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1. Introduction

Every country on the planet depends on agriculture
for its economy and well-being, however, contemporary 
farming methods, like monocropping, overreliance on 
chemicals, and deforestation, result in harmful ecological 
consequences such as soil erosion, reduced biodiversity, 
water contamination, and increased greenhouse gas 
emissions, underscoring the necessity for sustainable 
approaches to mitigate damage and guarantee lasting 
sustainability (Adedibu, 2023; Rahman et al., 2022).

In recent years, the development of new strategies 
to mitigate the effects caused by intensive agriculture 

and that can be used in polluted environments has 
become more relevant, which is why the practice of using 
various soil microorganisms that can provide nutrients 
to plants and soil, improve production yields and reduce 
the environmental impact caused by heavy metals or 
hydrocarbons has arisen (Arora et al., 2019; Prashar and 
Shah, 2016) some of these microorganisms are bacteria 
such as Pseudomonas with the ability to promote growth 
and survival in toxic environments (Misra et al., 2022).

Pseudomonas is a gram-negative bacterium genus 
with more than 120 distinct species commonly found 
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also significantly reduces the time required for optimal 
plant growth.

2.1. The impact of heavy metals and hydrocarbons 
contamination on soil health

Currently, one-third of the world soils are contaminated 
with heavy metals (such as Cu+2, Ni+2, Cr+2, Pb+2, Zn+2, and 
Cd+2) from disparate sources, such as mining or hydrocarbon 
production. On the other hand, the concentration of 
naturally encountered metals is usually <1000 mg*kg-1, 
and most are nonbiodegradable. Nonetheless, the vast 
majority comes from anthropogenic activities (Alegría-
Torres et al., 2020; Osman et al., 2019; Castro-González et al., 
2019; Laghlimi et al., 2015). Pseudomonas bacteria have 
demonstrated the ability to withstand the toxic effects of 
heavy metals, showcasing their tolerance towards these 
harmful substances (see Table 1). Moreover, these bacteria 
possess the remarkable capability to release metabolites 
that can effectively bind and remove heavy metals from 
their surroundings through a process known as chelation.

On the other hand, species of Pseudomonas have 
been found in soils contaminated with hydrocarbons. 
For instance, P. aeruginosa is known for its ability to produce 
siderophores that chelate heavy metals (Zaynab et al., 2022; 
Shi et al., 2017), as well as rhamnolipids or surfactants 
that improve the solubility and mobility of hydrocarbons 
and heavy metals (Soberón‐Chávez et al., 2021; Wu et al., 
2019; Vilasó-Cadre et al., 2017; Agnello et al., 2016), 
as P. puteola and P. stutzeri. It has been reported that 
Pseudomonas species can degrade oil by the production of 
rhamnolipids (Ossai et al., 2020). These findings highlight 
the potential of Pseudomonas species in the bioremediation 
of contaminated soils, particularly those impacted by 
hydrocarbons and heavy metals.

2.2. Heavy metals chelation and soil bioremediation

Pollution of agricultural soils by heavy metals is a major 
concern causing ecological and environmental issues. 
Improving plant tolerance to heavy metal stress ought to 
enable crop growth with minimal or zero accumulation of 
heavy metals in edible parts of plants that fulfill the safe 
food requirements for a rapidly growing world population 
(Etesami, 2018). Plant growth-promoting rhizobacteria or 
PGPRs, such as Pseudomonas, are bacteria inhabiting the 
rhizosphere, an area around plant roots (Santoyo et al., 2021). 
The aforementioned is also recognized for promoting plant 

in soil and water (Streeter and Katouli, 2016). Some 
Pseudomonas species are known for their capability to 
facilitate plant growth and protect plants against diseases 
(Backer et al., 2018). Additionally, Pseudomonas can help 
solubilize nutrients and heavy metals in soil, making 
them more accessible to plants and other nonpathogenic 
microorganisms (Fakhar et al., 2020).

For example, P. putida, P. aeruginosa, and P. fluorescens 
produce molecules that decrease plant growth time, such 
as organic acids, amino acids, antibiotics, and siderophores 
(Kim et al., 2013; Yeğin et al., 2020; De Werra et al., 
2009). Pseudomonas-based bioinoculants for sustainable 
agriculture have been created based on these metabolic 
properties. Additionally, the presence of these Pseudomonas 
species in soils used in agriculture has awakened growing 
interest due to the provided benefits in various stages of 
plant development. Furthermore, Pseudomonas species 
contribute to the restoration of soils contaminated by 
herbicides, fertilizers, heavy metals, and hydrocarbons, 
thus decreasing growth time and increasing root size 
(Gutiérrez-Albanchez et al., 2021; Shahid et al., 2018; 
Velivelli et al., 2014). Therefore, the use of bacteria in 
agriculture possesses several benefits for crops since it 
optimally increases plant growth while protecting it from 
pathogens that can damage both seed and seedling growth.

2. Positive Effects of Pseudomonas Inoculation in the 
Soil

The positive effects of introducing beneficial 
microorganisms through bioinoculation with Pseudomonas 
are due to the adaptability to a hostile environment that 
may be polluted with heavy metals, herbicides, or fertilizers 
that can be solubilized or degraded. Most Pseudomonas 
have the ability to degrade hydrocarbons, nitrogenous 
compounds, and herbicides and decrease time required 
for plant growth (Kiki, 2022). For example, P. protegens 
(formerly known as P. fluorescens) may consume 80% of 
glyphosate, glufosinate, and phosphine in the presence 
or absence of iron atoms (Li et al., 2021). One of the key 
attributes of Pseudomonas is their ability to solubilize 
or degrade a wide range of contaminants, including 
hydrocarbons (Medić and Karadžić, 2022; Mullaeva et al., 
2022), nitrogenous compounds (Yang et al., 2018), and 
herbicides (Yu et al., 2023). This versatile capacity not only 
contributes to the detoxification of the environment but 

Table 1. Tolerance to heavy metals by different Pseudomonas species; in the case of P. reptilivora, it has not yet been determined whether 
they tolerate the metals shown.

Organism
Heavy metals

Reference
Cd Cr Hg Cu Pb As Mn U

P. aeruginosa + + + + - - + + Choudhary and Sar (2011)

P. putida + - + + - - + - Hussein et al. (2005)

P. fluorescens + - - - - - - - Yang et al. (2018)

P. reptilivora NA NA NA + NA NA + NA Yeğin et al. (2020)

NA = Not available, (+) can tolerate, (-) can’t tolerate/inhibit growth.
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growth by supplying nutrients, producing hormones, and 
protecting plants from pathogens (Sun et al., 2021; Morales-
Cedeño et al., 2021). Additionally, it has also been found 
that PGPRs are effective in remediating contaminated soils 
(Feng et al., 2022; Anuroopa et al., 2021; Pandey and Gupta, 
2020), and the ability of some PGPRs to produce organic acids 
such as gluconic acid has been described (Sun et al., 2020). 
The function of gluconic acid in heavy metal chelation is to 
bind to metal ions and form a more stable complex than the 
metal ion itself. Formation of this complex decreases the 
bioavailability of the metal ions by making them less toxic to 
plants and other organisms (Jain et al., 2020; Kour et al., 2019).

Figure 1 shows the benefits produced by different 
species of Pseudomonas), i.e., P. aeruginosa was able to 
bind 900 mg/L of Cd+2 at when added to a growth medium 
(Chellaiah, 2018), also P. fluorescens gim-3 could solubilize 
and dissolve 75.315 mg/L of Cd+2 found in soil (1.952 ± 
0.084 mg/kg) using GA (Yang et al., 2018).

Gluconic acid is one of many metabolites produced by 
Pseudomonas, that could help to reduce the contamination 
of heavy metals in polluted soils. In summary, harnessing 
the abilities of PGPRs, particularly Pseudomonas, offers 
a promising avenue for mitigating the ecological and 
environmental impacts of heavy metal pollution in 
agricultural soils. By facilitating safe and sustainable 
crop growth, these beneficial bacteria contribute to the 
global effort to ensure food security while safeguarding 
our environment, Table 2 shows different heavy metals 
solubilized by different Pseudomonas.

2.3. Pseudomonas in sustainable agriculture, their 
capacity for disease biocontrol and plant growth

Pseudomonas spp. are effective biocontrol agents due 
to their catabolic adaptability, their ability to colonize 
roots, and their production of antifungal metabolites 
(Das et al., 2020). Fluorescent Pseudomonas are particularly 
adept at counteracting phytopathogens and stimulating 
disease resistance in host plants (Raio and Puopolo, 2021; 
Tienda et al., 2020; Mohammed et al., 2020); among these 
species, P. aeruginosa, P. putida, P. cichori, and P. chlororaphis 
are commonly found; these protect plants against 
pathogens by efficiently consuming root exudates and 
resisting predation by soil predators through antipredatory 
mechanisms such as toxicity and production of secondary 
metabolites, which reduce bacterial resistance (Kang et al., 
2020; Arrebola et al., 2019). Pseudomonas relies on their 
ability to efficiently consume root exudates (substances 
released by plant roots) and resist being devoured by 
soil predators like nematodes and protozoa to defend 
themselves against these predators.

2.4. Pathogen suppresion

Pseudomonas spp. have developed several antipredator 
mechanisms, such as the production of secondary 
metabolites, which interact with predators in a complex 
way by affecting their physiology and behavior. Depending 
on the specific metabolite, it can act as a repellent, stressor, 
or toxin. The production of these secondary metabolites 

Figure 1. Pseudomonas is a beneficial bacteria that can improve the soil quality and plant growth in polluted environments. It produces 
various substances, such as siderophores, rhamnolipids, antibiotics, fungicides, and organic acids, that can help plants cope with stress 
from heavy metals and pathogens, improving crop production. For example, gluconic acid (GA) which is produced by an enzymatic 
reaction between glucose and glucose dehydrogenase (GDH) that when combined with rhamnolipids can bind to heavy metals and 
reduce their toxicity, (taken and modified from Singh et al., 2019, created with BioRender, 2023). 
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by biocontrol bacteria such as Pseudomonas spp. serves 
multiple functions, including plant protection against 
pathogens and enhancement of bacterial resistance. This 
was demonstrated in a study by Kang et al. (2020), in which 
they found that P. koreensis and P. entomophilia possess 
traits as nitrogen fixation, phosphate solubilization, heavy 
metal chelation (Kang et al., 2020), and phytohormone 
production that directly facilitate the proliferation of their 
plant hosts (Zboralski and Filion, 2023).

P. aeruginosa acts as a biocontrol agent in potatoes, 
tomatoes, and taro presenting various biologically active 
metabolites with the capacity to be used against different 
fungi and bacteria, facilitating the solubilization of nutrients 
so the plant assimilates them, thus increasing the size of 
the root, leaves and chlorophyll levels (Ghadamgahi et al., 
2022). On the other hand, P. parahaemolyticus affects 
bacterial pustules in soybean plants by using production 
through the VILS2 lipopeptide pathway (Kakembo and 
Lee, 2019). Indeed P. aeruginosa isolated from the soil 
rhizosphere (part of the soil immediate to the roots) had 
a fungicidal effect against Penicillium citreosulfuratum, 
P. citrinum and Stromatinia gladioli pathogens of safranine 
(Crocus satvus L.), with inhibition percentages of 23.16%, 
49.17%, and 79.76% respectively (Hu et al., 2021).

2.5. Drought tolerance

Drought tolerance refers to a plant’s ability to resist 
dehydration and maintain it’s physiological functions 
even under water-deficient conditions (Ilyas et al., 2020). 
Droughts associated with low rainfall are currently one 
of the most important factors affecting agricultural 
production and are expected to increase further in the 
future, posing major challenges to mankind., it has been 
reported that many agricultural regions are affected from 

drought up to 50%, and could even lose more however 
some strains of Pseudomonas can improve drought 
tolerance and crop production (Uzma et al., 2022), 
and different gene expression and induced drought 
tolerance (Humaira et al., 2020), on the other hand, other 
Pseudomonas have been shown to showed effective plant 
growth promotion and antifungal activity under drought 
stress conditions (Vurukonda et al., 2022), P. putida favors 
drought tolerance in tomato plants and promotes yields 
(Saglam et al., 2022).

2.6. Salt stress tolerance

Soil salinity has emerged as a great threat to the 
agricultural ecosystems, presence of water-soluble 
salts in excess negatively impacts plants physiological 
processes including seed germination, photosynthesis, 
membrane transport, antioxidants and ethylene 
production (Chang et al., 2014). The application of salt-
tolerant plant growth promoting bacteria has shown 
remarkable success in enchanting productivity of saline 
soils (Arora et al., 2020). According to Do et al. (2022), 
two Pseudomonas (strain ND06 and ND09) showed 
potential in promoting peanut growth under salinity 
conditions, the study concluded that ND09 may be used 
as a biological ecofriendly agent in agriculture practices, 
it has also been reported that P. pseudoalcaligenes ismore 
effective in reducing salt stress soybean (Humaira et al., 
2020). According to Lu et al. (2021), P. aerugionsa can 
alleviate the effects of the salt stress on plants and 
induce accumulation of free proline, simengly P. simiae 
showed increases in proline production when subjected 
to salt stress (Vaishnav and Choudhary, 2018). There 
before, soil salinity would be an important factor in the 
modern agriculture.

Table 2. Various heavy metals that were solubilized by different Pseudomonas species (taken and modified from Fakhar et al., 2020).

Heavy metal Effects in plants or humans Species BE Reference

Cadmium (Cd) Affects seed development, inhibits 
DNA-mediated transformation, and 

alters the functions of enzymatic 
activities.

P. aeruginosa 900 mg/L Abbas et al. (2017)

P. fluorescens 94%

Crome (Cd) Decreases growth and disrupts 
enzyme activity.

P. stutzeri 25.6 mg/g Yaashikaa et al. (2019)

P. alcaliphilia 200 mg/L El‐Naggar et al. (2020)

P. putida 1000 mg/L

Pseudomonas sp. 32%

Cobalt (Co) Causes cell membrane instability, 
readily oxidizes lipids, inhibits 
oxidative phosphorylation, and 

denatures proteins.

P. alcaphilia 96.32% Elsayed et al. (2022)

P. aeruginosa 100 mg/L Al-Dhabi et al. (2020)

Mercury (Hg) A leading cause of cancer and 
leukemia in humans. Alters DNA and 

damages cell walls.

P. aeruginosa 99.70% Imron et al. (2021)

P. putida 98% Xue et al. (2022)

Uranium (U) In humans causes respiratory 
disease and nephrotoxicity (mostly 

cell necrosis).

P. aeruginosa 275 mg/g (95%) Choudhary and Sar (2011)

BE = Bioremediation Efficiency.
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2.7. Limitations of using Pseudomonas

Unlike the studies discussed previously, it is important 
to mention that there are certain restrictions of using 
Pseudomonas. For example, they can slow root growth if 
the strains excrete high concentrations of indole-3-acetic 
acid, a plant hormone that can regulate plant growth 
and development and can promote phytopathogenic 
disease if used with P. fluorescens and P. syringae (Djami-
Tchatchou et al., 2022; Xie et al., 1996). On the other hand, 
P. aeruginosa is an opportunistic pathogen that causes 
severe infections such as bloodstream, skin infections, and 
pneumonias, these infections can lead to high mortality 
of hosts or patients with suppressed immunity, therefore, 
caution is recommended with this strain (Reynolds and 
Kollef, 2021). Some Pseudomonas can produce cyanide 
which may cause an inhibitory effect on pathogens., 
however, cyanide has an inhibitory effect on plant growth 
like lettuce (Saharan and Nehra, 2011; Parikh and Jha 2012).

Overall, Pseudomonas shows promise as a biocontrol 
agent in modern agriculture, with its ability to defend 
plants against soil-borne phytopathogens but depends 
on the specific species and their interactions with plants 
and the environment. Therebefore, it’s important to know 
which strain of Pseudomonas that could be chosen for its 
use in agricultural fields, contrasting with the risk on 
human health (see Table 3).

3. Pseudomonas Beyond Earth

NASA plans to launch the Artemis II mission in 2024, which 
will orbit the lunar surface and establish a sustainable base 
of operations. This base will play a crucial role in simulating 
the growth of plants and microorganisms in microgravity, 
providing valuable insights for future missions to Mars. 
The findings from these experiments will serve as prototypes 
for the establishment of the first human colony on the red 
planet in 2033 (Koehle et al., 2023). Whether bacteria can 
survive in space is a novel topic that still requires research. 
A bacterial species that has had positive effects on space 
radiation is Deinoccocus radiodurans, which has been able to 
survive the harmful effects of radiation for a 3-year period 
(Ott et al., 2020; Canganella and Bianconi, 2007). Research 
has also been carried out on the survival of Pseudomonas 
in space on the International Space Station (ISS). In a study 
conducted by Boyle et al. (1990), the potential survival of 
P. aeruginosa and S. aureus in harsh growth conditions was 
investigated. The findings indicated that Pseudomonas has the 
ability to endure nutrient deprivation in water, a capability 
not shared by Staphylococcus strains.

3.1. The potential use of Pseudomonas on the planet Mars

As outlined in the study “Grand Challenges for Synthetic 
Biology in Space” by Menezes et al. (2015), bacteria in 

Table 3. Commonly applied biotechnological potential in Pseudomonas.

Organism BSL
Dangerous 
to humans

¿Has it been 
studied for use 
in agriculture?

Benefit Reference

P. aeruginosa 2 Yes Yes It produces various 
antibiotics, antifungals, 
rhamnolipids. Increases 
root size and produces 

antibiotics.

LaBauve and Wargo (2012)

P. putida 1 No Yes Clark and Pazdernik (2015)

P. reptilivora 1 No (highly 
pathogen to 

reptiles)

No, but it could 
be used in 

outer-space 
environments

It has not been studied 
for field use, however, 

degrades nitrogen 
compounds, heavy metals, 
produces antibiotics, and 

tolerates high salinity.

Yeğin et al. (2020)

P. syringae 2 No (highly 
pathogen to 

plants)

Yes Produces highly destructive 
molecules against 
phytopathogens

Xin et al. (2018)

P. stutzeri 1 No Yes Promotes seed germination Lami et al. (2020)

P. fluorescens 1 No Yes Efficient biocontrol, some 
strains use NO3 instead 

of O2

O’Callaghan (2016)

P. chlororaphis 1 No Yes Provides protection against 
fungal phytopathogens.

Galloway et al. (2011)

P. chloropaphis 
sub. Aurantiaca

1 No Yes Antifungal activity, plant 
growth promotion

Mehnaz et al. (2020)

Hu et al. (2014)

P. protogens 1 No Yes Biocontrol agent against 
diseases

Vesga et al. (2020)

Murthy et al. (2021)

BSL = Biosafety level.
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general are needed to produce food, drugs, clean water, 
air, building materials, carbon, nitrogen, and light. This 
is done by using the resources available on Mars without 
needing to be brought from Earth (which otherwise may 
result in high transportation costs). The core issue of 
Martian soil is the amount of perchlorate lying in the soil 
(approximately 0.5 to 1%), which was detected by NASA’s 
Phoenix probe in 2008, and since then, perchlorate has been 
found in multiple areas of the red planet (Qu et al., 2022). 
Nevertheless, although perchlorate increases the chances of 
finding microorganisms, these are highly toxic to humans 
and pose a health risk for future explorations. The main 
advantage of its use is the production of O2 (Dávila et al., 
2013). P. stuzeri USD1 has been shown to metabolize 
medium concentrations of perchlorates (≥ 1 mM to 10 mM) 
with 100% solubilization, making them more accessible to 
plants and other microorganisms, although in lower yield 
than Azospirillum brasilense (Sunilkumar and Lal, 2021).

Based on the chemical analysis performed on the rocks, 
different atoms have been detected that are beneficial for 
Pseudomonas growth, like Fe+2, Mg+2, Al+2, Ca+2, K+, and O2, 
as well as boron in the Gale crater with a concentration of 
0.05% w/v, which is an element that could support life on 
Mars (Gasda et al., 2017). The challenge of growing plants 
on Mars involves providing the essential resources for 
their development, such as sunlight, oxygen, water, and 
nutrients. The issue is that ultraviolet radiation is far more 
dangerous than on Earth due to the lack of atmospheric 
ozone, so specialized greenhouses are needed (Sadler 
and Giacomelli, 2002). The radiation that plants would 
receive on Mars would be 17 times higher than that 
received on Earth, so there would be damage to plant 
leaves (Tack et al., 2021). Likewise, biomass produced in 
the simulated Martian soil is very similar to that in the 

terrestrial soil and bacteria are needed for plant growth 
due to the presence of many heavy metals in Martian 
soil (see Figure 2) (Tack et al., 2021; Wamelink et al., 
2014). In addition, one of the limiting factors is the lack 
of nitrogen, an essential nutrient for optimal plant growth 
and performance. However, most Pseudomonas species 
are known to fix atmospheric nitrogen and convert it into 
soluble nitrogen. (Maggi et al., 2018; Mylona et al., 1995), 
for example many Pseudomonas can produce nitrogen by 
the degradation of urea, a compound that is commonly 
found in human urine (Tang et al., 2022; Liu et al., 2021; 
Ralphs et al., 2015; Putnam, 1971).

The quest for sustaining life in extraterrestrial 
environments, such as Mars, hinges on the availability of 
essential resources like water. Previous discoveries have 
found evidence of liquid water on Mars, however Martian 
soil does present challenges due to its low organic carbon 
content and limited water retention capacity, innovative 
approaches are being explored to overcome these hurdles, 
this can be improved by using Pseudomonas strains that 
produces polysaccharides or adhesives proteins that bind soul 
particles thereby increasing he moisture of soil (Ralphs et al., 
2015; Maggi and Pallud, 2010) such biotechnological 
advancements could pave the way for future agricultural 
endeavors on the Red Planet, marking a significant milestone 
in the human pursuit of interplanetary habitation. Another 
crucial factor is energy, microbial energy production has 
gained much interesting in the last decade, according to 
Billi et al. (2019), many scientists have turned toward the 
use of microbial fuel cells (MFC). MFCs have indeed become 
a focal point in sustainable energy research due to their 
ability to harness the power of microorganisms, known as 
electrogens, to convert organic compounds into electricity 
as a sustainable energy source on Earth.

Figure 2. Theoretical growth of plants in Martian soil where Pseudomonas chelate heavy metals by being left in soil and the plant free 
of toxic pollutants (adapted and modified from Wamelink et al., 2014, created with BioRender, 2023).
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For instance, P. aeruginosa, an electrogenic bacteria, 
has shown promise in electricity generation, highlighting 
the potential of MFCs in renewable energy applications 
(Arkatkar et al., 2021), however, since P. aeruginosa is 
harmful to humans more research is need by using other 
Pseudomonas like P. putida or P. reptilivora.

According to Trapero et al. (2017) and Ren et al. 
(2016), MFC’s can produce up to 5.61 W/m2 and can 
be used for waste management and bioremediation 
(Bose et al., 2020; Zhang et al., 2019; Cao et al., 2015). 
As research continues, the scalability and economic 
viability of MFCs remain key areas of focus, with the 
goal of transitioning from laboratory-scale models to 
real-world applications that can sustainably meet the 
growing energy demands.

In summary, Pseudomonas is a genus of bacteria that 
can adapt to various environments and perform diverse 
metabolic functions. Some of its species have been 
shown to degrade organic pollutants, produce biofuels, 
and synthesize biopolymers. These capabilities make 
Pseudomonas a potential candidate for bioremediation 
and bioengineering applications, especially in the context 
of terraforming Mars. By introducing Pseudomonas to the 
Martian soil, it may be possible to enhance its fertility, 
increase its nitrogen and oxygen content, reduce its toxicity, 
increase moisture of the soil, and produce energy. Therefore, 
Pseudomonas can be regarded as a powerful microorganism 
in the need to terraform Mars (see Figure 3).

These characteristics make them potential candidates 
for bioremediation and biotechnology applications on 
Earth and Mars.

4. Conclusions

Pseudomonas genera are found in most soils also play 
a role in a wide range of biotechnological processes, 
including enhancing plant growth, controlling diseases 
or pathogens, cycling nutrients, fixing nitrogen, or 
bioremediating heavy metals. Pseudomonas are important 
for modern agriculture and have been shown to protect 
plants from pathogens, toxic herbicides, or fertilizers. 
Without a doubt, Pseudomonas is a key bacterium for 
removing heavy metals from terrestrial soil and has the 
potential to be used in Martian soil.

By 2025 or 2026, it is expected that the Artemis missions 
will be working to establish a base of operations on the 
Moon as well as Mars. Thus, it is vital for space exploration 
to seek biotechnological alternatives such as Pseudomonas 
assistance to meet the objectives set for human survival in 
space. That is, by boosting the growth and development 
of plants with the aid of microorganisms, the planet Mars 
may be colonized in the future.

Pseudomonas in extreme substrate conditions can 
help resolve the environmental impact generated by 
pollutants, such as heavy metals. Our team has focused 

Figure 3. Pseudomonas species are versatile bacteria that can degrade various pollutants, such as hydrocarbons, heavy metals, herbicides, 
and fertilizers. They can also produce useful compounds, such as biosurfactants, biopolymers and biofuels.
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on the use of P. reptilivora B-6bs as a biotechnological 
producer of different primary metabolites, such as 
amino acids L-proline and L-glutamic acid using urea 
as a substrate; organic acids, such as gluconic acid, 
2-ketogluconic acid and 5-ketogluconic acid; the generation 
of polyhydroxyalkanoates; and different antibiotics. 
Conversely, our team has observed that P. reptilivora 
B-6bs can withstand heavy metals like copper, iron, 
manganese, and cobalt, in a culture medium, producing 
various antibiotics. Last, as a team, we emphasize that 
Pseudomonas (in general) and P. reptilivora B-6bs can be 
exploited both on Earth and in outer space. In addition, 
perhaps in the future, on another planet like Mars.
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