatty acid profile beneficial for cardiovascular health Revista de Nutrição 29 6 859 866 http://doi.org/10.1590/1678-98652016000600010 ALVES, A.M., FERNANDES, D.C., BORGES, J.F., SOUSA, A.G.O. and NAVES, M.M.V., 2016. Oilseeds native to the Cerrado have fatty acid profile beneficial for cardiovascular health. Revista de Nutrição, vol. 29, no. 6, pp. 859-866. http://doi.org/10.1590/1678-98652016000600010. ALVES N.M.C. SILVA T.A.A. GALLE N.B.C. SILVA I.D.F. SILVA M.I.P. 2021 a Drying kinetics and thermodynamic properties of ‘baru’ almond flours Revista Brasileira de Engenharia Agrícola e Ambiental 25 1 30 36 http://doi.org/10.1590/1807-1929/agriambi.v25n1p30-36 ALVES, N.M.C., SILVA, T.A.A., GALLE, N.B.C., SILVA, I.D.F. and SILVA, M.I.P., 2021a. Drying kinetics and thermodynamic properties of ‘baru’ almond flours. Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 25, no. 1, pp. 30-36. http://doi.org/10.1590/1807-1929/agriambi.v25n1p30-36. ALVES N.M.C. SILVA T.A.A. GALLE N.B.C. SAIKHONEM I.D. 2021 b Moisture adsorption isotherms of baru almond flours Agrária 16 2 1 7 http://doi.org/10.5039/agraria.v16i3a8719 ALVES, N.M.C., SILVA, T.A.A., GALLE, N.B.C. and SAIKHONEM, I.D., 2021b. Moisture adsorption isotherms of baru almond flours. Agrária, vol. 16, no. 2, pp. 1-7. http://doi.org/10.5039/agraria.v16i3a8719. ALVES-SANTOS A.M. SAMPAIO K.B. LIMA M.S. COELHO A.S.G. SOUZA E.L. NAVES M.M.V. 2023 Chemical composition and prebiotic activity of baru Dipteryx alata Vog. pulp on probiotic strains and human colonic microbiota Food Research International 164 112366 http://doi.org/10.1016/j.foodres.2022.112366 36737953 ALVES-SANTOS, A.M., SAMPAIO, K.B., LIMA, M.S., COELHO, A.S.G., SOUZA, E.L. and NAVES, M.M.V., 2023. Chemical composition and prebiotic activity of baru Dipteryx alata Vog. pulp on probiotic strains and human colonic microbiota. Food Research International, vol. 164, pp. 112366. http://doi.org/10.1016/j.foodres.2022.112366. PMid:36737953. ARACAVA K.K. CAPELLINI M.C. GONÇALVES D. MORE I.D.S. MARGOTO C.M. RODRIGUES C.E.C. 2022 Valorization of the baru Dipteryx alata Vog. processing chain: technological properties of defatted nut flour and oil solubility in ethanol and isopropanol Food Chemistry 383 132587 http://doi.org/10.1016/j.foodchem.2022.132587 35247726 ARACAVA, K.K., CAPELLINI, M.C., GONÇALVES, D., MORE, I.D.S., MARGOTO, C.M. and RODRIGUES, C.E.C., 2022. Valorization of the baru Dipteryx alata Vog. processing chain: technological properties of defatted nut flour and oil solubility in ethanol and isopropanol. Food Chemistry, vol. 383, pp. 132587. http://doi.org/10.1016/j.foodchem.2022.132587. PMid:35247726. ARAÚJO A.C.F. ROCHA J.C. PARAISO A.F. FERREIRA A.V.M. SANTOS S.H.S. PINHO L. 2017 Consumption of baru nuts Dipteryx alata in the treatment of obese mice Ciência Rural 47 2 1 4 http://doi.org/10.1590/0103-8478cr20151337 ARAÚJO, A.C.F., ROCHA, J.C., PARAISO, A.F., FERREIRA, A.V.M., SANTOS, S.H.S. and PINHO, L., 2017. Consumption of baru nuts Dipteryx alata in the treatment of obese mice. Ciência Rural, vol. 47, no. 2, pp. 1-4. http://doi.org/10.1590/0103-8478cr20151337. ARAUJO W.O. SANTOS D.M. ASCHERI D.P.R. 2013 Otimização do processo de extração de açúcares redutores da polpa do baru Revista Agrotecnologia 4 2 118 133 http://doi.org/10.12971/2179-5959/agrotecnologia.v4n2p118-133 ARAUJO, W.O., SANTOS, D.M. and ASCHERI, D.P.R., 2013. Otimização do processo de extração de açúcares redutores da polpa do baru. Revista Agrotecnologia, vol. 4, no. 2, pp. 118-133. http://doi.org/10.12971/2179-5959/agrotecnologia.v4n2p118-133. ARELHANO L.E. CANDIDO C.J. GUIMARÃES R.C.A. PRATES M.F.O. 2019 Nutritive, bioactive and sensory characterization of frozen yogurt with added baru nuts Interações 20 1 257 265 http://doi.org/10.20435/inter.v0i0.1648 ARELHANO, L.E., CANDIDO, C.J., GUIMARÃES, R.C.A. and PRATES, M.F.O., 2019. Nutritive, bioactive and sensory characterization of frozen yogurt with added baru nuts. Interações, vol. 20, no. 1, pp. 257-265. http://doi.org/10.20435/inter.v0i0.1648. ARRUDA-SILVA T.A. ALVES N.M.C. GALLE N.B.C. SANTOS S.B. ANDREATTA E. 2022 Thermodynamic properties of the water adsorption process in baru flours Engenharia Agrícola 42 2 e20200141 http://doi.org/10.1590/1809-4430-eng.agric.v42n2e20200141/2022 ARRUDA-SILVA, T.A., ALVES, N.M.C., GALLE, N.B.C., SANTOS, S.B. and ANDREATTA, E., 2022. Thermodynamic properties of the water adsorption process in baru flours. Engenharia Agrícola, vol. 42, no. 2, e20200141. http://doi.org/10.1590/1809-4430-eng.agric.v42n2e20200141/2022. AŞKIN Ö. UZUNÇAKMAK T.K.Ü. ALTUNKALEM N. TÜZÜN Y. 2021 Vitamin deficiencies/hypervitaminosis and the skin Clinics in Dermatology 39 5 847 857 http://doi.org/10.1016/j.clindermatol.2021.05.010 34785012 AŞKIN, Ö., UZUNÇAKMAK, T.K.Ü., ALTUNKALEM, N. and TÜZÜN, Y., 2021. Vitamin deficiencies/hypervitaminosis and the skin. Clinics in Dermatology, vol. 39, no. 5, pp. 847-857. http://doi.org/10.1016/j.clindermatol.2021.05.010. PMid:34785012. BAI G. MA C. CHEN X. 2021 Phytosterols in edible oil: Distribution, analysis and variation during processing Grain & Oil Science and Technology 4 1 33 44 http://doi.org/10.1016/j.gaost.2020.12.003 BAI, G., MA, C. and CHEN, X., 2021. Phytosterols in edible oil: Distribution, analysis and variation during processing. Grain & Oil Science and Technology, vol. 4, no. 1, pp. 33-44. http://doi.org/10.1016/j.gaost.2020.12.003. BARIZÃO E.O. BOEING J.S. ROTTA E.M. VOLPATO H. NAKAMURA C.V. MALDANER L. VISENTAINER J.V. 2021 Phenolic composition of Dipteryx alata Vogel pulp + peel and its antioxidant and cytotoxic properties Journal of the Brazilian Chemical Society 32 12 2206 2214 http://doi.org/10.21577/0103-5053.20210112 BARIZÃO, E.O., BOEING, J.S., ROTTA, E.M., VOLPATO, H., NAKAMURA, C.V., MALDANER, L. and VISENTAINER, J.V., 2021. Phenolic composition of Dipteryx alata Vogel pulp + peel and its antioxidant and cytotoxic properties. Journal of the Brazilian Chemical Society, vol. 32, no. 12, pp. 2206-2214. http://doi.org/10.21577/0103-5053.20210112. BARROS H.E.A.D. ALEXANDRE A.C.S. CAMPOLINA G.A. ALVARENGA G.F. SILVA L.M.S.F. NATARELLI C.V.L. CARVALHO E.E.N. VILAS BOAS E.V.B. 2021 Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysis Lebensmittel-Wissenschaft + Technologie 152 112372 http://doi.org/10.1016/j.lwt.2021.112372 BARROS, H.E.A.D., ALEXANDRE, A.C.S., CAMPOLINA, G.A., ALVARENGA, G.F., SILVA, L.M.S.F., NATARELLI, C.V.L., CARVALHO, E.E.N. and VILAS BOAS, E.V.B., 2021. Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysis. Lebensmittel-Wissenschaft + Technologie, vol. 152, pp. 112372. http://doi.org/10.1016/j.lwt.2021.112372. BENTO A.P.N. COMINETTI C. SIMÕES A. FILHO NAVES M.M.V. 2014 Baru almond improves lipid profile in mildly hypercholesterolemic subjects: a randomized, controlled, crossover study Nutrition, Metabolism, and Cardiovascular Diseases 24 12 1330 1336 http://doi.org/10.1016/j.numecd.2014.07.002 25149894 BENTO, A.P.N., COMINETTI, C., SIMÕES FILHO, A. and NAVES, M.M.V., 2014. Baru almond improves lipid profile in mildly hypercholesterolemic subjects: a randomized, controlled, crossover study. Nutrition, Metabolism, and Cardiovascular Diseases, vol. 24, no. 12, pp. 1330-1336. http://doi.org/10.1016/j.numecd.2014.07.002. PMid:25149894. BESSA N.G.F. BORGES J.C.M. BESERRA F.P. CARVALHO R.H.A. PEREIRA M.A.B. FAGUNDES R. CAMPOS S.L. RIBEIRO L.U. QUIRINO M.S. CHAGAS A.F. JUNIOR ALVES A. 2013 Prospecção fitoquímica preliminar de plantas nativas do cerrado de uso popular medicinal pela comunidade rural do assentamento Vale Verde - Tocantins Revista Brasileira de Plantas Medicinais 15 4 692 707 http://doi.org/10.1590/S1516-05722013000500010 BESSA, N.G.F., BORGES, J.C.M., BESERRA, F.P., CARVALHO, R.H.A., PEREIRA, M.A.B., FAGUNDES, R., CAMPOS, S.L., RIBEIRO, L.U., QUIRINO, M.S., CHAGAS JUNIOR, A.F. and ALVES, A., 2013. Prospecção fitoquímica preliminar de plantas nativas do cerrado de uso popular medicinal pela comunidade rural do assentamento Vale Verde - Tocantins. Revista Brasileira de Plantas Medicinais, vol. 15, no. 4, pp. 692-707. http://doi.org/10.1590/S1516-05722013000500010. BIDÔ R.C.A. PEREIRA D.E. ALVES M.C. DUTRA L.M.G. COSTA A.C.S. VIERA V.B. ARAÚJO W.J. LEITE E.L. OLIVEIRA C.J.B. ALVES A.F. FREITAS J.C.R. MARTINS A.C.S. CIRINO J.A. SOARES J.K.B. 2023 Mix of almond baru (Dipteryx alata Vog.) and goat whey modulated intestinal microbiota, improved memory and induced anxiolytic like behavior in aged rats Journal of Psychiatric Research 164 98 117 http://doi.org/10.1016/j.jpsychires.2023.05.046 37331263 BIDÔ, R.C.A., PEREIRA, D.E., ALVES, M.C., DUTRA, L.M.G., COSTA, A.C.S., VIERA, V.B., ARAÚJO, W.J., LEITE, E.L., OLIVEIRA, C.J.B., ALVES, A.F., FREITAS, J.C.R., MARTINS, A.C.S., CIRINO, J.A. and SOARES, J.K.B., 2023. Mix of almond baru (Dipteryx alata Vog.) and goat whey modulated intestinal microbiota, improved memory and induced anxiolytic like behavior in aged rats. Journal of Psychiatric Research, vol. 164, pp. 98-117. http://doi.org/10.1016/j.jpsychires.2023.05.046. PMid:37331263. BIESKI I.G.C. SANTOS F.R. OLIVEIRA R.M. ESPINOSA M.M. MACEDO M. ALBUQUERQUE U.P. MARTINS D.T.O. 2012 Ethnopharmacology of medicinal plants of the Pantanal region Mato Grosso, Brazil Evidence-Based Complementary and Alternative Medicine 2012 272749 http://doi.org/10.1155/2012/272749 22474496 BIESKI, I.G.C., SANTOS, F.R., OLIVEIRA, R.M., ESPINOSA, M.M., MACEDO, M., ALBUQUERQUE, U.P. and MARTINS, D.T.O., 2012. Ethnopharmacology of medicinal plants of the Pantanal region Mato Grosso, Brazil. Evidence-Based Complementary and Alternative Medicine, vol. 2012, pp. 272749. http://doi.org/10.1155/2012/272749. PMid:22474496. BISPO T.W. BRAGA C.L. 2021 A cadeia produtiva do baru. MEDINA G.S. CRUZ J.E. Estudos em agronegócio: participação brasileira nas cadeias produtivas. Goiânia Kelps 337 339 BISPO, T.W. and BRAGA, C.L., 2021. A cadeia produtiva do baru. In: G.S. MEDINA and J.E. CRUZ, eds. Estudos em agronegócio: participação brasileira nas cadeias produtivas. Goiânia: Kelps, pp. 337-339. BONAVIDES K.B. PELEGRINI P.B. LAUMANN R.A. GROSSI-DE-SÁ M.F. BLOCH C. JUNIOR MELO J.A.T. QUIRINO B.F. NORONHA E.F. FRANCO O.L. 2007 Molecular identification of four different alpha-amylase inhibitors from baru Dipteryx alata seeds with activity toward insect enzymes Journal of Biochemistry and Molecular Biology 40 4 494 500 http://doi.org/10.5483/BMBRep.2007.40.4.494 17669264 BONAVIDES, K.B., PELEGRINI, P.B., LAUMANN, R.A., GROSSI-DE-SÁ, M.F., BLOCH JUNIOR, C., MELO, J.A.T., QUIRINO, B.F., NORONHA, E.F. and FRANCO, O.L., 2007. Molecular identification of four different alpha-amylase inhibitors from baru Dipteryx alata seeds with activity toward insect enzymes. Journal of Biochemistry and Molecular Biology, vol. 40, no. 4, pp. 494-500. http://doi.org/10.5483/BMBRep.2007.40.4.494. PMid:17669264. BORGES T.H.P. RODRIGUES N. SOUZA A.M.D. PEREIRA J.A. 2014 Effect of different extraction conditions on the antioxidant potential of baru almonds Dipteryx alata Vog.: comparison to common nuts from Brazil Journal of Food and Nutrition Research 53 2 180 188 BORGES, T.H.P., RODRIGUES, N., SOUZA, A.M.D. and PEREIRA, J.A., 2014. Effect of different extraction conditions on the antioxidant potential of baru almonds Dipteryx alata Vog.: comparison to common nuts from Brazil. Journal of Food and Nutrition Research, vol. 53, no. 2, pp. 180-188. BORGES T.H.P. MALHEIRO R. SOUZA A.M.D. CASAL S. PEREIRA J.A. 2015 Microwave heating induces changes in the physicochemical properties of baru Dipteryx alata Vog. and soybean crude oils European Journal of Lipid Science and Technology 117 4 503 513 http://doi.org/10.1002/ejlt.201400351 BORGES, T.H.P., MALHEIRO, R., SOUZA, A.M.D., CASAL, S. and PEREIRA, J.A., 2015. Microwave heating induces changes in the physicochemical properties of baru Dipteryx alata Vog. and soybean crude oils. European Journal of Lipid Science and Technology, vol. 117, no. 4, pp. 503-513. http://doi.org/10.1002/ejlt.201400351. BOUDOU F. BENDAHMANE-SALMI M. BENABDERRAHMANE M. BELAKREDAR A. BERROUKCHE A. ZAOUI O. 2019 Assessment of a new approach of metal ions chelation by Gallic acid Journal of Desalination and Water Purification 15 3 6 BOUDOU, F., BENDAHMANE-SALMI, M., BENABDERRAHMANE, M., BELAKREDAR, A., BERROUKCHE, A. and ZAOUI, O., 2019. Assessment of a new approach of metal ions chelation by Gallic acid. Journal of Desalination and Water Purification, vol. 15, pp. 3-6. BRASIL 2020 viewed 2 February 2024 Instrução Normativa - IN nº 475, de 8 de outubro de 2020 online Diário Oficial da República Federativa do Brasil Brasilia 23 11 Available from: https://antigo.anvisa.gov.br/documents/10181/3882585/%283%29IN_75_2020_COMP.pdf/e5a331f2-86db-4bc8-9f39-afb6c1d7e19f BRASIL, 2020 [viewed 2 February 2024]. Instrução Normativa - IN nº 475, de 8 de outubro de 2020 [online]. Diário Oficial da República Federativa do Brasil, Brasilia, 23 nov. Available from: https://antigo.anvisa.gov.br/documents/10181/3882585/%283%29IN_75_2020_COMP.pdf/e5a331f2-86db-4bc8-9f39-afb6c1d7e19f BRASIL 2021 a viewed 25 February 2023 Portaria Interministerial nº 10, de 21 de julho de 2021 online Diário Oficial da República Federativa do Brasil Brasilia 22 7 Available from: https://in.gov.br/en/web/dou/-/portaria-interministerial-mapa/mma-n-10-de-21-de-julho-de-2021-333502918/ BRASIL, 2021a [viewed 25 February 2023]. Portaria Interministerial nº 10, de 21 de julho de 2021 [online]. Diário Oficial da República Federativa do Brasil, Brasilia, 22 jul. Available from: https://in.gov.br/en/web/dou/-/portaria-interministerial-mapa/mma-n-10-de-21-de-julho-de-2021-333502918/ BRASIL 2021 b viewed 2 February 2024 Resolução da Diretoria Colegiada - RDC nº 466, de 10 de fevereiro de 2021 online Diário Oficial da República Federativa do Brasil Brasilia 17 2 Available from: https://antigo.anvisa.gov.br/documents/10181/5918056/RDC_466_2021_COMP.pdf/9b6e0905-5198-4d53-8ecb-09fd14237bd8 BRASIL, 2021b [viewed 2 February 2024]. Resolução da Diretoria Colegiada - RDC nº 466, de 10 de fevereiro de 2021 [online]. Diário Oficial da República Federativa do Brasil, Brasilia, 17 fev. Available from: https://antigo.anvisa.gov.br/documents/10181/5918056/RDC_466_2021_COMP.pdf/9b6e0905-5198-4d53-8ecb-09fd14237bd8 BRASIL 2023 viewed 25 February 2023 Portaria Interministerial nº 7.228, de 22 de janeiro de 2023 online Diário Oficial da República Federativa do Brasil Brasilia 13 7 Available from: https://www.sinj.df.gov.br/sinj/Norma/a9f2e0352919444292fa2ff8de262029/Lei_7228_2023.html/ BRASIL, 2023 [viewed 25 February 2023]. Portaria Interministerial nº 7.228, de 22 de janeiro de 2023 [online]. Diário Oficial da República Federativa do Brasil, Brasilia, 13 jul. Available from: https://www.sinj.df.gov.br/sinj/Norma/a9f2e0352919444292fa2ff8de262029/Lei_7228_2023.html/ BRASIL 2024 a viewed 15 February 2024 Biodiversidade do Cerrado online Available from: https://www.icmbio.gov.br/cbc/conservacao-da-biodiversidade/biodiversidade.html BRASIL, 2024a [viewed 15 February 2024]. Biodiversidade do Cerrado [online]. Available from: https://www.icmbio.gov.br/cbc/conservacao-da-biodiversidade/biodiversidade.html BRASIL 2024 b viewed 15 February 2024 O bioma Cerrado online Available from: https://antigo.mma.gov.br/biomas/cerrado.html/ BRASIL, 2024b [viewed 15 February 2024]. O bioma Cerrado [online]. Available from: https://antigo.mma.gov.br/biomas/cerrado.html/ BUENO N.R. MARTINS L.A. SILVA M.S. CAMPOS E.P. 2020 Plantas medicinais utilizadas para problemas do sistema circulatório em Rondonópolis MT Biodiversidade 19 4 23 31 BUENO, N.R., MARTINS, L.A., SILVA, M.S. and CAMPOS, E.P., 2020. Plantas medicinais utilizadas para problemas do sistema circulatório em Rondonópolis MT. Biodiversidade, vol. 19, no. 4, pp. 23-31. CAETANO K.A. CEOTTO J.M. RIBEIRO A.P.B. MORAIS F.P.R. FERRARI R.A. PACHECO M.T.B. CAPITANI C.D. 2017 Effect of baru Dipteryx alata Vog. addition on the composition and nutritional quality of cookies Food Science and Technology 37 2 239 245 http://doi.org/10.1590/1678-457x.19616 CAETANO, K.A., CEOTTO, J.M., RIBEIRO, A.P.B., MORAIS, F.P.R., FERRARI, R.A., PACHECO, M.T.B. and CAPITANI, C.D., 2017. Effect of baru Dipteryx alata Vog. addition on the composition and nutritional quality of cookies. Food Science and Technology, vol. 37, no. 2, pp. 239-245. http://doi.org/10.1590/1678-457x.19616. CAMPIDELLI M.L.L. CARNEIRO J. SOUZA E.C. MAGALHÃES M. KONIG I. BRAGA M. ORLANDO T. SIMÃO S.D. LIMA L.I. VILAS BOAS E.V.B. 2019 Impact of the drying process on the quality and physicochemical and mineral composition of baru almonds Dipteryx Alata Vog Journal of Culinary Science & Technology 18 3 231 243 http://doi.org/10.1080/15428052.2019.1573710 CAMPIDELLI, M.L.L., CARNEIRO, J., SOUZA, E.C., MAGALHÃES, M., KONIG, I., BRAGA, M., ORLANDO, T., SIMÃO, S.D., LIMA, L.I. and VILAS BOAS, E.V.B., 2019. Impact of the drying process on the quality and physicochemical and mineral composition of baru almonds Dipteryx Alata Vog. Journal of Culinary Science & Technology, vol. 18, no. 3, pp. 231-243. http://doi.org/10.1080/15428052.2019.1573710. CAMPIDELLI M.L.L. CARNEIRO J.D.S. SOUZA E.C. MAGALHÃES M.F. NUNES E.E.C. FARIA P.B. FRANCO M. VILAS BOAS E.V.B. 2020 a Effects of the drying process on the fatty acid content, phenolic profile, tocopherols and antioxidant activity of baru almonds (Dipteryx alata Vog.) Grasas y Aceites 71 1 e343 http://doi.org/10.3989/gya.1170182 CAMPIDELLI, M.L.L., CARNEIRO, J.D.S., SOUZA, E.C., MAGALHÃES, M.F., NUNES, E.E.C., FARIA, P.B., FRANCO, M. and VILAS BOAS, E.V.B., 2020a. Effects of the drying process on the fatty acid content, phenolic profile, tocopherols and antioxidant activity of baru almonds (Dipteryx alata Vog.). Grasas y Aceites, vol. 71, no. 1, e343. http://doi.org/10.3989/gya.1170182. CAMPIDELLI M.L.L. CARNEIRO J.D.S. SOUZA E.C. MAGALHÃES M.F. REIS G.L. VILAS BOAS E.V.B. 2020 b Fatty acid profile, mineral content and bioactive compounds of cocoa spreads supplemented with baru almonds Dipteryx alata Vog Grasas y Aceites 71 4 e382 http://doi.org/10.3989/gya.0809192 CAMPIDELLI, M.L.L., CARNEIRO, J.D.S., SOUZA, E.C., MAGALHÃES, M.F., REIS, G.L. and VILAS BOAS, E.V.B., 2020b. Fatty acid profile, mineral content and bioactive compounds of cocoa spreads supplemented with baru almonds Dipteryx alata Vog. Grasas y Aceites, vol. 71, no. 4, e382. http://doi.org/10.3989/gya.0809192. CAMPIDELLI M.L.L. CARNEIRO J.D.S. SOUZA E.C. VILAS BOAS E.V.B. BERTOLUCCI S.K.V. AAZZA S. OLIVEIRA R.R. 2022 Baru almonds Dipteryx alata Vog. and baru almond paste promote metabolic modulation associated with antioxidant, anti-inflammatory, and neuroprotective effects Innovative Food Science & Emerging Technologies 80 103068 http://doi.org/10.1016/j.ifset.2022.103068 CAMPIDELLI, M.L.L., CARNEIRO, J.D.S., SOUZA, E.C., VILAS BOAS, E.V.B., BERTOLUCCI, S.K.V., AAZZA, S. and OLIVEIRA, R.R., 2022. Baru almonds Dipteryx alata Vog. and baru almond paste promote metabolic modulation associated with antioxidant, anti-inflammatory, and neuroprotective effects. Innovative Food Science & Emerging Technologies, vol. 80, pp. 103068. http://doi.org/10.1016/j.ifset.2022.103068. CARDOSO B.R. APOLINÁRIO D. BANDEIRA V.S. BUSSE A.L. MAGALDI M.R. JACOB-FILHO W. COZZOLINO S.M.F. 2016 Effects of Brazil nut consumption on selenium status and cognitive performance in older adults with mild cognitive impairment: a randomized controlled pilot trial European Journal of Nutrition 55 1 107 116 http://doi.org/10.1007/s00394-014-0829-2 25567069 CARDOSO, B.R., APOLINÁRIO, D., BANDEIRA, V.S., BUSSE, A.L., MAGALDI, M.R., JACOB-FILHO, W. and COZZOLINO, S.M.F., 2016. Effects of Brazil nut consumption on selenium status and cognitive performance in older adults with mild cognitive impairment: a randomized controlled pilot trial. European Journal of Nutrition, vol. 55, no. 1, pp. 107-116. http://doi.org/10.1007/s00394-014-0829-2. PMid:25567069. CARVALHO A.P.A. CONTE-JUNIOR C.A. 2021 Health benefits of phytochemicals from Brazilian native foods and plants: antioxidant, antimicrobial, anti-cancer, and risk factors of metabolic/endocrine disorders control Trends in Food Science & Technology 111 534 548 http://doi.org/10.1016/j.tifs.2021.03.006 CARVALHO, A.P.A. and CONTE-JUNIOR, C.A., 2021. Health benefits of phytochemicals from Brazilian native foods and plants: antioxidant, antimicrobial, anti-cancer, and risk factors of metabolic/endocrine disorders control. Trends in Food Science & Technology, vol. 111, pp. 534-548. http://doi.org/10.1016/j.tifs.2021.03.006. CARVALHO C.S. LIMA H.C. CARDOSO D.B.O.S. 2022 viewed 20 February 2023 Dipteryx online Available from: https://floradobrasil.jbrj.gov.br/FB29628/ CARVALHO, C.S., LIMA, H.C. and CARDOSO, D.B.O.S., 2022 [viewed 20 February 2023]. Dipteryx [online]. Available from: https://floradobrasil.jbrj.gov.br/FB29628/ CHANG S. CUI X. GUO M. TIAN Y. XU W. HUANG K. ZHANG Y. 2017 Insoluble dietary fiber from pear pomace can prevent high-fat diet-induced obesity in rats mainly by improving the structure of the gut microbiota Journal of Microbiology and Biotechnology 27 4 856 867 http://doi.org/10.4014/jmb.1610.10058 28173692 CHANG, S., CUI, X., GUO, M., TIAN, Y., XU, W., HUANG, K. and ZHANG, Y., 2017. Insoluble dietary fiber from pear pomace can prevent high-fat diet-induced obesity in rats mainly by improving the structure of the gut microbiota. Journal of Microbiology and Biotechnology, vol. 27, no. 4, pp. 856-867. http://doi.org/10.4014/jmb.1610.10058. PMid:28173692. CHAÑI-PAUCAR L.O. JOHNER J.C.F. HATAMI T. MEIRELES M.A.A. 2022 Simultaneous integration of supercritical fluid extraction and mechanical cold pressing for the extraction from baru seed The Journal of Supercritical Fluids 183 1 105553 http://doi.org/10.1016/j.supflu.2022.105553 CHAÑI-PAUCAR, L.O., JOHNER, J.C.F., HATAMI, T. and MEIRELES, M.A.A., 2022. Simultaneous integration of supercritical fluid extraction and mechanical cold pressing for the extraction from baru seed. The Journal of Supercritical Fluids, vol. 183, no. 1, pp. 105553. http://doi.org/10.1016/j.supflu.2022.105553. CHAÑI-PAUCAR L.O. OSORIO-TOBÓN J.F. JOHNER J.C.F. MEIRELES M.A.A. 2021 A comparative and economic study of the extraction of oil from baru Dipteryx alata seeds by supercritical CO2 with and without mechanical pressing Heliyon 7 1 e05971 http://doi.org/10.1016/j.heliyon.2021.e05971 33537470 CHAÑI-PAUCAR, L.O., OSORIO-TOBÓN, J.F., JOHNER, J.C.F. and MEIRELES, M.A.A., 2021. A comparative and economic study of the extraction of oil from baru Dipteryx alata seeds by supercritical CO2 with and without mechanical pressing. Heliyon, vol. 7, no. 1, e05971. http://doi.org/10.1016/j.heliyon.2021.e05971. PMid:33537470. CILLA A. BOSCH L. BARBERÁ R. ALEGRÍA A. 2018 Effect of processing on the bioaccessibility of bioactive compounds - A review focusing on carotenoids, minerals, ascorbic acid, tocopherols and polyphenols Journal of Food Composition and Analysis 68 3 15 http://doi.org/10.1016/j.jfca.2017.01.009 CILLA, A., BOSCH, L., BARBERÁ, R. and ALEGRÍA, A., 2018. Effect of processing on the bioaccessibility of bioactive compounds - A review focusing on carotenoids, minerals, ascorbic acid, tocopherols and polyphenols. Journal of Food Composition and Analysis, vol. 68, pp. 3-15. http://doi.org/10.1016/j.jfca.2017.01.009. COCO J.C. ATAIDE J.A. SAKE J.A. TAMBOURGI E.B. EHRHARDT C. MAZZOLA P.V. 2021 In vitro antioxidant and wound healing properties of baru nut extract Dipteryx alata Vog. in pulmonary epithelial cells for therapeutic application in chronic pulmonary obstructive disease. COPD Natural Product Research 7 17 4475 4481 http://doi.org/10.1080/14786419.2021.1984909 34618614 COCO, J.C., ATAIDE, J.A., SAKE, J.A., TAMBOURGI, E.B., EHRHARDT, C. and MAZZOLA, P.V., 2021. In vitro antioxidant and wound healing properties of baru nut extract Dipteryx alata Vog. in pulmonary epithelial cells for therapeutic application in chronic pulmonary obstructive disease. COPD. Natural Product Research, vol. 7, no. 17, pp. 4475-4481. http://doi.org/10.1080/14786419.2021.1984909. PMid:34618614. COUTINHO G.S.M. RIBEIRO A.E.C. PRADO P.M.C. OLIVEIRA E.R. CARELI-GONDIM I. OLIVEIRA A.R. SOARES M.S. JÚNIOR CALIARI M. VILAS BOAS E.V.B. 2021 Green banana starch enhances physicochemical and sensory quality of baru almond-based fermented product with probiotic bacteria International Journal of Food Science & Technology 56 10 5097 5106 http://doi.org/10.1111/ijfs.15260 COUTINHO, G.S.M., RIBEIRO, A.E.C., PRADO, P.M.C., OLIVEIRA, E.R., CARELI-GONDIM, I., OLIVEIRA, A.R., SOARES JÚNIOR, M.S., CALIARI, M. and VILAS BOAS, E.V.B., 2021. Green banana starch enhances physicochemical and sensory quality of baru almond-based fermented product with probiotic bacteria. International Journal of Food Science & Technology, vol. 56, no. 10, pp. 5097-5106. http://doi.org/10.1111/ijfs.15260. CZEDER L.P. FERNANDES D.C. FREITAS J.B. NAVES M.M. 2012 Baru almonds from different regions of the Brazilian Savanna: implications on physical and nutritional characteristics Agricultural Sciences 3 5 745 754 http://doi.org/10.4236/as.2012.35090 CZEDER, L.P., FERNANDES, D.C., FREITAS, J.B. and NAVES, M.M., 2012. Baru almonds from different regions of the Brazilian Savanna: implications on physical and nutritional characteristics. Agricultural Sciences, vol. 3, no. 5, pp. 745-754. http://doi.org/10.4236/as.2012.35090. CRUZ K.S.D. SILVA M.A.D. FREITAS O.D.D. NEVES V.A. 2011 Partial characterization of proteins from baru (Dipteryx alata Vog) seeds Journal of the Science of Food and Agriculture 91 11 2006 2012 http://doi.org/10.1002/jsfa.4410 21484809 CRUZ, K.S.D., SILVA, M.A.D., FREITAS, O.D.D. and NEVES, V.A., 2011. Partial characterization of proteins from baru (Dipteryx alata Vog) seeds. Journal of the Science of Food and Agriculture, vol. 91, no. 11, pp. 2006-2012. http://doi.org/10.1002/jsfa.4410. PMid:21484809. CRUZ P.N.D. GAMA L.A. AMÉRICO M.F. PERTUZATTI P.B. 2019 Baru (Dipteryx alata Vogel) almond and dairy desserts with baru regulates gastrointestinal transit in rats Journal of Food Processing and Preservation 43 11 1 8 http://doi.org/10.1111/jfpp.14167 CRUZ, P.N.D., GAMA, L.A., AMÉRICO, M.F. and PERTUZATTI, P.B., 2019. Baru (Dipteryx alata Vogel) almond and dairy desserts with baru regulates gastrointestinal transit in rats. Journal of Food Processing and Preservation, vol. 43, no. 11, pp. 1-8. http://doi.org/10.1111/jfpp.14167. DAS G. SHARMA A. SARKAR P.K. 2022 Conventional and emerging processing techniques for the post-harvest reduction of antinutrients in edible legumes Applied Food Research 2 1 100112 http://doi.org/10.1016/j.afres.2022.100112 DAS, G., SHARMA, A. and SARKAR, P.K., 2022. Conventional and emerging processing techniques for the post-harvest reduction of antinutrients in edible legumes. Applied Food Research, vol. 2, no. 1, pp. 100112. http://doi.org/10.1016/j.afres.2022.100112. DOLEY J. 2017 Vitamins and minerals in older adults: causes, diagnosis, and treatment of deficiency, nutrition and functional foods for healthy aging. WATSON R.R. Nutrition and functional foods for healthy aging. London Academic Press 125 137 http://doi.org/10.1016/B978-0-12-805376-8.00014-9 DOLEY, J., 2017. Vitamins and minerals in older adults: causes, diagnosis, and treatment of deficiency, nutrition and functional foods for healthy aging. In: R.R. WATSON, ed. Nutrition and functional foods for healthy aging. London: Academic Press, pp. 125-137. http://doi.org/10.1016/B978-0-12-805376-8.00014-9. DZOYEM J.P. MELONG R. TSAMO A.T. TCHINDA A.T. KAPCHE D.G.W.F. NGADJUI B.T. MCGAW L.J. ELOFF J.N. 2017 Cytotoxicity, antimicrobial and antioxidant activity of eight compounds isolated from Entada abyssinica (Fabaceae) BMC Research Notes 10 1 118 http://doi.org/10.1186/s13104-017-2441-z 28264698 DZOYEM, J.P., MELONG, R., TSAMO, A.T., TCHINDA, A.T., KAPCHE, D.G.W.F., NGADJUI, B.T., MCGAW, L.J. and ELOFF, J.N., 2017. Cytotoxicity, antimicrobial and antioxidant activity of eight compounds isolated from Entada abyssinica (Fabaceae). BMC Research Notes, vol. 10, no. 1, pp. 118. http://doi.org/10.1186/s13104-017-2441-z. PMid:28264698. EGEA M.B. TAKEUCHI K.P. 2020 Bioactive compounds in baru almond (Dipteryx alata Vogel): nutritional composition and health effects. MURTHY H. BAPAT V. Bioactive compounds in underutilized fruits and nuts. Cham Springer 289 302 Reference Series in Phytochemistry http://doi.org/10.1007/978-3-030-30182-8_17 EGEA, M.B. and TAKEUCHI, K.P., 2020. Bioactive compounds in baru almond (Dipteryx alata Vogel): nutritional composition and health effects. In: H. MURTHY and V. BAPAT, eds. Bioactive compounds in underutilized fruits and nuts. Cham: Springer, pp. 289-302. Reference Series in Phytochemistry. http://doi.org/10.1007/978-3-030-30182-8_17. EL-MEGHARBEL S.M. HAMZA R.Z. 2022 Synthesis, spectroscopic characterizations, conductometric titration and investigation of potent antioxidant activities of gallic acid complexes with Ca (II), Cu (II), Zn(III), Cr(III) and Se (IV) metal ions Journal of Molecular Liquids 358 119196 http://doi.org/10.1016/j.molliq.2022.119196 EL-MEGHARBEL, S.M. and HAMZA, R.Z., 2022. Synthesis, spectroscopic characterizations, conductometric titration and investigation of potent antioxidant activities of gallic acid complexes with Ca (II), Cu (II), Zn(III), Cr(III) and Se (IV) metal ions. Journal of Molecular Liquids, vol. 358, pp. 119196. http://doi.org/10.1016/j.molliq.2022.119196. ERUKAINURE O.L. IJOMONE O.M. CHUKWUMA C.I. XIAO X. SALAU V.F. ISLAM M.S. 2020 Dacryodes edulis G. Don H.J. Lam modulates glucose metabolism, cholinergic activities and NRF2 expression, while suppressing oxidative stress and dyslipidemia in diabetic rats Journal of Ethnopharmacology 255 112744 http://doi.org/10.1016/j.jep.2020.112744 32165174 ERUKAINURE, O.L., IJOMONE, O.M., CHUKWUMA, C.I., XIAO, X., SALAU, V.F. and ISLAM, M.S., 2020. Dacryodes edulis G. Don H.J. Lam modulates glucose metabolism, cholinergic activities and NRF2 expression, while suppressing oxidative stress and dyslipidemia in diabetic rats. Journal of Ethnopharmacology, vol. 255, pp. 112744. http://doi.org/10.1016/j.jep.2020.112744. PMid:32165174. ESTEVES-PEDRO N.M. BORIM T. NAZATO V.S. SILVA M.G. LOPES P.S. SANTOS M.G. DAL BELO C.A. PRIMILA CARDOSO C.R. VARANDA E.A. GROPPO F.C. GERENUTTI M. OSHIMA-FRANCO Y. 2012 In vitro and in vivo safety evaluation of Dipteryx alata Vogel extract BMC Complementary and Alternative Medicine 12 9 9 http://doi.org/10.1186/1472-6882-12-9 22305153 ESTEVES-PEDRO, N.M., BORIM, T., NAZATO, V.S., SILVA, M.G., LOPES, P.S., SANTOS, M.G., DAL BELO, C.A., PRIMILA CARDOSO, C.R., VARANDA, E.A., GROPPO, F.C., GERENUTTI, M. and OSHIMA-FRANCO, Y., 2012. In vitro and in vivo safety evaluation of Dipteryx alata Vogel extract. BMC Complementary and Alternative Medicine, vol. 12, no. 9, pp. 9. http://doi.org/10.1186/1472-6882-12-9. PMid:22305153. ESTEVES-PEDRO N.M. RODAS A.C.D. DAL BELO C.A. OSHIMA-FRANCO Y. DOS SANTOS M.G. LOPES P.S. 2011 Implementation of the three Rs in the human hazard assessment of Brazilian medicinal plants: an evaluation of the cytotoxic and genotoxic potentials of Dipteryx alata Vogel Alternatives to Laboratory Animals 39 2 189 196 http://doi.org/10.1177/026119291103900207 21639681 ESTEVES-PEDRO, N.M., RODAS, A.C.D., DAL BELO, C.A., OSHIMA-FRANCO, Y., DOS SANTOS, M.G. and LOPES, P.S., 2011. Implementation of the three Rs in the human hazard assessment of Brazilian medicinal plants: an evaluation of the cytotoxic and genotoxic potentials of Dipteryx alata Vogel. Alternatives to Laboratory Animals, vol. 39, no. 2, pp. 189-196. http://doi.org/10.1177/026119291103900207. PMid:21639681. FEIZOLLAHI E. MIRMAHDI R.S. ZOGHI A. ZIJLSTRA R.T. ROOPESH M.S. VASANTHAN T. 2021 Review of the beneficial and anti-nutritional qualities of phytic acid, and procedures for removing it from food products Food Research International 143 110284 http://doi.org/10.1016/j.foodres.2021.110284 33992384 FEIZOLLAHI, E., MIRMAHDI, R.S., ZOGHI, A., ZIJLSTRA, R.T., ROOPESH, M.S. and VASANTHAN, T., 2021. Review of the beneficial and anti-nutritional qualities of phytic acid, and procedures for removing it from food products. Food Research International, vol. 143, pp. 110284. http://doi.org/10.1016/j.foodres.2021.110284. PMid:33992384. FERNANDES D.C. FREITAS J.B. CZEDER L.P. NAVES M.M.V. 2010 Nutritional composition and protein value of the baru (Dipteryx alata Vog.) almond from the Brazilian Savanna Journal of the Science of Food and Agriculture 90 10 1650 1655 http://doi.org/10.1002/jsfa.3997 20564449 FERNANDES, D.C., FREITAS, J.B., CZEDER, L.P. and NAVES, M.M.V., 2010. Nutritional composition and protein value of the baru (Dipteryx alata Vog.) almond from the Brazilian Savanna. Journal of the Science of Food and Agriculture, vol. 90, no. 10, pp. 1650-1655. http://doi.org/10.1002/jsfa.3997. PMid:20564449. FERNANDES D.C. ALVES A.M. CASTRO G.S.F. JORDÃO A.A. JUNIOR NAVES M.M.V. 2015 Effects of baru almond and Brazil nut against hyperlipidemia and oxidative stress in vivo Journal of Food Research 4 4 38 46 http://doi.org/10.5539/jfr.v4n4p38 FERNANDES, D.C., ALVES, A.M., CASTRO, G.S.F., JORDÃO JUNIOR, A.A. and NAVES, M.M.V., 2015. Effects of baru almond and Brazil nut against hyperlipidemia and oxidative stress in vivo. Journal of Food Research, vol. 4, no. 4, pp. 38-46. http://doi.org/10.5539/jfr.v4n4p38. FERNANDES D.S. DONADON J.R. RANGEL T.F. GUIMARÃES R.C.A. CAMPOS R.P. LIMA L.B. HIANE P.A. 2020 Quality of roasted baru almonds stored in different packages Food Science and Technology 41 4 953 960 http://doi.org/10.1590/fst.10720 FERNANDES, D.S., DONADON, J.R., RANGEL, T.F., GUIMARÃES, R.C.A., CAMPOS, R.P., LIMA, L.B. and HIANE, P.A., 2020. Quality of roasted baru almonds stored in different packages. Food Science and Technology, vol. 41, no. 4, pp. 953-960. http://doi.org/10.1590/fst.10720. FERNANDES A.B. MARCOLINO V.A. SILVA C. BARÃO C.E. PIMENTEL T.C. 2021 Potentially synbiotic fermented beverages processed with water-soluble extract of baru almond Food Bioscience 42 101200 http://doi.org/10.1016/j.fbio.2021.101200 FERNANDES, A.B., MARCOLINO, V.A., SILVA, C., BARÃO, C.E. and PIMENTEL, T.C., 2021. Potentially synbiotic fermented beverages processed with water-soluble extract of baru almond. Food Bioscience, vol. 42, pp. 101200. http://doi.org/10.1016/j.fbio.2021.101200. FERRAZ M.C. PARRILHA A.C. MORAES M. AMARAL J. FILHO CARLOS COGO J. SANTOS M.G. FRANCO L.M. GROPPO F.C. PUEBLA P. SAN FELICIANO A. OSHIMA-FRANCO Y. 2012 The effect of lupane triterpenoids (Dipteryx alata Vogel) in the in vitro neuromuscular blockade and myotoxicity of two snake venoms Current Organic Chemistry 16 22 2717 2723 http://doi.org/10.2174/138527212804004481 FERRAZ, M.C., PARRILHA, A.C., MORAES, M., AMARAL FILHO, J., CARLOS COGO, J., SANTOS, M.G., FRANCO, L.M., GROPPO, F.C., PUEBLA, P., SAN FELICIANO, A. and OSHIMA-FRANCO, Y., 2012. The effect of lupane triterpenoids (Dipteryx alata Vogel) in the in vitro neuromuscular blockade and myotoxicity of two snake venoms. Current Organic Chemistry, vol. 16, no. 22, pp. 2717-2723. http://doi.org/10.2174/138527212804004481. FERRAZ M.C. YOSHIDA E.H. TAVARES R.V.S. COGO J.C. CINTRA A.C.O. DAL BELO C.A. FRANCO L.M. SANTOS M.G. RESENDE F.A. VARANDA E.A. HYSLOP S. PUEBLA P. FELICIANO A.S. OSHIMA-FRANCO Y. 2014 An isoflavone from Dipteryx alata Vogel is active against the in vitro neuromuscular paralysis of Bothrops jararacussu snake venom and bothropstoxin I, and prevents venom-induced myonecrosis Molecules 19 5 5790 5805 http://doi.org/10.3390/molecules19055790 24806579 FERRAZ, M.C., YOSHIDA, E.H., TAVARES, R.V.S., COGO, J.C., CINTRA, A.C.O., DAL BELO, C.A., FRANCO, L.M., SANTOS, M.G., RESENDE, F.A., VARANDA, E.A., HYSLOP, S., PUEBLA, P., FELICIANO, A.S. and OSHIMA-FRANCO, Y., 2014. An isoflavone from Dipteryx alata Vogel is active against the in vitro neuromuscular paralysis of Bothrops jararacussu snake venom and bothropstoxin I, and prevents venom-induced myonecrosis. Molecules, vol. 19, no. 5, pp. 5790-5805. http://doi.org/10.3390/molecules19055790. PMid:24806579. FERRAZ M.C. OLIVEIRA J.L. OLIVEIRA J.R. JUNIOR COGO J.C. SANTOS M.G. FRANCO L.M. PUEBLA P. FERRAZ H.O. FERRAZ H.G. ROCHA M.M.T. HYSLOP S. SAN FELICIANO A. OSHIMA-FRANCO Y. 2015 The triterpenoid betulin protects against the neuromuscular effects of Bothrops jararacussu snake venom in vivo Evidence-Based Complementary and Alternative Medicine 2015 939523 http://doi.org/10.1155/2015/939523 26633987 FERRAZ, M.C., OLIVEIRA, J.L., OLIVEIRA JUNIOR, J.R., COGO, J.C., SANTOS, M.G., FRANCO, L.M., PUEBLA, P., FERRAZ, H.O., FERRAZ, H.G., ROCHA, M.M.T., HYSLOP, S., SAN FELICIANO, A. and OSHIMA-FRANCO, Y., 2015. The triterpenoid betulin protects against the neuromuscular effects of Bothrops jararacussu snake venom in vivo. Evidence-Based Complementary and Alternative Medicine, vol. 2015, pp. 939523. http://doi.org/10.1155/2015/939523. PMid:26633987. FERREIRA T.H.B. FLORIZO G.K.M. ARGONDOÑA E.J.S. 2020 a Shelf life of cookies made from baru Dipteryx alata Vog. pulp under different storage conditions Journal of Food Processing and Preservation 44 89 e14702 http://doi.org/10.1111/jfpp.14702 FERREIRA, T.H.B., FLORIZO, G.K.M. and ARGONDOÑA, E.J.S., 2020a. Shelf life of cookies made from baru Dipteryx alata Vog. pulp under different storage conditions. Journal of Food Processing and Preservation, vol. 44, no. 89, e14702. http://doi.org/10.1111/jfpp.14702. FERREIRA T.H.B. DA SILVA S.R. MUNHOZ C.L. ARGANDOÑA E.J.S. 2020 b Elaboration of biscuits type cookies with pre-treated baru (Dipteryx alata Vog.) pulp flour Journal of Food Measurement and Characterization 14 1 3156 3162 http://doi.org/10.1007/s11694-020-00557-3 FERREIRA, T.H.B., DA SILVA, S.R., MUNHOZ, C.L. and ARGANDOÑA, E.J.S., 2020b. Elaboration of biscuits type cookies with pre-treated baru (Dipteryx alata Vog.) pulp flour. Journal of Food Measurement and Characterization, vol. 14, no. 1, pp. 3156-3162. http://doi.org/10.1007/s11694-020-00557-3. FETZER D.L. CRUZ P.N. HAMERSKI F. CORAZZA M.L. 2018 Extraction of baru (Dipteryx alata Vogel) seed oil using compressed solvents technology The Journal of Supercritical Fluids 137 23 33 http://doi.org/10.1016/j.supflu.2018.03.004 FETZER, D.L., CRUZ, P.N., HAMERSKI, F. and CORAZZA, M.L., 2018. Extraction of baru (Dipteryx alata Vogel) seed oil using compressed solvents technology. The Journal of Supercritical Fluids, vol. 137, pp. 23-33. http://doi.org/10.1016/j.supflu.2018.03.004. FIORAVANTE M.B. HIANE P.A. BRAGA J.A. NETO 2017 Elaboration, sensorial acceptance and characterization of fermented flavored drink based on water-soluble extract of baru almond Ciência Rural 47 9 5 10 http://doi.org/10.1590/0103-8478cr20151646 FIORAVANTE, M.B., HIANE, P.A. and BRAGA NETO, J.A., 2017. Elaboration, sensorial acceptance and characterization of fermented flavored drink based on water-soluble extract of baru almond. Ciência Rural, vol. 47, no. 9, pp. 5-10. http://doi.org/10.1590/0103-8478cr20151646. FIORINI A.M. BARBALHO S.M. GUIGUER É.L. OSHIIWA M. MENDES C.G. VIEITES R.L. CHIES A.B. OLIVEIRA P.B. 2017 Dipteryx alata Vogel may improve lipid profile and atherogenic indices in wistar rats dipteryx alata and atherogenic indices Journal of Medicinal Food 20 11 1121 1126 http://doi.org/10.1089/jmf.2017.0052 29072970 FIORINI, A.M., BARBALHO, S.M., GUIGUER, É.L., OSHIIWA, M., MENDES, C.G., VIEITES, R.L., CHIES, A.B. and OLIVEIRA, P.B., 2017. Dipteryx alata Vogel may improve lipid profile and atherogenic indices in wistar rats dipteryx alata and atherogenic indices. Journal of Medicinal Food, vol. 20, no. 11, pp. 1121-1126. http://doi.org/10.1089/jmf.2017.0052. PMid:29072970. FREITAS C.D.J. VALENTE D.R. CRUZ S.P. 2014 Caracterização física, química e sensorial de biscoitos confeccionados com farinha de semente de abóbora (FSA) e farinha de semente de baru (FSB) para celíacos DEMETRA: Alimentação Nutrição & Saúde 9 4 1003 1018 http://doi.org/10.12957/demetra.2014.13301 FREITAS, C.D.J., VALENTE, D.R. and CRUZ, S.P., 2014. Caracterização física, química e sensorial de biscoitos confeccionados com farinha de semente de abóbora (FSA) e farinha de semente de baru (FSB) para celíacos. DEMETRA: Alimentação Nutrição & Saúde, vol. 9, no. 4, pp. 1003-1018. http://doi.org/10.12957/demetra.2014.13301. FREITAS J.B. FERNANDES D.C. CZEDER L.P. LIMA J.C.R. SOUSA A.G.O. NAVES M.M.V. 2012 Edible seeds and nuts grown in brazil as sources of protein for human nutrition Food and Nutrition Sciences 3 6 857 862 http://doi.org/10.4236/fns.2012.36114 FREITAS, J.B., FERNANDES, D.C., CZEDER, L.P., LIMA, J.C.R., SOUSA, A.G.O. and NAVES, M.M.V., 2012. Edible seeds and nuts grown in brazil as sources of protein for human nutrition. Food and Nutrition Sciences, vol. 3, no. 6, pp. 857-862. http://doi.org/10.4236/fns.2012.36114. GARCIA A.R. OLIVEIRA D.M.P. AMARAL A.C.F. JESUS J.B. RENNÓ SODERO A.C. SOUZA A.M.T. SUPURAN C.T. VERMELHO A.B. RODRIGUES I.A. PINHEIRO A.S. 2019 Leishmania infantum arginase: biochemical characterization and inhibition by naturally occurring phenolic substances Journal of Enzyme Inhibition and Medicinal Chemistry 34 1 1100 1109 http://doi.org/10.1080/14756366.2019.1616182 31124384 GARCIA, A.R., OLIVEIRA, D.M.P., AMARAL, A.C.F., JESUS, J.B., RENNÓ SODERO, A.C., SOUZA, A.M.T., SUPURAN, C.T., VERMELHO, A.B., RODRIGUES, I.A. and PINHEIRO, A.S., 2019. Leishmania infantum arginase: biochemical characterization and inhibition by naturally occurring phenolic substances. Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 34, no. 1, pp. 1100-1109. http://doi.org/10.1080/14756366.2019.1616182. PMid:31124384. GERVAZONI L.F.O. BARCELLOS G.B.B. FERREIRA-PAES T. ALMEIDA-AMARAL E.E. 2020 Use of natural products in leishmaniasis chemotherapy: an overview Frontiers in Chemistry 8 579891 http://doi.org/10.3389/fchem.2020.579891 33330368 GERVAZONI, L.F.O., BARCELLOS, G.B.B., FERREIRA-PAES, T. and ALMEIDA-AMARAL, E.E., 2020. Use of natural products in leishmaniasis chemotherapy: an overview. Frontiers in Chemistry, vol. 8, pp. 579891. http://doi.org/10.3389/fchem.2020.579891. PMid:33330368. GONÇALVES T. FILBIDO G.S. PINHEIRO A.P.O. PINTO PIERETI P.D. DALLA VILLA R. OLIVEIRA A.P. 2020 In vitro bioaccessibility of the Cu, Fe, Mn and Zn in the baru almond and bocaiúva pulp and, macronutrients characterization Journal of Food Composition and Analysis 86 103356 http://doi.org/10.1016/j.jfca.2019.103356 GONÇALVES, T., FILBIDO, G.S., PINHEIRO, A.P.O., PINTO PIERETI, P.D., DALLA VILLA, R., OLIVEIRA, A.P., 2020. In vitro bioaccessibility of the Cu, Fe, Mn and Zn in the baru almond and bocaiúva pulp and, macronutrients characterization. Journal of Food Composition and Analysis, vol. 86, pp. 103356. http://doi.org/10.1016/j.jfca.2019.103356. GOUVEIA M.C.P. MINTO B.W. SARGI L.F. SOUZA R.L. PAZZINI J.M. COLODEL E.M. SILVA V.C.P. CASSINO P.C. DIAS L.G.G.G. 2021 Evaluation of the alcoholic extract of Dipteryx alata Vogel almonds and bark in skin wound healing in C57BL6 mice Arquivo Brasileiro de Medicina Veterinária e Zootecnia 73 6 1315 1322 http://doi.org/10.1590/1678-4162-12289 GOUVEIA, M.C.P., MINTO, B.W., SARGI, L.F., SOUZA, R.L., PAZZINI, J.M., COLODEL, E.M., SILVA, V.C.P., CASSINO, P.C. and DIAS, L.G.G.G., 2021. Evaluation of the alcoholic extract of Dipteryx alata Vogel almonds and bark in skin wound healing in C57BL6 mice. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, vol. 73, no. 6, pp. 1315-1322. http://doi.org/10.1590/1678-4162-12289. GUIMARÃES B.O. MORAIS I.L. OLIVEIRA A.P. 2022 Medicinal plants and their popular use in Boa Esperança Settlement, Piracanjuba, Goiás, Brazil Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 21 4 485 513 http://doi.org/10.37360/blacpma.22.21.4.30 GUIMARÃES, B.O., MORAIS, I.L. and OLIVEIRA, A.P., 2022. Medicinal plants and their popular use in Boa Esperança Settlement, Piracanjuba, Goiás, Brazil. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, vol. 21, no. 4, pp. 485-513. http://doi.org/10.37360/blacpma.22.21.4.30. GUIMARÃES R.C.A. FAVARO S.P. SOUZA A.D.V. SOARES C.M. NUNES A.A. OLIVEIRA L.C.S. HONER M.R. 2012 a Thermal properties of defatted meal, concentrate, and protein isolate of baru nuts (Dipteryx alata Vog.) Food Science and Technology 32 1 52 55 http://doi.org/10.1590/S0101-20612012005000031 GUIMARÃES, R.C.A., FAVARO, S.P., SOUZA, A.D.V., SOARES, C.M., NUNES, A.A., OLIVEIRA, L.C.S. and HONER, M.R., 2012a. Thermal properties of defatted meal, concentrate, and protein isolate of baru nuts (Dipteryx alata Vog.). Food Science and Technology, vol. 32, no. 1, pp. 52-55. http://doi.org/10.1590/S0101-20612012005000031. GUIMARÃES R.C.A. FAVARO S.P. VIANA A.C.A. BRAGA J.A. NETO NEVES V.A. HONER M.R. 2012 b Study of the proteins in the defatted flour and protein concentrate of baru nuts (Dipteryx alata Vog) Food Science and Technology 32 3 464 470 http://doi.org/10.1590/S0101-20612012005000065 GUIMARÃES, R.C.A., FAVARO, S.P., VIANA, A.C.A., BRAGA NETO, J.A., NEVES, V.A. and HONER, M.R., 2012b. Study of the proteins in the defatted flour and protein concentrate of baru nuts (Dipteryx alata Vog). Food Science and Technology, vol. 32, no. 3, pp. 464-470. http://doi.org/10.1590/S0101-20612012005000065. INSTITUTE OF MEDICINE IOM 2005 viewed 25 October 2022 Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids online Available from: https://www.nap.edu/read/10490/chapter/12/ INSTITUTE OF MEDICINE – IOM, 2005 [viewed 25 October 2022]. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids [online]. Available from: https://www.nap.edu/read/10490/chapter/12/ INSTITUTE OF MEDICINE IOM 2011 viewed 25 October 2022 Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids online Available from: https://www.ncbi.nlm.nih.gov/books/NBK56068/table/summarytables.t4/?report=objectonly/ INSTITUTE OF MEDICINE – IOM, 2011 [viewed 25 October 2022]. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids [online]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK56068/table/summarytables.t4/?report=objectonly/ ITIS CATALOGUE OF LIFE 2019 viewed 20 May 2023 Species details: Dipteryx alata Vogel online Available from: https://www.catalogueoflife.org/annual-checklist/2019/details/species/id/488948594f3c078c43829159d4dc06ff/ ITIS CATALOGUE OF LIFE, 2019 [viewed 20 May 2023]. Species details: Dipteryx alata Vogel [online]. Available from: https://www.catalogueoflife.org/annual-checklist/2019/details/species/id/488948594f3c078c43829159d4dc06ff/ JESUS E.P.J. DINIZ L.G.T. ALVES V. DA SILVA Y.P. SCHMITZ A.C. QUAST L.B. FRANCISCO C.T.P. TORMEN L. BERTAN L.C. 2023 From nut to Dulce de leche: development of a vegan alternative: physicochemical characterization, microbiological evaluation and sensory analysis Food and Human 1 581 588 http://doi.org/10.1016/j.foohum.2023.06.027 JESUS, E.P.J., DINIZ, L.G.T., ALVES, V., DA SILVA, Y.P., SCHMITZ, A.C., QUAST, L.B., FRANCISCO, C.T.P., TORMEN, L. and BERTAN, L.C., 2023. From nut to Dulce de leche: development of a vegan alternative: physicochemical characterization, microbiological evaluation and sensory analysis. Food and Human, vol. 1, pp. 581-588. http://doi.org/10.1016/j.foohum.2023.06.027. KALUME D.E. SOUSA M.V. MORHY L. 1995 Purification, characterization, sequence determination, and mass spectrometric analysis of a trypsin inhibitor from seeds of the Brazilian tree Dipteryx alata Leguminosae Journal of Protein Chemistry 14 8 685 693 http://doi.org/10.1007/BF01886907 8747429 KALUME, D.E., SOUSA, M.V. and MORHY, L., 1995. Purification, characterization, sequence determination, and mass spectrometric analysis of a trypsin inhibitor from seeds of the Brazilian tree Dipteryx alata Leguminosae. Journal of Protein Chemistry, vol. 14, no. 8, pp. 685-693. http://doi.org/10.1007/BF01886907. PMid:8747429. LEE D. YU J.S. HUANG P. QADER M. MANAVALAN A. WU X. KIM J. PANG C. CAO S. KANG K.S. KIM K.H. 2020 Identification of anti-inflammatory compounds from Hawaiian Noni (Morinda citrifolia L.) fruit juice Molecules 25 21 1 12 http://doi.org/10.3390/molecules25214968 33121016 LEE, D., YU, J.S., HUANG, P., QADER, M., MANAVALAN, A., WU, X., KIM, J., PANG, C., CAO, S., KANG, K.S. and KIM, K.H., 2020. Identification of anti-inflammatory compounds from Hawaiian Noni (Morinda citrifolia L.) fruit juice. Molecules, vol. 25, no. 21, pp. 1-12. http://doi.org/10.3390/molecules25214968. PMid:33121016. LEITE N.R. ARAÚJO L.C.A. ROCHA P.D.S. AGARRAYUA D.A. ÁVILA D.S. CAROLLO C.A. SILVA D.B. ESTEVINHO L.M. SOUZA K.P. SANTOS E.L. 2020 Baru pulp (Dipteryx alata Vogel): fruit from the Brazilian savanna protects against oxidative stress and increases the life expectancy of Caenorhabditis elegans via SOD-3 and DAF-16 Biomolecules 10 8 1 22 http://doi.org/10.3390/biom10081106 LEITE, N.R., ARAÚJO, L.C.A., ROCHA, P.D.S., AGARRAYUA, D.A., ÁVILA, D.S., CAROLLO, C.A., SILVA, D.B., ESTEVINHO, L.M., SOUZA, K.P. and SANTOS, E.L., 2020. Baru pulp (Dipteryx alata Vogel): fruit from the Brazilian savanna protects against oxidative stress and increases the life expectancy of Caenorhabditis elegans via SOD-3 and DAF-16. Biomolecules, vol. 10, no. 8, pp. 1-22. http://doi.org/10.3390/biom10081106. LEMOS M.R.B. ZAMBIAZI R.C. ALMEIDA E.M.S.D. ALENCAR E.R. 2016 Tocopherols and fatty acid profile in baru nuts (Dipteryx alata Vog.), raw and roasted: important sources in nature that can prevent diseases Food Science and Nutrition Technology 1 2 000107 http://doi.org/10.23880/FSNT-16000107 LEMOS, M.R.B., ZAMBIAZI, R.C., ALMEIDA, E.M.S.D. and ALENCAR, E.R., 2016. Tocopherols and fatty acid profile in baru nuts (Dipteryx alata Vog.), raw and roasted: important sources in nature that can prevent diseases. Food Science and Nutrition Technology, vol. 1, no. 2, pp. 000107. http://doi.org/10.23880/FSNT-16000107. LEMOS M.R.B. SIQUEIRA E.M.A. ARRUDA S.F. ZAMBIAZI R.C. 2012 The effect of roasting on the phenolic compounds and antioxidant potential of baru nuts [Dipteryx alata Vog.] Food Research International 48 2 592 597 http://doi.org/10.1016/j.foodres.2012.05.027 LEMOS, M.R.B., SIQUEIRA, E.M.A., ARRUDA, S.F. and ZAMBIAZI, R.C., 2012. The effect of roasting on the phenolic compounds and antioxidant potential of baru nuts [Dipteryx alata Vog.]. Food Research International, vol. 48, no. 2, pp. 592-597. http://doi.org/10.1016/j.foodres.2012.05.027. LI H. LIU J. LIU C.-F. LI H. LUO J. FANG S. CHEN Y. ZHONG R. LIU S. LIN S. 2021 Design, synthesis, and biological evaluation of membrane-active bakuchiol derivatives as effective broad-spectrum antibacterial agents Journal of Medicinal Chemistry 64 5603 5619 https://doi.org/10.1021/acs.jmedchem.0c02059 LI, H., LIU, J., LIU, C.-F., LI, H., LUO, J., FANG, S., CHEN, Y., ZHONG, R., LIU, S., and LIN, S., 2021. Design, synthesis, and biological evaluation of membrane-active bakuchiol derivatives as effective broad-spectrum antibacterial agents. Journal of Medicinal Chemistry, vol. 64, pp. 5603–5619. https://doi.org/10.1021/acs.jmedchem.0c02059. LIMA D.S. EGEA M.B. CABASSA I. ALMEIDA A.B. SOUSA T.L. LIMA T.M. LOSS R.A. VOLP A.C.P. VASCONCELOS L.G. DALL’OGLIO E.L. HERNANDES T. TAKEUCHI K.P. 2021 a Technological quality and sensory acceptability of nutritive bars produced with Brazil nut and baru almond coproducts Lebensmittel-Wissenschaft + Technologie 137 110467 http://doi.org/10.1016/j.lwt.2020.110467 LIMA, D.S., EGEA, M.B., CABASSA, I., ALMEIDA, A.B., SOUSA, T.L., LIMA, T.M., LOSS, R.A., VOLP, A.C.P., VASCONCELOS, L.G., DALL’OGLIO, E.L., HERNANDES, T. and TAKEUCHI, K.P., 2021a. Technological quality and sensory acceptability of nutritive bars produced with Brazil nut and baru almond coproducts. Lebensmittel-Wissenschaft + Technologie, vol. 137, pp. 110467. http://doi.org/10.1016/j.lwt.2020.110467. LIMA J.C.R. FREITAS J.B. CZEDER L.P. FERNANDES D.C. NAVES M.M.V. 2010 Qualidade microbiológica, aceitabilidade e valor nutricional de barras de cereais formuladas com polpa e amêndoa de baru Boletim do Centro de Pesquisa e Processamento de Alimentos 28 2 331 343 http://doi.org/10.5380/cep.v28i2.20450 LIMA, J.C.R., FREITAS, J.B., CZEDER, L.P., FERNANDES, D.C. and NAVES, M.M.V., 2010. Qualidade microbiológica, aceitabilidade e valor nutricional de barras de cereais formuladas com polpa e amêndoa de baru. Boletim do Centro de Pesquisa e Processamento de Alimentos, vol. 28, no. 2, pp. 331-343. http://doi.org/10.5380/cep.v28i2.20450. LINNÉ J.A. JESUS M.V. LIMA V.T. REIS L.C. SANTOS C.C. SCALON S.P.Q. DRESCH D.M. 2021 Do Dipteryx alata Volgel seedlings recover the quality and the photosynthetic and antioxidant responses in the post-flooding? Brazilian Journal of Biology = Revista Brasileira de Biologia 83 e246451 http://doi.org/10.1590/1519-6984.246451 34495152 LINNÉ, J.A., JESUS, M.V., LIMA, V.T., REIS, L.C., SANTOS, C.C., SCALON, S.P.Q. and DRESCH, D.M., 2021. Do Dipteryx alata Volgel seedlings recover the quality and the photosynthetic and antioxidant responses in the post-flooding? Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 83, e246451. http://doi.org/10.1590/1519-6984.246451. PMid:34495152. LIU H. ZENG X. HUANG J. YUAN X. WANG Q. MA L. 2021 Dietary fiber extracted from pomelo fruitlets promotes intestinal functions, both in vitro and in vivo Carbohydrate Polymers 252 117186 http://doi.org/10.1016/j.carbpol.2020.117186 33183633 LIU, H., ZENG, X., HUANG, J., YUAN, X., WANG, Q. and MA, L., 2021. Dietary fiber extracted from pomelo fruitlets promotes intestinal functions, both in vitro and in vivo. Carbohydrate Polymers, vol. 252, pp. 117186. http://doi.org/10.1016/j.carbpol.2020.117186. PMid:33183633. MAJERCZYK M. OLSZANECKA-GLINIANOWICZ M. PUZIANOWSKA-KUŹNICKA M. CHUDEK J. 2016 Retinol-binding protein 4 RBP4 as the causative factor and marker of vascular injury related to insulin resistance Postepy Higieny i Medycyny Doswiadczalnej 70 1267 1275 MAJERCZYK, M., OLSZANECKA-GLINIANOWICZ, M., PUZIANOWSKA-KUŹNICKA, M. and CHUDEK, J., 2016. Retinol-binding protein 4 RBP4 as the causative factor and marker of vascular injury related to insulin resistance. Postepy Higieny i Medycyny Doswiadczalnej, vol. 70, pp. 1267-1275. MAKI K.C. EREN F. CASSENS M.E. DICKLIN M.R. DAVIDSON M.H. 2018 ω-6 polyunsaturated fatty acids and cardiometabolic health: current evidence, controversies, and research gaps Advances in Nutrition 9 6 688 700 http://doi.org/10.1093/advances/nmy038 30184091 MAKI, K.C., EREN, F., CASSENS, M.E., DICKLIN, M.R. and DAVIDSON, M.H., 2018. ω-6 polyunsaturated fatty acids and cardiometabolic health: current evidence, controversies, and research gaps. Advances in Nutrition, vol. 9, no. 6, pp. 688-700. http://doi.org/10.1093/advances/nmy038. PMid:30184091. MARANGONI F. AGOSTONI C. BORGHI C. CATAPANO A.L. CENA H. GHISELLI A. LA VECCHIA C. LERCKER G. MANZATO E. PIRILLO A. RICCARDI G. RISÉ P. VISIOLI F. POLI A. 2020 Dietary linoleic acid and human health: focus on cardiovascular and cardiometabolic effects Atherosclerosis 292 1 90 98 http://doi.org/10.1016/j.atherosclerosis.2019.11.018 31785494 MARANGONI, F., AGOSTONI, C., BORGHI, C., CATAPANO, A.L., CENA, H., GHISELLI, A., LA VECCHIA, C., LERCKER, G., MANZATO, E., PIRILLO, A., RICCARDI, G., RISÉ, P., VISIOLI, F. and POLI, A., 2020. Dietary linoleic acid and human health: focus on cardiovascular and cardiometabolic effects. Atherosclerosis, vol. 292, no. 1, pp. 90-98. http://doi.org/10.1016/j.atherosclerosis.2019.11.018. PMid:31785494. MARCHI R.C. CAMPOS I.A.S. SANTANA V.T. CARLOS R.M. 2022 Chemical implications and considerations on techniques used to assess the in vitro antioxidant activity of coordination compounds Coordination Chemistry Reviews 451 214275 http://doi.org/10.1016/j.ccr.2021.214275 MARCHI, R.C., CAMPOS, I.A.S., SANTANA, V.T. and CARLOS, R.M., 2022. Chemical implications and considerations on techniques used to assess the in vitro antioxidant activity of coordination compounds. Coordination Chemistry Reviews, vol. 451, pp. 214275. http://doi.org/10.1016/j.ccr.2021.214275. MARIN A.M. SIQUEIRA E.M. ARRUDA S.F. 2009 Minerals, phytic acid and tannin contents of 18 fruits from the Brazilian savanna International Journal of Food Sciences and Nutrition 60 Suppl. 7 180 190 http://doi.org/10.1080/09637480902789342 19353365 MARIN, A.M., SIQUEIRA, E.M. and ARRUDA, S.F., 2009. Minerals, phytic acid and tannin contents of 18 fruits from the Brazilian savanna. International Journal of Food Sciences and Nutrition, vol. 60, Suppl. 7, pp. 180-190. http://doi.org/10.1080/09637480902789342. PMid:19353365. MARQUES F.G. OLIVEIRA J.R. NETO CUNHA L.C. PAULA J.R. BARA M.T.F. 2015 Identification of terpenes and phytosterols in Dipteryx alata (baru) oil seeds obtained through pressing Revista Brasileira de Farmacognosia 25 5 522 525 http://doi.org/10.1016/j.bjp.2015.07.019 MARQUES, F.G., OLIVEIRA NETO, J.R., CUNHA, L.C., PAULA, J.R. and BARA, M.T.F., 2015. Identification of terpenes and phytosterols in Dipteryx alata (baru) oil seeds obtained through pressing. Revista Brasileira de Farmacognosia, vol. 25, no. 5, pp. 522-525. http://doi.org/10.1016/j.bjp.2015.07.019. MARTINS F.S. BORGES L.L. PAULA J.R. CONCEIÇÃO E.C. 2013 Impact of different extraction methods on the quality of Dipteryx alata extracts Revista Brasileira de Farmacognosia 23 3 521 526 http://doi.org/10.1590/S0102-695X2013005000033 MARTINS, F.S., BORGES, L.L., PAULA, J.R. and CONCEIÇÃO, E.C., 2013. Impact of different extraction methods on the quality of Dipteryx alata extracts. Revista Brasileira de Farmacognosia, vol. 23, no. 3, pp. 521-526. http://doi.org/10.1590/S0102-695X2013005000033. MATTHEWMAN M.C. COSTA-PINTO R. 2022 Macronutrients, minerals, vitamins and energy Anaesthesia and Intensive Care Medicine 24 2 134 138 http://doi.org/10.1016/j.mpaic.2022.12.009 MATTHEWMAN, M.C. and COSTA-PINTO, R., 2022. Macronutrients, minerals, vitamins and energy. Anaesthesia and Intensive Care Medicine, vol. 24, no. 2, pp. 134-138. http://doi.org/10.1016/j.mpaic.2022.12.009. MATTIOLI S. COLLODEL G. SIGNORINI C. COTOZZOLO E. NOTO D. CERRETANI D. MICHELI L. FIASCHI A.I. BRECCHIA G. MENCHETTI L. MORETTI E. OGER C. DE FELICE C. CASTELLINI C. 2021 Tissue antioxidant status and lipid peroxidation are related to dietary intake of n-3 polyunsaturated acids: a rabbit model Antioxidants 10 5 681 702 http://doi.org/10.3390/antiox10050681 33925444 MATTIOLI, S., COLLODEL, G., SIGNORINI, C., COTOZZOLO, E., NOTO, D., CERRETANI, D., MICHELI, L., FIASCHI, A.I., BRECCHIA, G., MENCHETTI, L., MORETTI, E., OGER, C., DE FELICE, C. and CASTELLINI, C., 2021. Tissue antioxidant status and lipid peroxidation are related to dietary intake of n-3 polyunsaturated acids: a rabbit model. Antioxidants, vol. 10, no. 5, pp. 681-702. http://doi.org/10.3390/antiox10050681. PMid:33925444. MAURYA P.K. NOTO C. RIZZO L.B. RIOS A.C. NUNES S.O.V. SABBATINI D. SETHI S. ZENI M. MANSUR R.B. MAES M. BRIETZKE E. 2016 The role of oxidative and nitrosative stress in accelerated aging and major depressive disorder Progress in Neuro-Psychopharmacology & Biological Psychiatry 65 134 144 http://doi.org/10.1016/j.pnpbp.2015.08.016 26348786 MAURYA, P.K., NOTO, C., RIZZO, L.B., RIOS, A.C., NUNES, S.O.V., SABBATINI, D., SETHI, S., ZENI, M., MANSUR, R.B., MAES, M. and BRIETZKE, E., 2016. The role of oxidative and nitrosative stress in accelerated aging and major depressive disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry, vol. 65, pp. 134-144. http://doi.org/10.1016/j.pnpbp.2015.08.016. PMid:26348786. MENDES N.S.R. GOMES-RUFFI C.R. LAGE M.E. BECKER F.S. MELO A.A.M. SILVA F.A. DAMIANI C. 2013 Oxidative stability of cereal bars made with fruit peels and baru nuts packaged in different types of packaging Food Science and Technology 33 4 730 736 http://doi.org/10.1590/S0101-20612013000400019 MENDES, N.S.R., GOMES-RUFFI, C.R., LAGE, M.E., BECKER, F.S., MELO, A.A.M., SILVA, F.A. and DAMIANI, C., 2013. Oxidative stability of cereal bars made with fruit peels and baru nuts packaged in different types of packaging. Food Science and Technology, vol. 33, no. 4, pp. 730-736. http://doi.org/10.1590/S0101-20612013000400019. MISHRA S. GUPTA V. MISHRA S. SACHAN R. ASTHANA A. 2017 Serum level of orexin-A, leptin, adiponectin and insulin in north Indian obese women Diabetes & Metabolic Syndrome 11 suppl. 2 S1041 S1043 http://doi.org/10.1016/j.dsx.2017.07.037 28755843 MISHRA, S., GUPTA, V., MISHRA, S., SACHAN, R. and ASTHANA, A., 2017. Serum level of orexin-A, leptin, adiponectin and insulin in north Indian obese women. Diabetes & Metabolic Syndrome, vol. 11, suppl. 2, pp. S1041-S1043. http://doi.org/10.1016/j.dsx.2017.07.037. PMid:28755843. MOHAMMADI I. MAHDAVI A.H. RABIEE F. NASR ESFAHANI M.H. GHAEDI K. 2020 Positive effects of conjugated linoleic acid (CLA) on the PGC1-α expression under the inflammatory conditions induced by TNF-α in the C2C12 cell line Gene 735 144394 http://doi.org/10.1016/j.gene.2020.144394 31987906 MOHAMMADI, I., MAHDAVI, A.H., RABIEE, F., NASR ESFAHANI, M.H. and GHAEDI, K., 2020. Positive effects of conjugated linoleic acid (CLA) on the PGC1-α expression under the inflammatory conditions induced by TNF-α in the C2C12 cell line. Gene, vol. 735, pp. 144394. http://doi.org/10.1016/j.gene.2020.144394. PMid:31987906. MORAES C. ANJOS L.V. MARUNO M. ALONSO A. ROCHA-FILHO P. 2018 Development of lamellar gel phase emulsion containing baru oil (Dipteryx alata Vog.) as a prospective delivery system for cutaneous application Asian Journal of Pharmaceutical Sciences 13 2 183 190 http://doi.org/10.1016/j.ajps.2017.09.003 32104391 MORAES, C., ANJOS, L.V., MARUNO, M., ALONSO, A. and ROCHA-FILHO, P., 2018. Development of lamellar gel phase emulsion containing baru oil (Dipteryx alata Vog.) as a prospective delivery system for cutaneous application. Asian Journal of Pharmaceutical Sciences, vol. 13, no. 2, pp. 183-190. http://doi.org/10.1016/j.ajps.2017.09.003. PMid:32104391. NASCIMENTO T.A. LOPES T.I.B. NAZARIO C.E.D. OLIVEIRA S.L. ALCANTARA G.B. 2021 Vegetable oils: are they true? A point of view from ATR-FTIR, 1H NMR, and regiospecific analysis by 13C NMR Food Research International 144 110362 http://doi.org/10.1016/j.foodres.2021.110362 34053555 NASCIMENTO, T.A., LOPES, T.I.B., NAZARIO, C.E.D., OLIVEIRA, S.L. and ALCANTARA, G.B., 2021. Vegetable oils: are they true? A point of view from ATR-FTIR, 1H NMR, and regiospecific analysis by 13C NMR. Food Research International, vol. 144, pp. 110362. http://doi.org/10.1016/j.foodres.2021.110362. PMid:34053555. NASIR Y. FARZOLLAHPOUR F. MIRZABABAEI A. MAGHBOOLI Z. MIRZAEI K. 2021 Associations of dietary fats intake and adipokines levels in obese women Clinical Nutrition ESPEN 43 390 396 http://doi.org/10.1016/j.clnesp.2021.03.018 34024546 NASIR, Y., FARZOLLAHPOUR, F., MIRZABABAEI, A., MAGHBOOLI, Z. and MIRZAEI, K., 2021. Associations of dietary fats intake and adipokines levels in obese women. Clinical Nutrition ESPEN, vol. 43, pp. 390-396. http://doi.org/10.1016/j.clnesp.2021.03.018. PMid:34024546. NATH H. SAMTIYA M. DHEWA T. 2022 Beneficial attributes and adverse effects of major plant-based foods Human Nutrition & Metabolism 28 200147 http://doi.org/10.1016/j.hnm.2022.200147 NATH, H., SAMTIYA, M. and DHEWA, T., 2022. Beneficial attributes and adverse effects of major plant-based foods. Human Nutrition & Metabolism, vol. 28, pp. 200147. http://doi.org/10.1016/j.hnm.2022.200147. NATIONAL INSTITUTES OF HEALTH NIH 2022 viewed 4 February 2023 Dietary supplement fact sheets online Available from: https://ods.od.nih.gov/factsheets/list-all/ NATIONAL INSTITUTES OF HEALTH – NIH, 2022 [viewed 4 February 2023]. Dietary supplement fact sheets [online]. Available from: https://ods.od.nih.gov/factsheets/list-all/ NAZATO V.S. RUBEM-MAURO L. VIEIRA N.A.G. ROCHA-JUNIOR D.S. SILVA M.G. LOPES P.S. DAL-BELO C.A. COGO J.C. SANTOS M.G. CRUZ-HÖFLING M.A. OSHIMA-FRANCO Y. 2010 In vitro antiophidian properties of Dipteryx alata Vogel bark extracts Molecules 15 9 5956 5970 http://doi.org/10.3390/molecules15095956 20877202 NAZATO, V.S., RUBEM-MAURO, L., VIEIRA, N.A.G., ROCHA-JUNIOR, D.S., SILVA, M.G., LOPES, P.S., DAL-BELO, C.A., COGO, J.C., SANTOS, M.G., CRUZ-HÖFLING, M.A. and OSHIMA-FRANCO, Y., 2010. In vitro antiophidian properties of Dipteryx alata Vogel bark extracts. Molecules, vol. 15, no. 9, pp. 5956-5970. http://doi.org/10.3390/molecules15095956. PMid:20877202. NGUYEN M.H.K. NGUYEN H.X. NGUYEN M.T.T. NGUYEN N.T. 2012 Phenolic constituents from the heartwood of Artocapus altilis and their tyrosinase inhibitory activity Natural Product Communications 7 2 185 186 http://doi.org/10.1177/1934578X1200700214 22474950 NGUYEN, M.H.K., NGUYEN, H.X., NGUYEN, M.T.T. and NGUYEN, N.T., 2012. Phenolic constituents from the heartwood of Artocapus altilis and their tyrosinase inhibitory activity. Natural Product Communications, vol. 7, no. 2, pp. 185-186. http://doi.org/10.1177/1934578X1200700214. PMid:22474950. NUNES Â.A. FAVARO S.P. MIRANDA C.H.B. NEVES V.A. 2017 Preparation and characterization of baru (Dipteryx alata Vog) nut protein isolate and comparison of its physico-chemical properties with commercial animal and plant protein isolates Journal of the Science of Food and Agriculture 97 1 151 157 http://doi.org/10.1002/jsfa.7702 26954302 NUNES, Â.A., FAVARO, S.P., MIRANDA, C.H.B. and NEVES, V.A., 2017. Preparation and characterization of baru (Dipteryx alata Vog) nut protein isolate and comparison of its physico-chemical properties with commercial animal and plant protein isolates. Journal of the Science of Food and Agriculture, vol. 97, no. 1, pp. 151-157. http://doi.org/10.1002/jsfa.7702. PMid:26954302. OLIVEIRA-ALVES S.C. PEREIRA R.S. PEREIRA A.B. FERREIRA A. MECHA E. SILVA A.B. SERRA A.T. BRONZE M.R. 2020 Identification of functional compounds in baru (Dipteryx alata Vog.) nuts: nutritional value, volatile and phenolic composition, antioxidant activity and antiproliferative effect Food Research International 131 109026 http://doi.org/10.1016/j.foodres.2020.109026 32247467 OLIVEIRA-ALVES, S.C., PEREIRA, R.S., PEREIRA, A.B., FERREIRA, A., MECHA, E., SILVA, A.B., SERRA, A.T. and BRONZE, M.R., 2020. Identification of functional compounds in baru (Dipteryx alata Vog.) nuts: nutritional value, volatile and phenolic composition, antioxidant activity and antiproliferative effect. Food Research International, vol. 131, pp. 109026. http://doi.org/10.1016/j.foodres.2020.109026. PMid:32247467. OLIVEIRA P.M.D. OLIVEIRA D.E.C.D. RESENDE O. SILVA D.V. 2018 Study of the drying of mesocarp of baru Dipteryx alata Vogel fruits Revista Brasileira de Engenharia Agrícola e Ambiental 22 12 872 877 http://doi.org/10.1590/1807-1929/agriambi.v22n12p872-877 OLIVEIRA, P.M.D., OLIVEIRA, D.E.C.D., RESENDE, O. and SILVA, D.V., 2018. Study of the drying of mesocarp of baru Dipteryx alata Vogel fruits. Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 22, no. 12, pp. 872-877. http://doi.org/10.1590/1807-1929/agriambi.v22n12p872-877. ORTOLAN A.V. EING K.K.C. SANTOS M.M.R. CANDIDO C.J. SANTOS E.F. NOVELLO D. 2016 Adição de farinha de baru em cupcakes: caracterização físico-química e sensorial entre crianças Mundo da Saúde 40 2 213 220 http://doi.org/10.15343/0104-7809.20164002 ORTOLAN, A.V., EING, K.K.C., SANTOS, M.M.R., CANDIDO, C.J., SANTOS, E.F. and NOVELLO, D., 2016. Adição de farinha de baru em cupcakes: caracterização físico-química e sensorial entre crianças. Mundo da Saúde, vol. 40, no. 2, pp. 213-220. http://doi.org/10.15343/0104-7809.20164002. PAGLARINI C.S. QUEIRÓS M.S. TUYAMA S.S. MOREIRA A.C.V. CHANG Y.K. STEEL C.J. 2018 Characterization of baru nut (Dipteryx alata Vog) flour and its application in reduced-fat cupcakes Journal of Food Science and Technology 55 1 164 172 http://doi.org/10.1007/s13197-017-2876-1 29358807 PAGLARINI, C.S., QUEIRÓS, M.S., TUYAMA, S.S., MOREIRA, A.C.V., CHANG, Y.K. and STEEL, C.J., 2018. Characterization of baru nut (Dipteryx alata Vog) flour and its application in reduced-fat cupcakes. Journal of Food Science and Technology, vol. 55, no. 1, pp. 164-172. http://doi.org/10.1007/s13197-017-2876-1. PMid:29358807. PAIM R. FERREIRA P.L.G. SOARES D.M. ROCHA T.F.G. RIBEIRO A.L. BARROS N. SANTOS F.C. FERREIRA H.D. GOMES-KLEIN V.L. SOTO-BLANCO B. OLIVEIRA-FILHO J.P. CUNHA P.H.J. RIET-CORREA F. PFISTER J. COOK D. FIORAVANTI M.C.S. BOTELHO A.F.M. 2023 Toxic plants from the perspective of a “Quilombola” community in the Cerrado region of Brazil Toxicon 224 107028 http://doi.org/10.1016/j.toxicon.2023.107028 PAIM, R., FERREIRA, P.L.G., SOARES, D.M., ROCHA, T.F.G., RIBEIRO, A.L., BARROS, N., SANTOS, F.C., FERREIRA, H.D., GOMES-KLEIN, V.L., SOTO-BLANCO, B., OLIVEIRA-FILHO, J.P., CUNHA, P.H.J., RIET-CORREA, F., PFISTER, J., COOK, D., FIORAVANTI, M.C.S. and BOTELHO, A.F.M., 2023. Toxic plants from the perspective of a “Quilombola” community in the Cerrado region of Brazil. Toxicon, vol. 224, pp. 107028. http://doi.org/10.1016/j.toxicon.2023.107028. PARVEEN S. RASOOL F. AKRAM M.N. KHAN N. ULLAH M. MAHMOOD S. RABBANI G. MANZOORB K. 2021 Effect of Moringa olifera leaves on growth and gut microbiota of Nile tilapia (Oreochromis niloticus) Brazilian Journal of Biology = Revista Brasileira de Biologia 84 e250916 http://doi.org/10.1590/1519-6984.250916 34705952 PARVEEN, S., RASOOL, F., AKRAM, M.N., KHAN, N., ULLAH, M., MAHMOOD, S., RABBANI, G. and MANZOORB, K., 2021. Effect of Moringa olifera leaves on growth and gut microbiota of Nile tilapia (Oreochromis niloticus). Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 84, e250916. http://doi.org/10.1590/1519-6984.250916. PMid:34705952. PAZ S.L. PÉREZ-PÉREZ A. VILARIÑO-GARCÍA T. JIMÉNEZ-CORTEGANA C. MURIANA F.J.G. MILLÁN-LINARES M.C. SÁNCHEZ-MARGALET V. 2021 Nutritional modulation of leptin expression and leptin action in obesity and obesity-associated complications The Journal of Nutritional Biochemistry 89 108561 http://doi.org/10.1016/j.jnutbio.2020.108561 33249183 PAZ, S.L., PÉREZ-PÉREZ, A., VILARIÑO-GARCÍA, T., JIMÉNEZ-CORTEGANA, C., MURIANA, F.J.G., MILLÁN-LINARES, M.C. and SÁNCHEZ-MARGALET, V., 2021. Nutritional modulation of leptin expression and leptin action in obesity and obesity-associated complications. The Journal of Nutritional Biochemistry, vol. 89, pp. 108561. http://doi.org/10.1016/j.jnutbio.2020.108561. PMid:33249183. PEGORARO N.S. CAMPONOGARA C. CRUZ L. OLIVEIRA S.M. 2021 Oleic acid exhibits an expressive anti-inflammatory effect in croton oil-induced irritant contact dermatitis without the occurrence of toxicological effects in mice Journal of Ethnopharmacology 267 113486 http://doi.org/10.1016/j.jep.2020.113486 33091495 PEGORARO, N.S., CAMPONOGARA, C., CRUZ, L. and OLIVEIRA, S.M., 2021. Oleic acid exhibits an expressive anti-inflammatory effect in croton oil-induced irritant contact dermatitis without the occurrence of toxicological effects in mice. Journal of Ethnopharmacology, vol. 267, pp. 113486. http://doi.org/10.1016/j.jep.2020.113486. PMid:33091495. PEIXOTO V.O.D.S. SILVA L. CASTELO-BRANCO V.N. TORRES A.G. 2022 Baru (Dipteryx alata Vogel) oil extraction by supercritical-CO2: improved composition by using water as cosolvent Journal of Oleo Science 71 2 201 213 http://doi.org/10.5650/jos.ess21115 35034941 PEIXOTO, V.O.D.S., SILVA, L., CASTELO-BRANCO, V.N. and TORRES, A.G., 2022. Baru (Dipteryx alata Vogel) oil extraction by supercritical-CO2: improved composition by using water as cosolvent. Journal of Oleo Science, vol. 71, no. 2, pp. 201-213. http://doi.org/10.5650/jos.ess21115. PMid:35034941. PÉREZ-PÉREZ A. VILARIÑO-GARCÍA T. FERNÁNDEZ-RIEJOS P. MARTÍN-GONZÁLEZ J. SEGURA-EGEA J.J. SÁNCHEZ-MARGALET V. 2017 Role of leptin as a link between metabolism and the immune system Cytokine & Growth Factor Reviews 35 71 84 http://doi.org/10.1016/j.cytogfr.2017.03.001 28285098 PÉREZ-PÉREZ, A., VILARIÑO-GARCÍA, T., FERNÁNDEZ-RIEJOS, P., MARTÍN-GONZÁLEZ, J., SEGURA-EGEA, J.J. and SÁNCHEZ-MARGALET, V., 2017. Role of leptin as a link between metabolism and the immune system. Cytokine & Growth Factor Reviews, vol. 35, pp. 71-84. http://doi.org/10.1016/j.cytogfr.2017.03.001. PMid:28285098. PICCININ E. CARIELLO M. SANTIS S. DUCHEIX S. SABBÀ C. NTAMBI J.M. MOSCHETTA A. 2019 Role of oleic acid in the gut-liver axis: from diet to the regulation of its synthesis via Stearoyl-CoA desaturase 1 (SCD1) Nutrients 11 10 1 22 http://doi.org/10.3390/nu11102283 31554181 PICCININ, E., CARIELLO, M., SANTIS, S., DUCHEIX, S., SABBÀ, C., NTAMBI, J.M. and MOSCHETTA, A., 2019. Role of oleic acid in the gut-liver axis: from diet to the regulation of its synthesis via Stearoyl-CoA desaturase 1 (SCD1). Nutrients, vol. 11, no. 10, pp. 1-22. http://doi.org/10.3390/nu11102283. PMid:31554181. PINELI L.L.O. CARVALHO M.V. AGUIAR L.A. OLIVEIRA G.T. CELESTINO S.M.C. BOTELHO R.B.A. CHIARELLO M.D. 2015 a Use of baru Brazilian almond waste from physical extraction of oil to produce flour and cookies Lebensmittel-Wissenschaft + Technologie 60 1 50 55 http://doi.org/10.1016/j.lwt.2014.09.035 PINELI, L.L.O., CARVALHO, M.V., AGUIAR, L.A., OLIVEIRA, G.T., CELESTINO, S.M.C., BOTELHO, R.B.A. and CHIARELLO, M.D., 2015a. Use of baru Brazilian almond waste from physical extraction of oil to produce flour and cookies. Lebensmittel-Wissenschaft + Technologie, vol. 60, no. 1, pp. 50-55. http://doi.org/10.1016/j.lwt.2014.09.035. PINELI L.L.O. AGUIAR L.A. OLIVEIRA G.T. BOTELHO R.B.A. IBIAPINA M.F.P. LIMA H.C. COSTA A.M. 2015 b Use of baru Brazilian almond waste from physical extraction of oil to produce gluten free cakes Plant Foods for Human Nutrition 70 1 50 55 http://doi.org/10.1007/s11130-014-0460-7 PINELI, L.L.O., AGUIAR, L.A., OLIVEIRA, G.T., BOTELHO, R.B.A., IBIAPINA, M.F.P., LIMA, H.C. and COSTA, A.M., 2015b. Use of baru Brazilian almond waste from physical extraction of oil to produce gluten free cakes. Plant Foods for Human Nutrition, vol. 70, no. 1, pp. 50-55. http://doi.org/10.1007/s11130-014-0460-7. PINELI L. OLIVEIRA G. MENDONÇA M. BORGO L. FREIRE É. CELESTINO S. CHIARELLO M. BOTELHO R. 2015 c Tracing chemical and sensory characteristics of baru oil during storage under nitrogen Lebensmittel-Wissenschaft + Technologie 62 2 976 982 http://doi.org/10.1016/j.lwt.2015.02.015 PINELI, L., OLIVEIRA, G., MENDONÇA, M., BORGO, L., FREIRE, É., CELESTINO, S., CHIARELLO, M. and BOTELHO, R., 2015c. Tracing chemical and sensory characteristics of baru oil during storage under nitrogen. Lebensmittel-Wissenschaft + Technologie, vol. 62, no. 2, pp. 976-982. http://doi.org/10.1016/j.lwt.2015.02.015. PINHO L. SANDRELY D. MESQUITA R. SARMENTO A.F. FLÁVIO E.F. 2015 viewed 4 February 2023 Enriquecimento de sorvete com castanha de baru (Dipteryx Alata Vogel) e aceitabilidade pelos consumidores Revista Unimontes Científica online 17 1 39 49 Available from: https://www.periodicos.unimontes.br/index.php/unicientifica/article/view/1942 PINHO, L., SANDRELY, D., MESQUITA, R., SARMENTO, A.F. and FLÁVIO, E.F., 2015 [viewed 4 February 2023]. Enriquecimento de sorvete com castanha de baru (Dipteryx Alata Vogel) e aceitabilidade pelos consumidores. Revista Unimontes Científica [online], vol. 17, no. 1, pp. 39-49. Available from: https://www.periodicos.unimontes.br/index.php/unicientifica/article/view/1942 PIZZI A. 2021 Tannins medical/pharmacological and related applications: a critical review Sustainable Chemistry and Pharmacy 22 100481 http://doi.org/10.1016/j.scp.2021.100481 PIZZI, A., 2021. Tannins medical/pharmacological and related applications: a critical review. Sustainable Chemistry and Pharmacy, vol. 22, pp. 100481. http://doi.org/10.1016/j.scp.2021.100481. PRANDO W.L.M. HOSHINO T.T. RAISER A.L. CAVALETTI J.C.S. RIBEIRO E.B. COTRIM A.C.M. VALLADÃO D.M.S. 2023 The potential antioxidant activity of incorporating bacaba (Oenocarpus bacaba Mart.) extract into a nanoemulsion system with baru oil Brazilian Journal of Biology = Revista Brasileira de Biologia 83 e276545 http://doi.org/10.1590/1519-6984.276545 PRANDO, W.L.M., HOSHINO, T.T., RAISER, A.L., CAVALETTI, J.C.S., RIBEIRO, E.B., COTRIM, A.C.M. and VALLADÃO, D.M.S., 2023. The potential antioxidant activity of incorporating bacaba (Oenocarpus bacaba Mart.) extract into a nanoemulsion system with baru oil. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 83, e276545. http://doi.org/10.1590/1519-6984.276545. PRESTES R.A. COLNAGO L.A. FORATO L.A. VIZZOTTO L. NOVOTNY E.H. CARRILHO E. 2007 A rapid and automated low resolution NMR method to analyze oil quality in intact oilseeds Analytica Chimica Acta 596 2 325 329 http://doi.org/10.1016/j.aca.2007.06.022 17631114 PRESTES, R.A., COLNAGO, L.A., FORATO, L.A., VIZZOTTO, L., NOVOTNY, E.H. and CARRILHO, E., 2007. A rapid and automated low resolution NMR method to analyze oil quality in intact oilseeds. Analytica Chimica Acta, vol. 596, no. 2, pp. 325-329. http://doi.org/10.1016/j.aca.2007.06.022. PMid:17631114. PUEBLA P. OSHIMA-FRANCO Y. FRANCO L.M. SANTOS M.G. SILVA R.V. RUBEM-MAURO L. FELICIANO A.S. 2010 Chemical constituents of the bark of Dipteryx alata Vogel, an active species against Bothrops jararacussu venom Molecules 15 11 8193 8204 http://doi.org/10.3390/molecules15118193 21076386 PUEBLA, P., OSHIMA-FRANCO, Y., FRANCO, L.M., SANTOS, M.G., SILVA, R.V., RUBEM-MAURO, L. and FELICIANO, A.S., 2010. Chemical constituents of the bark of Dipteryx alata Vogel, an active species against Bothrops jararacussu venom. Molecules, vol. 15, no. 11, pp. 8193-8204. http://doi.org/10.3390/molecules15118193. PMid:21076386. RAMBO M.K.D. RAMBO M.C.D. MELO P.M. OLIVEIRA N.M.L. 2020 Sustainability of biorefinery processes based on baru biomass waste Journal of the Brazilian Chemical Society 31 2 273 279 http://doi.org/10.21577/0103-5053.20190169 RAMBO, M.K.D., RAMBO, M.C.D., MELO, P.M. and OLIVEIRA, N.M.L., 2020. Sustainability of biorefinery processes based on baru biomass waste. Journal of the Brazilian Chemical Society, vol. 31, no. 2, pp. 273-279. http://doi.org/10.21577/0103-5053.20190169. REIS D.R. BRUM F.B. SOARES E.J.O. MAGALHÃES J.R. SILVA F.S. PORTO A.G. 2018 a Drying kinetics of baru flours as function of temperature Revista Brasileira de Engenharia Agrícola e Ambiental 22 10 713 719 http://doi.org/10.1590/1807-1929/agriambi.v22n10p713-719 REIS, D.R., BRUM, F.B., SOARES, E.J.O., MAGALHÃES, J.R., SILVA, F.S. and PORTO, A.G., 2018a. Drying kinetics of baru flours as function of temperature. Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 22, no. 10, pp. 713-719. http://doi.org/10.1590/1807-1929/agriambi.v22n10p713-719. REIS M.Á. NOVAES R.D. BAGGIO S.R. VIANA A.L.M. SALLES B.C.C. DUARTE S.M.D.S. RODRIGUES M.R. PAULA F.B.D.A. 2018 b Hepatoprotective and antioxidant activities of oil from baru almonds (Dipteryx alata Vog.) in a preclinical model of lipotoxicity and dyslipidemia Evidence-Based Complementary and Alternative Medicine 2018 8376081 http://doi.org/10.1155/2018/8376081 30369957 REIS, M.Á., NOVAES, R.D., BAGGIO, S.R., VIANA, A.L.M., SALLES, B.C.C., DUARTE, S.M.D.S., RODRIGUES, M.R. and PAULA, F.B.D.A., 2018b. Hepatoprotective and antioxidant activities of oil from baru almonds (Dipteryx alata Vog.) in a preclinical model of lipotoxicity and dyslipidemia. Evidence-Based Complementary and Alternative Medicine, vol. 2018, pp. 8376081. http://doi.org/10.1155/2018/8376081. PMid:30369957. RESENDE L.M. FRANCA A.S. 2019 Flours based on exotic fruits and their processing residues-features and potential applications to health and disease prevention. PREEDY V.R. WATSON R.R. Flour breads and their fortification in health and disease. 2nd London : Academic Press 387 401 http://doi.org/10.1016/B978-0-12-814639-2.00030-7 RESENDE, L.M. and FRANCA, A.S., 2019. Flours based on exotic fruits and their processing residues-features and potential applications to health and disease prevention. In: V.R. PREEDY and R.R. WATSON, eds. Flour breads and their fortification in health and disease. 2nd ed. London: Academic Press, pp. 387-401. http://doi.org/10.1016/B978-0-12-814639-2.00030-7. RESENDE O. OLIVEIRA D.E.C. COSTA L.M. FERREIRA-JÚNIOR W.N. 2017 Thermodynamic properties of baru fruits (Dipteryx alata Vogel) Engenharia Agrícola 37 4 739 749 http://doi.org/10.1590/1809-4430-eng.agric.v37n4p739-749/2017 RESENDE, O., OLIVEIRA, D.E.C., COSTA, L.M. and FERREIRA-JÚNIOR, W.N., 2017. Thermodynamic properties of baru fruits (Dipteryx alata Vogel). Engenharia Agrícola, vol. 37, no. 4, pp. 739-749. http://doi.org/10.1590/1809-4430-eng.agric.v37n4p739-749/2017. RESENDE O. OLIVEIRA D.E.C. COSTA L.M. FERREIRA-JÚNIOR W.N. 2018 Drying kinetics of baru fruits (Dipteryx alata Vogel) Engenharia Agrícola 38 1 103 109 http://doi.org/10.1590/1809-4430-eng.agric.v38n1p103-109/2018 RESENDE, O., OLIVEIRA, D.E.C., COSTA, L.M. and FERREIRA-JÚNIOR, W.N., 2018. Drying kinetics of baru fruits (Dipteryx alata Vogel). Engenharia Agrícola, vol. 38, no. 1, pp. 103-109. http://doi.org/10.1590/1809-4430-eng.agric.v38n1p103-109/2018. RIBEIRO R.V. BIESKI I.G.C. BALOGUN S.O. MARTINS D.T. 2017 Ethnobotanical study of medicinal plants used by ribeirinhos in the North Araguaia microregion, Mato Grosso, Brazil Journal of Ethnopharmacology 205 69 102 http://doi.org/10.1016/j.jep.2017.04.023 28476677 RIBEIRO, R.V., BIESKI, I.G.C., BALOGUN, S.O. and MARTINS, D.T., 2017. Ethnobotanical study of medicinal plants used by ribeirinhos in the North Araguaia microregion, Mato Grosso, Brazil. Journal of Ethnopharmacology, vol. 205, pp. 69-102. http://doi.org/10.1016/j.jep.2017.04.023. PMid:28476677. RIBEIRO T.G. CHÁVEZ-FUMAGALLI M.A. VALADARES D.G. FRANCA J.R. LAGE P.S. DUARTE M.C. ANDRADE P.H.R. MARTINS V.T. COSTA L.E. ARRUDA A.L.A. FARACO A.A.G. COELHO E.A.F. CASTILHO R.O. 2014 Antileishmanial activity and cytotoxicity of Brazilian plants Experimental Parasitology 143 60 68 http://doi.org/10.1016/j.exppara.2014.05.004 24846006 RIBEIRO, T.G., CHÁVEZ-FUMAGALLI, M.A., VALADARES, D.G., FRANCA, J.R., LAGE, P.S., DUARTE, M.C., ANDRADE, P.H.R., MARTINS, V.T., COSTA, L.E., ARRUDA, A.L.A., FARACO, A.A.G., COELHO, E.A.F. and CASTILHO, R.O., 2014. Antileishmanial activity and cytotoxicity of Brazilian plants. Experimental Parasitology, vol. 143, pp. 60-68. http://doi.org/10.1016/j.exppara.2014.05.004. PMid:24846006. RINALDI M.M. ROCHA F.R. SANTOS R.M.D. PEREIRA M.S. DE QUEIROZ D.B.V. MORAIS F.M. 2021 viewed 22 December 2022 Produção, caracterização física, química e funcional de frutos e sementes de baru (Dipteryx alata Vog., Fabaceae) oriundos da Embrapa Cerrados e Arinos, MG: safra 2019 online Available from: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/227039/1/Producao-caracterizacao-fisica-quimica-e-funcional-de-frutos-e-semente-de-baru-BOL376.pdf/ RINALDI, M.M., ROCHA, F.R., SANTOS, R.M.D., PEREIRA, M.S., DE QUEIROZ, D.B.V. and MORAIS, F.M., 2021 [viewed 22 December 2022]. Produção, caracterização física, química e funcional de frutos e sementes de baru (Dipteryx alata Vog., Fabaceae) oriundos da Embrapa Cerrados e Arinos, MG: safra 2019 [online]. Available from: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/227039/1/Producao-caracterizacao-fisica-quimica-e-funcional-de-frutos-e-semente-de-baru-BOL376.pdf/ ROCHA J.D. CARNEIRO F.M. FERNANDES A.S. MORAIS J.M. BORGES L.L. CHEN-CHEN L. ALMEIDA L.M.D. BAILÃO E.F.L.C. 2022 Toxic potential of cerrado plants on different organisms International Journal of Molecular Sciences 23 7 1 22 http://doi.org/10.3390/ijms23073413 35408775 ROCHA, J.D., CARNEIRO, F.M., FERNANDES, A.S., MORAIS, J.M., BORGES, L.L., CHEN-CHEN, L., ALMEIDA, L.M.D. and BAILÃO, E.F.L.C., 2022. Toxic potential of cerrado plants on different organisms. International Journal of Molecular Sciences, vol. 23, no. 7, pp. 1-22. http://doi.org/10.3390/ijms23073413. PMid:35408775. ROCHA L.S. CARDOSO SANTIAGO R.A.C. 2009 Implicações nutricionais e sensoriais da polpa e casca de baru (Dipteryx alata Vog.) na elaboração de pães Food Science and Technology 29 4 820 825 http://doi.org/10.1590/S0101-20612009000400019 ROCHA, L.S. and CARDOSO SANTIAGO, R.A.C., 2009. Implicações nutricionais e sensoriais da polpa e casca de baru (Dipteryx alata Vog.) na elaboração de pães. Food Science and Technology, vol. 29, no. 4, pp. 820-825. http://doi.org/10.1590/S0101-20612009000400019. ROJAS V.M. MARCONI L.F.C.B. GUIMARÃES-INÁCIO A. LEIMANN F.V. TANAMATI A. GOZZO A.M. FUCHS R.H.B. BARREIRO M.F. BARROS L. FERREIRA I.C.F.R. TANAMATI A.A.C. GONÇALVES O.H. 2019 Formulation of mayonnaises containing PUFAs by the addition of microencapsulated chia seeds, pumpkin seeds and baru oils Food Chemistry 274 220 227 http://doi.org/10.1016/j.foodchem.2018.09.015 ROJAS, V.M., MARCONI, L.F.C.B., GUIMARÃES-INÁCIO, A., LEIMANN, F.V., TANAMATI, A., GOZZO, A.M., FUCHS, R.H.B., BARREIRO, M.F., BARROS, L., FERREIRA, I.C.F.R., TANAMATI, A.A.C. and GONÇALVES, O.H., 2019. Formulation of mayonnaises containing PUFAs by the addition of microencapsulated chia seeds, pumpkin seeds and baru oils. Food Chemistry, vol. 274, pp. 220-227. http://doi.org/10.1016/j.foodchem.2018.09.015. RUIZ-OJEDA F.J. OLZA J. GIL Á. AGUILERA C.M. 2018 Oxidative stress and inflammation in obesity and metabolic syndrome. Del MORAL A.M. GARCÍA C.M.A. Obesity: oxidative stress and dietary antioxidants. London Academic Press 1 15 http://doi.org/10.1016/B978-0-12-812504-5.00001-5 RUIZ-OJEDA, F.J., OLZA, J., GIL, Á. and AGUILERA, C.M., 2018. Oxidative stress and inflammation in obesity and metabolic syndrome. In: Del MORAL, A.M. and GARCÍA, C.M.A. eds. Obesity: oxidative stress and dietary antioxidants. London: Academic Press, pp. 1-15. http://doi.org/10.1016/B978-0-12-812504-5.00001-5/. SAFAEI M. SUNDARARAJAN E.A. DRISS M. BOULILA W. SHAPI’I A. 2021 A systematic literature review on obesity: understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity Computers in Biology and Medicine 136 104754 http://doi.org/10.1016/j.compbiomed.2021.104754 34426171 SAFAEI, M., SUNDARARAJAN, E.A., DRISS, M., BOULILA, W. and SHAPI’I, A., 2021. A systematic literature review on obesity: understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity. Computers in Biology and Medicine, vol. 136, pp. 104754. http://doi.org/10.1016/j.compbiomed.2021.104754. PMid:34426171. SAINI R.K. PRASAD P. SHANG X. KEUM Y.-S. 2021 Advances in lipid extraction methods: a review International Journal of Molecular Sciences 22 24 13643 http://doi.org/10.3390/ijms222413643 34948437 SAINI, R.K., PRASAD, P., SHANG, X. and KEUM, Y.-S., 2021. Advances in lipid extraction methods: a review. International Journal of Molecular Sciences, vol. 22, no. 24, pp. 13643. http://doi.org/10.3390/ijms222413643. PMid:34948437. SALEHI B. QUISPE C. SHARIFI-RAD J. CRUZ-MARTINS N. NIGAM M. MISHRA A.P. KONOVALOV D.A. OROBINSKAYA V. ABU-REIDAH I.M. ZAM W. SHAROPOV F. VENNERI T. CAPASSO R. KUKULA-KOCH W. WAWRUSZAK A. KOCH W. 2021 Phytosterols: from preclinical evidence to potential clinical applications Frontiers in Pharmacology 11 599959 http://doi.org/10.3389/fphar.2020.599959 33519459 SALEHI, B., QUISPE, C., SHARIFI-RAD, J., CRUZ-MARTINS, N., NIGAM, M., MISHRA, A.P., KONOVALOV, D.A., OROBINSKAYA, V., ABU-REIDAH, I.M., ZAM, W., SHAROPOV, F., VENNERI, T., CAPASSO, R., KUKULA-KOCH, W., WAWRUSZAK, A. and KOCH, W., 2021. Phytosterols: from preclinical evidence to potential clinical applications. Frontiers in Pharmacology, vol. 11, pp. 599959. http://doi.org/10.3389/fphar.2020.599959. PMid:33519459. SANO S.M. BRITO M.A. RIBEIRO J.F. 2016 viewed 20 January 2023 Dipteryx alata baru. VIEIRA R.F. CAMILLO J. CORADIN L. Espécies nativas da flora brasileira de valor econômico atual ou potencial: plantas para o futuro: região Centro-Oeste online Brasília Ministério do Meio Ambiente 203 210 Available from: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1073295/especies-nativas-da-flora-brasileira-de-valor-economico-atual-ou-potencial-plantas-para-o-futuro-regiao-centro-oeste/ SANO, S.M., BRITO, M.A. and RIBEIRO, J.F., 2016 [viewed 20 January 2023]. Dipteryx alata baru. In: R.F. VIEIRA, J. CAMILLO and L. CORADIN, eds. Espécies nativas da flora brasileira de valor econômico atual ou potencial: plantas para o futuro: região Centro-Oeste [online]. Brasília: Ministério do Meio Ambiente, pp. 203-210. Available from: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1073295/especies-nativas-da-flora-brasileira-de-valor-economico-atual-ou-potencial-plantas-para-o-futuro-regiao-centro-oeste/ SANO S.M. BRITO M.A. RIBEIRO J.F. 2006 viewed 20 January 2023 Dipteryx alata baru. VIEIRA R.F. COSTA T.S.A. SILVA D.B. FERREIRA F.R. SANO S.M. Frutas nativas da região centro-oeste do Brasil online Brasília Embrapa 76 94 Available from: http://www.agabrasil.org.br/_Dinamicos/livro_frutas_nativas_Embrapa.pdf/ SANO, S.M., BRITO, M.A. and RIBEIRO, J.F., 2006 [viewed 20 January 2023]. Dipteryx alata baru. In: R.F. VIEIRA, T.S.A. COSTA, D.B. SILVA, F.R. FERREIRA and S.M. SANO, eds. Frutas nativas da região centro-oeste do Brasil [online]. Brasília: Embrapa, pp. 76-94. Available from: http://www.agabrasil.org.br/_Dinamicos/livro_frutas_nativas_Embrapa.pdf/ SANTAMARINA A.B. JAMAR G. MENNITTI L.V. CARDOSO C.M. DE ROSSO V.V. OYAMA L.M. PISANI L.P. 2019 a Polyphenols-rich fruit Euterpe edulis mart. prevents peripheral inflammatory pathway activation by the short-term high-fat diet Molecules 24 9 1 14 http://doi.org/10.3390/molecules24091655 31035535 SANTAMARINA, A.B., JAMAR, G., MENNITTI, L.V., CARDOSO, C.M., DE ROSSO, V.V., OYAMA, L.M. and PISANI, L.P., 2019a. Polyphenols-rich fruit Euterpe edulis mart. prevents peripheral inflammatory pathway activation by the short-term high-fat diet. Molecules, vol. 24, no. 9, pp. 1-14. http://doi.org/10.3390/molecules24091655. PMid:31035535. SANTAMARINA A.B. JAMAR G. MENNITTI L.V. CESAR H.C. VASCONCELOS J.R. OYAMA L.M. DE ROSSO V.V. PISANI L.P. 2019 b Obesity-related inflammatory modulation by juçara berry Euterpe edulis Mart. supplementation in Brazilian adults: a double-blind randomized controlled trial European Journal of Nutrition 59 4 1693 1705 http://doi.org/10.1007/s00394-019-02024-2 31197507 SANTAMARINA, A.B., JAMAR, G., MENNITTI, L.V., CESAR, H.C., VASCONCELOS, J.R., OYAMA, L.M., DE ROSSO, V.V. and PISANI, L.P., 2019b. Obesity-related inflammatory modulation by juçara berry Euterpe edulis Mart. supplementation in Brazilian adults: a double-blind randomized controlled trial. European Journal of Nutrition, vol. 59, no. 4, pp. 1693-1705. http://doi.org/10.1007/s00394-019-02024-2. PMid:31197507. SANTIAGO G.L. OLIVEIRA I.G. HORST M.A. NAVES M.M.V. SILVA M.R. 2018 Peel and pulp of baru (Dipteryx alata Vog.) provide high fiber, phenolic content and antioxidant capacity Food Science and Technology 38 2 244 249 http://doi.org/10.1590/1678-457x.36416 SANTIAGO, G.L., OLIVEIRA, I.G., HORST, M.A., NAVES, M.M.V. and SILVA, M.R., 2018. Peel and pulp of baru (Dipteryx alata Vog.) provide high fiber, phenolic content and antioxidant capacity. Food Science and Technology, vol. 38, no. 2, pp. 244-249. http://doi.org/10.1590/1678-457x.36416. SANTOS F.B. RAMOS M.I.L. MIYAGUSKU L. 2017 Antimicrobial activity of hydroalcoholic extracts from genipap, baru and taruma Ciência Rural 47 8 6 11 http://doi.org/10.1590/0103-8478cr20160252 SANTOS, F.B., RAMOS, M.I.L. and MIYAGUSKU, L., 2017. Antimicrobial activity of hydroalcoholic extracts from genipap, baru and taruma. Ciência Rural, vol. 47, no. 8, pp. 6-11. http://doi.org/10.1590/0103-8478cr20160252. SANTOS P.D. AGUIAR A.C. VIGANÓ J. BOEING J.S. VISENTAINER J.V. MARTÍNEZ J. 2016 Supercritical CO2 extraction of cumbaru oil (Dipteryx alata Vogel) assisted by ultrasound: global yield, kinetics and fatty acid composition The Journal of Supercritical Fluids 107 75 83 http://doi.org/10.1016/j.supflu.2015.08.018 SANTOS, P.D., AGUIAR, A.C., VIGANÓ, J., BOEING, J.S., VISENTAINER, J.V. and MARTÍNEZ, J., 2016. Supercritical CO2 extraction of cumbaru oil (Dipteryx alata Vogel) assisted by ultrasound: global yield, kinetics and fatty acid composition. The Journal of Supercritical Fluids, vol. 107, pp. 75-83. http://doi.org/10.1016/j.supflu.2015.08.018. SANTOS G.G. SILVA M.R. LACERDA D.B.C.L. MARTINS D.M.O. ALMEIDA R.A. 2012 Aceitabilidade e qualidade físico-química de paçocas elaboradas com amêndoa de baru Pesquisa Agropecuária Tropical 42 2 159 165 http://doi.org/10.1590/S1983-40632012000200003 SANTOS, G.G., SILVA, M.R., LACERDA, D.B.C.L., MARTINS, D.M.O. and ALMEIDA, R.A., 2012. Aceitabilidade e qualidade físico-química de paçocas elaboradas com amêndoa de baru. Pesquisa Agropecuária Tropical, vol. 42, no. 2, pp. 159-165. http://doi.org/10.1590/S1983-40632012000200003. SASAKI A. YAMANO Y. SUGIMOTO S. OTSUKA H. MATSUNAMI K. SHINZATO T. 2018 Phenolic compounds from the leaves of Breynia officinalis and their tyrosinase and melanogenesis inhibitory activities Journal of Natural Medicines 72 2 381 389 http://doi.org/10.1007/s11418-017-1148-8 29264846 SASAKI, A., YAMANO, Y., SUGIMOTO, S., OTSUKA, H., MATSUNAMI, K. and SHINZATO, T., 2018. Phenolic compounds from the leaves of Breynia officinalis and their tyrosinase and melanogenesis inhibitory activities. Journal of Natural Medicines, vol. 72, no. 2, pp. 381-389. http://doi.org/10.1007/s11418-017-1148-8. PMid:29264846. SCHIASSI M.C.E.V. SOUZA V.R. LAGO A.M.T. CAMPOS L.G. QUEIROZ F. 2018 Fruits from the Brazilian Cerrado region: physico-chemical characterization, bioactive compounds, antioxidant activities, and sensory evaluation Food Chemistry 245 305 311 http://doi.org/10.1016/j.foodchem.2017.10.104 29287376 SCHIASSI, M.C.E.V., SOUZA, V.R., LAGO, A.M.T., CAMPOS, L.G. and QUEIROZ, F., 2018. Fruits from the Brazilian Cerrado region: physico-chemical characterization, bioactive compounds, antioxidant activities, and sensory evaluation. Food Chemistry, vol. 245, pp. 305-311. http://doi.org/10.1016/j.foodchem.2017.10.104. PMid:29287376. SCHINCAGLIA R.M. CUPPARI L. NERI H.F.S. CINTRA D.E. SANT’ANA M.R. MOTA J.F. 2020 Effects of baru almond oil (Dipteryx alata Vog.) supplementation on body composition, inflammation, oxidative stress, lipid profile, and plasma fatty acids of hemodialysis patients: a randomized, double-blind, placebo-controlled clinical trial Complementary Therapies in Medicine 52 102479 http://doi.org/10.1016/j.ctim.2020.102479 32951729 SCHINCAGLIA, R.M., CUPPARI, L., NERI, H.F.S., CINTRA, D.E., SANT’ANA, M.R. and MOTA, J.F., 2020. Effects of baru almond oil (Dipteryx alata Vog.) supplementation on body composition, inflammation, oxidative stress, lipid profile, and plasma fatty acids of hemodialysis patients: a randomized, double-blind, placebo-controlled clinical trial. Complementary Therapies in Medicine, vol. 52, pp. 102479. http://doi.org/10.1016/j.ctim.2020.102479. PMid:32951729. SCHINCAGLIA R.M. PIMENTEL G.D. PEIXOTO M.D.R.G. CUPPARI L. MOTA J.F. 2021 The effect of baru (Dypterix alata Vog.) almond oil on markers of bowel habits in hemodialysis patients Evidence-Based Complementary and Alternative Medicine 2021 3187305 http://doi.org/10.1155/2021/3187305 34135977 SCHINCAGLIA, R.M., PIMENTEL, G.D., PEIXOTO, M.D.R.G., CUPPARI, L. and MOTA, J.F., 2021. The effect of baru (Dypterix alata Vog.) almond oil on markers of bowel habits in hemodialysis patients. Evidence-Based Complementary and Alternative Medicine, vol. 2021, pp. 3187305. http://doi.org/10.1155/2021/3187305. PMid:34135977. SCHNEIDER M.C. MIN K.D. HAMRICK P.N. MONTEBELLO L.R. RANIERI T.M. MARDINI L. CAMARA V.M. LUIZ R.R. LIESE B. VUCKOVIC M. MORAES M.O. LIMA N.T. 2021 Overview of snakebite in Brazil: possible drivers and a tool for risk mapping PLoS Neglected Tropical Diseases 15 1 e0009044 http://doi.org/10.1371/journal.pntd.0009044 33513145 SCHNEIDER, M.C., MIN, K.D., HAMRICK, P.N., MONTEBELLO, L.R., RANIERI, T.M., MARDINI, L., CAMARA, V.M., LUIZ, R.R., LIESE, B., VUCKOVIC, M., MORAES, M.O. and LIMA, N.T., 2021. Overview of snakebite in Brazil: possible drivers and a tool for risk mapping. PLoS Neglected Tropical Diseases, vol. 15, no. 1, e0009044. http://doi.org/10.1371/journal.pntd.0009044. PMid:33513145. SHILLING A.J. WITOWSKI C.G. MASCHEK J.A. AZHARI A. VESELY B.A. KYLE D.E. AMSLER C.D. MCCLINTOCK J.B. BAKER B.J. 2020 Spongian diterpenoids derived from the antarctic sponge Dendrilla antarctica are potent inhibitors of the Leishmania parasite Journal of Natural Products 83 5 1553 1562 http://doi.org/10.1021/acs.jnatprod.0c00025 32281798 SHILLING, A.J., WITOWSKI, C.G., MASCHEK, J.A., AZHARI, A., VESELY, B.A., KYLE, D.E., AMSLER, C.D., MCCLINTOCK, J.B. and BAKER, B.J., 2020. Spongian diterpenoids derived from the antarctic sponge Dendrilla antarctica are potent inhibitors of the Leishmania parasite. Journal of Natural Products, vol. 83, no. 5, pp. 1553-1562. http://doi.org/10.1021/acs.jnatprod.0c00025. PMid:32281798. SHOKRY A.A. EL-SHIEKH R.A. KAMEL G. BAKR A.F. RAMADAN A. 2022 Bioactive phenolics fraction of Hedera helix L. (Common Ivy Leaf) standardized extract ameliorates LPS-induced acute lung injury in the mouse model through the inhibition of proinflammatory cytokines and oxidative stress Heliyon 8 5 e09477 https://doi.org/10.1016/j.heliyon.2022.e09477 SHOKRY, A.A., EL-SHIEKH, R.A., KAMEL, G., BAKR, A.F., and RAMADAN, A., 2022. Bioactive phenolics fraction of Hedera helix L. (Common Ivy Leaf) standardized extract ameliorates LPS-induced acute lung injury in the mouse model through the inhibition of proinflammatory cytokines and oxidative stress. Heliyon, vol. 8, no. 5, pp. e09477. https://doi.org/10.1016/j.heliyon.2022.e09477. SHOTOP Y.M. AL-SUWITI I.N. 2021 The possible role of vitamins E and C in reducing the toxicity of copper nanoparticles in the kidney and liver of the rats (Rattus norvegicus) Journal of King Saud University. Science 33 2 101357 http://doi.org/10.1016/j.jksus.2021.101357 SHOTOP, Y.M. and AL-SUWITI, I.N., 2021. The possible role of vitamins E and C in reducing the toxicity of copper nanoparticles in the kidney and liver of the rats (Rattus norvegicus). Journal of King Saud University. Science, vol. 33, no. 2, pp. 101357. http://doi.org/10.1016/j.jksus.2021.101357. SILVA D.V. OLIVEIRA D.E.C. RESENDE O. MARTINS K.R.B. FONSECA N.N. QUEQUETO W.D. SILVA L.C.D.M. SOUZA D.G. 2022 Nutritional properties of baru almond (Dipteryx alata Vogel) flours produced from fruits subjected to drying Australian Journal of Crop Science 16 2 171 176 http://doi.org/10.21475/ajcs.22.16.02.3246 SILVA, D.V., OLIVEIRA, D.E.C., RESENDE, O., MARTINS, K.R.B., FONSECA, N.N., QUEQUETO, W.D., SILVA, L.C.D.M. and SOUZA, D.G., 2022. Nutritional properties of baru almond (Dipteryx alata Vogel) flours produced from fruits subjected to drying. Australian Journal of Crop Science, vol. 16, no. 2, pp. 171-176. http://doi.org/10.21475/ajcs.22.16.02.3246. SILVA S.R.D. FERREIRA T.H.B. GIUNCO A.J. ARGANDOÑA E.J.S. 2021 a Nutritional potential and effect of the solvent on the extraction of secondary metabolites from pulp and bark of baru (Dipteryx alata) Journal of Food Measurement and Characterization 15 4 3453 3460 http://doi.org/10.1007/s11694-021-00926-6 SILVA, S.R.D., FERREIRA, T.H.B., GIUNCO, A.J. and ARGANDOÑA, E.J.S., 2021a. Nutritional potential and effect of the solvent on the extraction of secondary metabolites from pulp and bark of baru (Dipteryx alata). Journal of Food Measurement and Characterization, vol. 15, no. 4, pp. 3453-3460. http://doi.org/10.1007/s11694-021-00926-6. SILVA J.S. FERREIRA N.B.S. ASQUIERI E.R. DAMIANI C. ASQUIERI E.M.A.R. 2021 b Chemical monitoring of baru (Dipteryx alata Vog.) pulp fermented beverage Food Science and Technology 41 suppl. 1 155 162 http://doi.org/10.1590/fst.14420 SILVA, J.S., FERREIRA, N.B.S., ASQUIERI, E.R., DAMIANI, C. and ASQUIERI, E.M.A.R., 2021b. Chemical monitoring of baru (Dipteryx alata Vog.) pulp fermented beverage. Food Science and Technology, vol. 41, suppl. 1, pp. 155-162. http://doi.org/10.1590/fst.14420. SILVA S.R. FERREIRA T.H.B. SOUZA C.J.F. SANJINEZ-ARGANDOÑA E.J. 2021 c Dipteryx alata Vog. LIMA F.F. LESCANO C.H. OLIVEIRA I.P. Fruits of the Brazilian Cerrado: composition and functional benefits. 1st Cham Springer 99 113 http://doi.org/10.1007/978-3-030-62949-6_6 SILVA, S.R., FERREIRA, T.H.B., SOUZA, C.J.F. and SANJINEZ-ARGANDOÑA, E.J., 2021c. Dipteryx alata Vog. In: F.F. LIMA, C.H. LESCANO and I.P. OLIVEIRA, eds. Fruits of the Brazilian Cerrado: composition and functional benefits. 1st ed. Cham: Springer, pp. 99-113. http://doi.org/10.1007/978-3-030-62949-6_6. SILVA D.V. OLIVEIRA D.E.C. RESENDE O. SILVA M.A.P. BARCELOS K.R. 2019 Nutritional quality of the epicarp and mesocarp flours of baru fruits submitted to drying Revista Brasileira de Engenharia Agrícola e Ambiental 23 1 65 70 http://doi.org/10.1590/1807-1929/agriambi.v23n1p65-70 SILVA, D.V., OLIVEIRA, D.E.C., RESENDE, O., SILVA, M.A.P. and BARCELOS, K.R., 2019. Nutritional quality of the epicarp and mesocarp flours of baru fruits submitted to drying. Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 23, no. 1, pp. 65-70. http://doi.org/10.1590/1807-1929/agriambi.v23n1p65-70. SILVA C.C.F.D. SILVA G.L.P. SOARES M.S. JÚNIOR BELÉIA A.P. CALIARI M. 2018 Addition of toasted baru nut (Dypteryx alata Vog.) and extruded rice bran to sugar cane candy (“rapadura”) Food Science and Technology 38 4 584 590 http://doi.org/10.1590/fst.37016 SILVA, C.C.F.D., SILVA, G.L.P., SOARES JÚNIOR, M.S., BELÉIA, A.P. and CALIARI, M., 2018. Addition of toasted baru nut (Dypteryx alata Vog.) and extruded rice bran to sugar cane candy (“rapadura”). Food Science and Technology, vol. 38, no. 4, pp. 584-590. http://doi.org/10.1590/fst.37016. SILVA L.M.S.F. MENDES J.F. SILVA C.L.M. FRANÇA W.F.L. ARAÚJO C.I.A. VIEIRA C.R. 2015 viewed 22 December 2022 Bolo sem glúten a base de farinha de arroz e farinha de baru Caderno de Ciências Agrárias online 7 2 23 28 Available from: https://periodicos.ufmg.br/index.php/ccaufmg/article/view/2838 SILVA, L.M.S.F., MENDES, J.F., SILVA, C.L.M., FRANÇA, W.F.L., ARAÚJO, C.I.A. and VIEIRA, C.R., 2015 [viewed 22 December 2022]. Bolo sem glúten a base de farinha de arroz e farinha de baru. Caderno de Ciências Agrárias [online], vol. 7, no. 2, pp. 23-28. Available from: https://periodicos.ufmg.br/index.php/ccaufmg/article/view/2838 SILVA-LUIS C.C. BRITO ALVES J.L. OLIVEIRA J.C.P.L. SOUSA LUIS J.A. ARAÚJO I.G.A. TAVARES J.F. NASCIMENTO Y.M. BEZERRA L.S. ARAÚJO DE AZEVEDO F.L.A. SOBRAL M.V. MANGUEIRA V.M. MEDEIROS I.A. VERAS R.C. 2022 Effects of baru almond oil (Dipteryx alata Vog.) treatment on thrombotic processes, platelet aggregation, and vascular function in aorta arteries Nutrients 14 10 2098 http://doi.org/10.3390/nu14102098 SILVA-LUIS, C.C., BRITO ALVES, J.L., OLIVEIRA, J.C.P.L., SOUSA LUIS, J.A., ARAÚJO, I.G.A., TAVARES, J.F., NASCIMENTO, Y.M., BEZERRA, L.S., ARAÚJO DE AZEVEDO, F.L.A., SOBRAL, M.V., MANGUEIRA, V.M., MEDEIROS, I.A. and VERAS, R.C., 2022. Effects of baru almond oil (Dipteryx alata Vog.) treatment on thrombotic processes, platelet aggregation, and vascular function in aorta arteries. Nutrients, vol. 14, no. 10, pp. 2098. http://doi.org/10.3390/nu14102098. SILVA P.N. DIAS T. BORGES L.L. ALVES-SANTOS A.M. HORST M.A. SILVA M.R. NAVES M.M.V. 2020 Total phenolic compounds and antioxidant capacity of baru almond and by-products evaluated under optimizing extraction conditions Agrária 15 4 1 7 http://doi.org/10.5039/agraria.v15i4a8530 SILVA, P.N., DIAS, T., BORGES, L.L., ALVES-SANTOS, A.M., HORST, M.A., SILVA, M.R. and NAVES, M.M.V., 2020. Total phenolic compounds and antioxidant capacity of baru almond and by-products evaluated under optimizing extraction conditions. Agrária, vol. 15, no. 4, pp. 1-7. http://doi.org/10.5039/agraria.v15i4a8530. SILVÉRIO M.D.O. CASTRO C.F.S. MIRANDA A.R. 2013 Avaliação da atividade antioxidante e inibitória da tirosinase das folhas de Dipteryx alata Vogel (baru) Revista Brasileira de Plantas Medicinais 15 1 59 65 http://doi.org/10.1590/S1516-05722013000100008 SILVÉRIO, M.D.O., CASTRO, C.F.S. and MIRANDA, A.R., 2013. Avaliação da atividade antioxidante e inibitória da tirosinase das folhas de Dipteryx alata Vogel (baru). Revista Brasileira de Plantas Medicinais, vol. 15, no. 1, pp. 59-65. http://doi.org/10.1590/S1516-05722013000100008. SIQUEIRA A.P.S. CASTRO C.F.S. SILVEIRA E.V. LOURENÇO M.F.C. 2016 Chemical quality of baru almond (Dipteryx alata oil) Ciência Rural 46 10 1865 1867 http://doi.org/10.1590/0103-8478cr20150468 SIQUEIRA, A.P.S., CASTRO, C.F.S., SILVEIRA, E.V. and LOURENÇO, M.F.C., 2016. Chemical quality of baru almond (Dipteryx alata oil). Ciência Rural, vol. 46, no. 10, pp. 1865-1867. http://doi.org/10.1590/0103-8478cr20150468. SIQUEIRA A.P.S. PACHECO M.T.B. NAVES M.M.V. 2015 Nutritional quality and bioactive compounds of partially defatted baru almond flour Food Science and Technology 35 1 127 132 http://doi.org/10.1590/1678-457X.6532 SIQUEIRA, A.P.S., PACHECO, M.T.B. and NAVES, M.M.V., 2015. Nutritional quality and bioactive compounds of partially defatted baru almond flour. Food Science and Technology, vol. 35, no. 1, pp. 127-132. http://doi.org/10.1590/1678-457X.6532. SIQUEIRA E.M.A. ROSA F.R. FUSTINONI A.M. DE SANT’ANA L.P. ARRUDA S.F. 2013 Brazilian savanna fruits contain higher bioactive compounds content and higher antioxidant activity relative to the conventional red delicious apple PLoS One 8 8 e72826 http://doi.org/10.1371/journal.pone.0072826 23991156 SIQUEIRA, E.M.A., ROSA, F.R., FUSTINONI, A.M., DE SANT’ANA, L.P. and ARRUDA, S.F., 2013. Brazilian savanna fruits contain higher bioactive compounds content and higher antioxidant activity relative to the conventional red delicious apple. PLoS One, vol. 8, no. 8, e72826. http://doi.org/10.1371/journal.pone.0072826. PMid:23991156. SIQUEIRA E.M.A. MARIN A.M.F. CUNHA M.S.B. FUSTINONI A.M. SANTANA L.P. ARRUDA S.F. 2012 Consumption of baru seeds [Dipteryx alata Vog.], a Brazilian savanna nut, prevents iron-induced oxidative stress in rats Food Research International 45 1 427 433 http://doi.org/10.1016/j.foodres.2011.11.005 SIQUEIRA, E.M.A., MARIN, A.M.F., CUNHA, M.S.B., FUSTINONI, A.M., SANTANA, L.P. and ARRUDA, S.F., 2012. Consumption of baru seeds [Dipteryx alata Vog.], a Brazilian savanna nut, prevents iron-induced oxidative stress in rats. Food Research International, vol. 45, no. 1, pp. 427-433. http://doi.org/10.1016/j.foodres.2011.11.005. SORRENTINO E. SUCCI M. TIPALDI L. PANNELLA G. MAIURO L. STURCHIO M. COPPOLA R. TREMONTE P. 2018 Antimicrobial activity of gallic acid against food-related Pseudomonas strains and its use as biocontrol tool to improve the shelf life of fresh black truffles International Journal of Food Microbiology 266 183 189 http://doi.org/10.1016/j.ijfoodmicro.2017.11.026 29227905 SORRENTINO, E., SUCCI, M., TIPALDI, L., PANNELLA, G., MAIURO, L., STURCHIO, M., COPPOLA, R. and TREMONTE, P., 2018. Antimicrobial activity of gallic acid against food-related Pseudomonas strains and its use as biocontrol tool to improve the shelf life of fresh black truffles. International Journal of Food Microbiology, vol. 266, pp. 183-189. http://doi.org/10.1016/j.ijfoodmicro.2017.11.026. PMid:29227905. SOUKOULIS C. GAIANI C. HOFFMANN L. 2018 Plant seed mucilage as emerging biopolymer in food industry applications Current Opinion in Food Science 22 28 42 http://doi.org/10.1016/j.cofs.2018.01.004 SOUKOULIS, C., GAIANI, C. and HOFFMANN, L., 2018. Plant seed mucilage as emerging biopolymer in food industry applications. Current Opinion in Food Science, vol. 22, pp. 28-42. http://doi.org/10.1016/j.cofs.2018.01.004. SOUSA A.G.O. FERNANDES D.C. ALVES A.M. DE FREITAS J.B. NAVES M.M.V. 2011 Nutritional quality and protein value of exotic almonds and nut from the Brazilian savanna compared to peanut Food Research International 44 7 2319 2325 http://doi.org/10.1016/j.foodres.2011.02.013 SOUSA, A.G.O., FERNANDES, D.C., ALVES, A.M., DE FREITAS, J.B. and NAVES, M.M.V., 2011. Nutritional quality and protein value of exotic almonds and nut from the Brazilian savanna compared to peanut. Food Research International, vol. 44, no. 7, pp. 2319-2325. http://doi.org/10.1016/j.foodres.2011.02.013. SOUZA C.D. FELFILI J.M. 2006 Uso de plantas medicinais na região de Alto Paraíso de Goiás, GO, Brasil Acta Botanica Brasílica 20 1 135 142 http://doi.org/10.1590/S0102-33062006000100013 SOUZA, C.D. and FELFILI, J.M., 2006. Uso de plantas medicinais na região de Alto Paraíso de Goiás, GO, Brasil. Acta Botanica Brasílica, vol. 20, no. 1, pp. 135-142. http://doi.org/10.1590/S0102-33062006000100013. SOUZA L.F. DIAS R.F. GUILHERME F.A.G. COELHO C.P. 2016 Plantas medicinais referenciadas por raizeiros no município de Jataí, estado de Goiás Revista Brasileira de Plantas Medicinais 18 2 451 461 http://doi.org/10.1590/1983-084X/15_173 SOUZA, L.F., DIAS, R.F., GUILHERME, F.A.G. and COELHO, C.P., 2016. Plantas medicinais referenciadas por raizeiros no município de Jataí, estado de Goiás. Revista Brasileira de Plantas Medicinais, vol. 18, no. 2, pp. 451-461. http://doi.org/10.1590/1983-084X/15_173. SOUZA P.L.C. SILVA M.R. 2015 Quality of granola prepared with dried caju-do-cerrado (Anacardium othonianum Rizz) and baru almonds (Dipteryx alata Vog) Journal of Food Science and Technology 52 3 1712 1717 http://doi.org/10.1007/s13197-013-1134-4 25745245 SOUZA, P.L.C. and SILVA, M.R., 2015. Quality of granola prepared with dried caju-do-cerrado (Anacardium othonianum Rizz) and baru almonds (Dipteryx alata Vog). Journal of Food Science and Technology, vol. 52, no. 3, pp. 1712-1717. http://doi.org/10.1007/s13197-013-1134-4. PMid:25745245. SOUZA R.G.M.D. GOMES A.C. NAVARRO A.M. CUNHA L.C. SILVA M.A.C. BARBOSA F. JÚNIOR MOTA J.F. 2019 Baru almonds increase the activity of glutathione peroxidase in overweight and obese women: a randomized, placebo-controlled trial Nutrients 11 8 1750 http://doi.org/10.3390/nu11081750 31366053 SOUZA, R.G.M.D., GOMES, A.C., NAVARRO, A.M., CUNHA, L.C., SILVA, M.A.C., BARBOSA JÚNIOR, F. and MOTA, J.F., 2019. Baru almonds increase the activity of glutathione peroxidase in overweight and obese women: a randomized, placebo-controlled trial. Nutrients, vol. 11, no. 8, pp. 1750. http://doi.org/10.3390/nu11081750. PMid:31366053. SOUZA R.G.M.D. GOMES A.C. NAVARRO A.M. SILVA M.A.C. BARBOSA F. JÚNIOR MOTA J.F. 2018 A baru almond-enriched diet reduces abdominal adiposity and improves high-density lipoprotein concentrations: a randomized, placebo-controlled trial Nutrition 55-56 154 160 http://doi.org/10.1016/j.nut.2018.06.001 30086484 SOUZA, R.G.M.D., GOMES, A.C., NAVARRO, A.M., SILVA, M.A.C., BARBOSA JÚNIOR, F. and MOTA, J.F., 2018. A baru almond-enriched diet reduces abdominal adiposity and improves high-density lipoprotein concentrations: a randomized, placebo-controlled trial. Nutrition, vol. 55-56, pp. 154-160. http://doi.org/10.1016/j.nut.2018.06.001. PMid:30086484. SOUZA G.G. SANTOS S.C. SANTOS C.C. DIAS A.S. SILVERIO J.M. TROVATO V.W. FLAUZINO D.S. 2023 Arbuscular mycorrhizal fungi promote the growth of Dipteryx alata Vogel Brazilian Journal of Biology = Revista Brasileira de Biologia 83 e275172 http://doi.org/10.1590/1519-6984.275172 37909590 SOUZA, G.G., SANTOS, S.C., SANTOS, C.C., DIAS, A.S., SILVERIO, J.M., TROVATO, V.W. and FLAUZINO, D.S., 2023. Arbuscular mycorrhizal fungi promote the growth of Dipteryx alata Vogel. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 83, e275172. http://doi.org/10.1590/1519-6984.275172. PMid:37909590. SULIBURSKA J. KREJPCIO Z. 2014 Evaluation of the content and bioaccessibility of iron, zinc, calcium and magnesium from groats, rice, leguminous grains and nuts. J Journal of Food Science and Technology 51 3 589 594 http://doi.org/10.1007/s13197-011-0535-5 24587537 SULIBURSKA, J. and KREJPCIO, Z., 2014. Evaluation of the content and bioaccessibility of iron, zinc, calcium and magnesium from groats, rice, leguminous grains and nuts. J. Journal of Food Science and Technology, vol. 51, no. 3, pp. 589-594. http://doi.org/10.1007/s13197-011-0535-5. PMid:24587537. TAKEMOTO E. OKADA I.A. GARBELOTTI M.L. TAVARES M. AUED-PIMENTEL S. 2001 Composição química da semente e do óleo de baru (Dipteryx alata Vog) nativo do Município de Pirenópolis, Estado de Goiás Brazil Revista do Instituto Adolfo Lutz 60 2 113 117 http://doi.org/10.53393/rial.2001.60.35540 TAKEMOTO, E., OKADA, I.A., GARBELOTTI, M.L., TAVARES, M. and AUED-PIMENTEL, S., 2001. Composição química da semente e do óleo de baru (Dipteryx alata Vog) nativo do Município de Pirenópolis, Estado de Goiás Brazil. Revista do Instituto Adolfo Lutz, vol. 60, no. 2, pp. 113-117. http://doi.org/10.53393/rial.2001.60.35540. TAMARGO A. MARTIN D. NAVARRO DEL HIERRO J. MORENO-ARRIBAS M.V. MUÑOZ L.A. 2020 Intake of soluble fiber from chia seed reduces bioaccessibility of lipids, cholesterol and glucose in the dynamic gastrointestinal model simgi® Food Research International 137 109364 http://doi.org/10.1016/j.foodres.2020.109364 33233067 TAMARGO, A., MARTIN, D., NAVARRO DEL HIERRO, J., MORENO-ARRIBAS, M.V. and MUÑOZ, L.A., 2020. Intake of soluble fiber from chia seed reduces bioaccessibility of lipids, cholesterol and glucose in the dynamic gastrointestinal model simgi®. Food Research International, vol. 137, pp. 109364. http://doi.org/10.1016/j.foodres.2020.109364. PMid:33233067. THE PLANT LIST 2013 viewed 13 March 2023 Dipteryx alata Vogel online Available from: http://www.theplantlist.org/tpl1.1/record/ild-33413/ THE PLANT LIST, 2013 [viewed 13 March 2023]. Dipteryx alata Vogel [online]. Available from: http://www.theplantlist.org/tpl1.1/record/ild-33413/ TIOZON R.J.N. FERNIE A.R. SREENIVASULU N. 2021 Meeting human dietary vitamin requirements in the staple rice via strategies of biofortification and post-harvest fortification Trends in Food Science & Technology 109 65 82 http://doi.org/10.1016/j.tifs.2021.01.023 TIOZON, R.J.N., FERNIE, A.R. and SREENIVASULU, N., 2021. Meeting human dietary vitamin requirements in the staple rice via strategies of biofortification and post-harvest fortification. Trends in Food Science & Technology, vol. 109, pp. 65-82. http://doi.org/10.1016/j.tifs.2021.01.023. TRENTO M.V.C. CARAPIÁ M.S. CESAR P.H.S. BRAGA M.A. SOARES A.M. MARCUSSI S. 2021 In vivo and in vitro prospection of the anti-ophidic properties exercised by the extracts of Jacaranda decurrens L Acta Scientiarum. Biological Sciences 43 e57016 http://doi.org/10.4025/actascibiolsci.v43i1.57016 TRENTO, M.V.C., CARAPIÁ, M.S., CESAR, P.H.S., BRAGA, M.A., SOARES, A.M. and MARCUSSI, S., 2021. In vivo and in vitro prospection of the anti-ophidic properties exercised by the extracts of Jacaranda decurrens L. Acta Scientiarum. Biological Sciences, vol. 43, e57016. http://doi.org/10.4025/actascibiolsci.v43i1.57016. TROPICOS 2022 viewed 22 December 2022 Dipteryx alata Vogel online Available from: https://www.tropicos.org/name/13000476/ TROPICOS, 2022 [viewed 22 December 2022]. Dipteryx alata Vogel [online]. Available from: https://www.tropicos.org/name/13000476/ VALLILO M.I. TAVARES M.T.A. AUED S. 1990 Composição química da polpa e da semente do fruto do cumbaru (Dipteryx alata Vog.) - caracterização do óleo da semente Revista do Instituto Florestal 2 2 115 125 http://doi.org/10.24278/2178-5031.199022137 VALLILO, M.I., TAVARES, M.T.A. and AUED, S., 1990. Composição química da polpa e da semente do fruto do cumbaru (Dipteryx alata Vog.) - caracterização do óleo da semente. Revista do Instituto Florestal, vol. 2, no. 2, pp. 115-125. http://doi.org/10.24278/2178-5031.199022137. VERA R. SOARES M.S. JUNIOR NAVES R.V. SOUZA E.R.B. FERNANDES M. CALIARI E.P. LEANDRO W.M. 2009 Características químicas de amêndoas de barueiros (Dipteryx alata Vog.) de ocorrência natural no Cerrado do estado de Goiás, Brasil Revista Brasileira de Fruticultura 31 1 112 118 http://doi.org/10.1590/S0100-29452009000100017 VERA, R., SOARES JUNIOR, M.S., NAVES, R.V., SOUZA, E.R.B., FERNANDES, M., CALIARI, E.P. and LEANDRO, W.M., 2009. Características químicas de amêndoas de barueiros (Dipteryx alata Vog.) de ocorrência natural no Cerrado do estado de Goiás, Brasil. Revista Brasileira de Fruticultura, vol. 31, no. 1, pp. 112-118. http://doi.org/10.1590/S0100-29452009000100017. VIANA H.N.A.C. SGANZERLA W.G. CASTRO L.E.N. VEECK A.P.L. 2023 Characterization of baru (Dipteryx alata Vog.) and application of its agro-industrial by-product in the formulation of cookies Journal of Agriculture and Food Research 12 100577 http://doi.org/10.1016/j.jafr.2023.100577 VIANA, H.N.A.C., SGANZERLA, W.G., CASTRO, L.E.N. and VEECK, A.P.L., 2023. Characterization of baru (Dipteryx alata Vog.) and application of its agro-industrial by-product in the formulation of cookies. Journal of Agriculture and Food Research, vol. 12, pp. 100577. http://doi.org/10.1016/j.jafr.2023.100577. WORLD HEALTH ORGANIZATION WHO 2007 viewed 18 January 2023 Joint FAO/WHO/UNU expert consultation on protein and amino acid requirements in human nutrition online Geneva WHO Technical Reports Series Available from: https://apps.who.int/iris/handle/10665/43411/ WORLD HEALTH ORGANIZATION – WHO, 2007 [viewed 18 January 2023]. Joint FAO/WHO/UNU expert consultation on protein and amino acid requirements in human nutrition [online]. Geneva: WHO. Technical Reports Series, no. 935. Available from: https://apps.who.int/iris/handle/10665/43411/ WORLD HEALTH ORGANIZATION WHO 2019 viewed 21 July 2023 Snakebite envenoming: a strategy for prevention and control: executive summary online Geneva WHO Available from: https://apps.who.int/iris/handle/10665/312195/ WORLD HEALTH ORGANIZATION – WHO, 2019 [viewed 21 July 2023]. Snakebite envenoming: a strategy for prevention and control: executive summary [online]. Geneva: WHO. Available from: https://apps.who.int/iris/handle/10665/312195/ WORLD HEALTH ORGANIZATION WHO 2021 a viewed 21 November 2022 New WHO factsheet: how can we tell if plant-based products are healthy? online Geneva WHO Available from: https://www.who.int/europe/news/item/22-12-2021-new-who-factsheet-how-can-we-tell-if-plant-based-products-are-healthy WORLD HEALTH ORGANIZATION – WHO, 2021a [viewed 21 November 2022]. New WHO factsheet: how can we tell if plant-based products are healthy? [online]. Geneva: WHO. Available from: https://www.who.int/europe/news/item/22-12-2021-new-who-factsheet-how-can-we-tell-if-plant-based-products-are-healthy WORLD HEALTH ORGANIZATION WHO 2021 b viewed 21 November 2022 Antimicrobial resistance online Geneva WHO Available from:https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance#:~:text=What%20is%20antimicrobial%20resistance%3F,spread%2C%20severe%20illness%20and%20death/ WORLD HEALTH ORGANIZATION – WHO, 2021b [viewed 21 November 2022]. Antimicrobial resistance [online]. Geneva: WHO. Available from:https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance#:~:text=What%20is%20antimicrobial%20resistance%3F,spread%2C%20severe%20illness%20and%20death/ WORLD HEALTH ORGANIZATION WHO 2022 viewed 21 April 2023 Leishmaniasis online Available from: https://www.paho.org/en/topics/leishmaniasis WORLD HEALTH ORGANIZATION – WHO, 2022 [viewed 21 April 2023]. Leishmaniasis [online]. Available from: https://www.paho.org/en/topics/leishmaniasis WU W. HU J. GAO H. CHEN H. FANG X. MU H. HAN Y. LIU R. 2020 The potential cholesterol-lowering and prebiotic effects of bamboo shoot dietary fibers and their structural characteristics Food Chemistry 332 127372 http://doi.org/10.1016/j.foodchem.2020.127372 32615381 WU, W., HU, J., GAO, H., CHEN, H., FANG, X., MU, H., HAN, Y. and LIU, R., 2020. The potential cholesterol-lowering and prebiotic effects of bamboo shoot dietary fibers and their structural characteristics. Food Chemistry, vol. 332, pp. 127372. http://doi.org/10.1016/j.foodchem.2020.127372. PMid:32615381. YANG L. LIAO M. 2021 Influence of myrcene on inflammation, matrix accumulation in the kidney tissues of streptozotocin-induced diabetic rat Saudi Journal of Biological Sciences 28 10 5555 5560 http://doi.org/10.1016/j.sjbs.2020.11.090 34588865 YANG, L. and LIAO, M., 2021. Influence of myrcene on inflammation, matrix accumulation in the kidney tissues of streptozotocin-induced diabetic rat. Saudi Journal of Biological Sciences, vol. 28, no. 10, pp. 5555-5560. http://doi.org/10.1016/j.sjbs.2020.11.090. PMid:34588865. YOON S.Y. AHN D. HWANG J.Y. KANG M.J. CHUNG S.J. 2021 Linoleic acid exerts antidiabetic effects by inhibiting protein tyrosine phosphatases associated with insulin resistance Journal of Functional Foods 83 104532 http://doi.org/10.1016/j.jff.2021.104532 YOON, S.Y., AHN, D., HWANG, J.Y., KANG, M.J. and CHUNG, S.J., 2021. Linoleic acid exerts antidiabetic effects by inhibiting protein tyrosine phosphatases associated with insulin resistance. Journal of Functional Foods, vol. 83, pp. 104532. http://doi.org/10.1016/j.jff.2021.104532. YU M. GOUVINHAS I. ROCHA J. BARROS A.I.R.N.A. 2021 Phytochemical and antioxidant analysis of medicinal and food plants towards bioactive food and pharmaceutical resources Scientific Reports 11 1 10041 http://doi.org/10.1038/s41598-021-89437-4 33976317 YU, M., GOUVINHAS, I., ROCHA, J. and BARROS, A.I.R.N.A., 2021. Phytochemical and antioxidant analysis of medicinal and food plants towards bioactive food and pharmaceutical resources. Scientific Reports, vol. 11, no. 1, pp. 10041. http://doi.org/10.1038/s41598-021-89437-4. PMid:33976317. ZOLGHADRI S. BAHRAMI A. KHAN M.T.H. MUNOZ-MUNOZ J. GARCIA-MOLINA F. GARCIA-CANOVAS F. SABOURY A.A. 2019 A comprehensive review on tyrosinase inhibitors Journal of Enzyme Inhibition and Medicinal Chemistry 34 1 279 309 http://doi.org/10.1080/14756366.2018.1545767 30734608 ZOLGHADRI, S., BAHRAMI, A., KHAN, M.T.H., MUNOZ-MUNOZ, J., GARCIA-MOLINA, F., GARCIA-CANOVAS, F. and SABOURY, A.A., 2019. A comprehensive review on tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 34, no. 1, pp. 279-309. http://doi.org/10.1080/14756366.2018.1545767. PMid:30734608.
location_on
Instituto Internacional de Ecologia R. Bento Carlos, 750, 13560-660 São Carlos SP - Brasil, Tel. e Fax: (55 16) 3362-5400 - São Carlos - SP - Brazil
E-mail: bjb@bjb.com.br
rss_feed Acompanhe os números deste periódico no seu leitor de RSS
Acessibilidade / Reportar erro