Acessibilidade / Reportar erro

Baru (Dipteryx alata): a comprehensive review of its nutritional value, functional foods, chemical composition, ethnopharmacology, pharmacological activities and benefits for human health

Baru (Dipteryx alata): uma revisão abrangente do seu valor nutricional, alimentos funcionais, composição química, etnofarmacologia, atividades farmacológicas e benefícios para a saúde humana

Abstract

Baru (Dipteryx alata Vogel) is recognized as a widespread Brazilian tree species, and its almonds and pulp have gained commercial prominence due to their nutritional value. All parts of the baru are important for the environment and are used by traditional communities to treat various diseases. This review provides a comprehensive and current overview of the nutritional composition, human food applications, ethnopharmacological uses, and chemical and biological properties of Dipteryx alata, “baru” (Fabaceae). This study followed the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology. Studies were searched in the Medline (PubMed), Scopus, SciELO, and ScienceDirect databases using the descriptors “Dipteryx alata” OR “baru nut” OR “baru almond” OR “cumaru” OR “Coumarouna”. The exclusion criteria included duplicate articles, review articles, case reports, short communications, conference documents, incomplete access to the text, and articles not related to the objective of this review. The initial search yielded 822 results, 127 of which met the inclusion criteria. The almond was the most extensively studied part (59.8%), whereas leaves received the least attention (1.6%). Baru almond is a rich source of proteins (19 to 30 g.100 g-1), unsaturated fatty acids (75 to 81%), and essential amino acids, while the pulp is rich in carbohydrates (22.5 to 75.4%), dietary fiber (4.4 to 41.6 g.100 g-1) and vitamin C (113.48 and 224.5 mg.100 g-1). Phenolic compounds were the main metabolites, with a greater content in the almond (3.1 to 1.306,34 mg GAE g-1) than in the pulp (186 to 477 mg GAE g-1). Terpenes were also detected in the almond, pulp, and bark. The most evaluated biological activity was the antioxidant activity (n = 32.1%), followed by effects on oxidative stress (n = 12.5%). Therefore, emphasis on baru cultivation and bioprospecting could benefit human nutrition and health, strengthen family farming in various regions of the country and favour the achievement of Zero Hunger and Sustainable Agriculture and Health and Well-Being in the UN 2030 Agenda for Sustainable Development Goals.

Keywords:
cumaru; nut; phenolic compounds; traditional medicine; bioprospecting

Resumo

O baru (Dipteryx alata Vogel), Fabaceae, é reconhecido como uma espécie brasileira de ampla distribuição, e suas amêndoas e polpa ganharam destaque comercial devido ao seu valor nutricional. Todas as partes do baru são importantes para o meio ambiente e são utilizadas por comunidades tradicionais no tratamento de várias doenças. Esta revisão fornece uma visão abrangente e atualizada da composição nutricional, aplicações alimentares humanas, usos etnofarmacológicos e propriedades químicas e biológicas de Dipteryx alata, “baru”. Este estudo seguiu as recomendações da metodologia Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Estudos foram buscados nas bases de dados Medline (PubMed), Scopus, SciELO e ScienceDirect usando os descritores “Dipteryx alata” OU “baru nut” OU “baru almond” OU “cumaru” OU “Coumarouna”. Os critérios de exclusão incluíram artigos duplicados, artigos de revisão, relatos de casos, comunicações breves, documentos de conferências, acesso incompleto ao texto e artigos não relacionados ao objetivo desta revisão. A busca inicial resultou em 822 artigos, dos quais 127 atenderam aos critérios de inclusão. A amêndoa foi a parte mais extensivamente estudada (59,8%), enquanto as folhas receberam menos atenção (1,6%). A amêndoa de baru é uma fonte rica em proteínas (19 a 30 g.100 g-1), ácidos graxos insaturados (75 a 81%) e aminoácidos essenciais, enquanto a polpa é rica em carboidratos (22,5 a 75,4%), fibra alimentar (4,4 a 41,6 g.100 g-1) e vitamina C (113,48 e 224,5 mg.100 g-1). Compostos fenólicos foram os principais metabólitos, com um maior conteúdo na amêndoa (3,1 a 1.306,34 mg GAE g-1) do que na polpa (186 a 477 mg GAE g-1). Terpenos também foram detectados na amêndoa, polpa e casca. A atividade biológica mais avaliada foi a atividade antioxidante (n = 32,1%), seguida pelos efeitos sobre o estresse oxidativo (n = 12,5%). Portanto, o destaque para o cultivo de baru e a bioprospecção poderiam beneficiar a nutrição e a saúde humana, fortalecer a agricultura familiar em várias regiões do país e favorecer o alcance da Fome Zero e Agricultura Sustentável e Saúde e Bem-Estar na Agenda 2030 da ONU para os Objetivos de Desenvolvimento Sustentável.

Palavras-chave:
cumaru; noz; compostos fenólicos; medicina tradicional; bioprospecção

1. Introduction

The Cerrado is the second largest biome in South America (which encompasses 15 states), occupying an area of approximately 25% of the Brazilian territory, and has the second greatest biodiversity richness (Brasil, 2024aBRASIL, 2024a [viewed 15 February 2024]. Biodiversidade do Cerrado [online]. Available from: https://www.icmbio.gov.br/cbc/conservacao-da-biodiversidade/biodiversidade.html
https://www.icmbio.gov.br/cbc/conservaca...
). It is considered a global hotspot (areas particularly rich in species) and has vast social importance (Brasil, 2024bBRASIL, 2024b [viewed 15 February 2024]. O bioma Cerrado [online]. Available from: https://antigo.mma.gov.br/biomas/cerrado.html/
https://antigo.mma.gov.br/biomas/cerrado...
). Many populations, such as indigenous people, quilombolas, riverine dwellers, and floodplains, use their natural resources for food, medicinal purposes, local survival, and income generation. Together, these communities are part of the Brazilian historical and cultural heritage and hold traditional knowledge of local biodiversity (Brasil, 2024bBRASIL, 2024b [viewed 15 February 2024]. O bioma Cerrado [online]. Available from: https://antigo.mma.gov.br/biomas/cerrado.html/
https://antigo.mma.gov.br/biomas/cerrado...
). The exchange of knowledge that has taken place for decades between indigenous, riverside, and descendant peoples from the northeast, north, and south regions of Brazil has made the microregion north of Araguaia, Mato Grosso, Brazil, a source of ethnocultural diversity and propagation of traditional knowledge (Ribeiro et al., 2017RIBEIRO, R.V., BIESKI, I.G.C., BALOGUN, S.O. and MARTINS, D.T., 2017. Ethnobotanical study of medicinal plants used by ribeirinhos in the North Araguaia microregion, Mato Grosso, Brazil. Journal of Ethnopharmacology, vol. 205, pp. 69-102. http://doi.org/10.1016/j.jep.2017.04.023. PMid:28476677.
http://doi.org/10.1016/j.jep.2017.04.023...
).

In this context, Dipteryx alata Vogel., Fabaceae, is a leguminous native plant to the Brazilian Cerrado that is popularly known as “baru” or “cumaru” (Carvalho et al., 2022CARVALHO, C.S., LIMA, H.C. and CARDOSO, D.B.O.S., 2022 [viewed 20 February 2023]. Dipteryx [online]. Available from: https://floradobrasil.jbrj.gov.br/FB29628/
https://floradobrasil.jbrj.gov.br/FB2962...
; ITIS Catalogue of Life, 2019ITIS CATALOGUE OF LIFE, 2019 [viewed 20 May 2023]. Species details: Dipteryx alata Vogel [online]. Available from: https://www.catalogueoflife.org/annual-checklist/2019/details/species/id/488948594f3c078c43829159d4dc06ff/
https://www.catalogueoflife.org/annual-c...
). It is a fruit tree that can reach more than 25 meters in height, and fruit production per tree can reach up to 5 thousand units (Sano et al., 2016SANO, S.M., BRITO, M.A. and RIBEIRO, J.F., 2016 [viewed 20 January 2023]. Dipteryx alata baru. In: R.F. VIEIRA, J. CAMILLO and L. CORADIN, eds. Espécies nativas da flora brasileira de valor econômico atual ou potencial: plantas para o futuro: região Centro-Oeste [online]. Brasília: Ministério do Meio Ambiente, pp. 203-210. Available from: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1073295/especies-nativas-da-flora-brasileira-de-valor-economico-atual-ou-potencial-plantas-para-o-futuro-regiao-centro-oeste/
https://www.embrapa.br/busca-de-publicac...
; Rinaldi et al., 2021RINALDI, M.M., ROCHA, F.R., SANTOS, R.M.D., PEREIRA, M.S., DE QUEIROZ, D.B.V. and MORAIS, F.M., 2021 [viewed 22 December 2022]. Produção, caracterização física, química e funcional de frutos e sementes de baru (Dipteryx alata Vog., Fabaceae) oriundos da Embrapa Cerrados e Arinos, MG: safra 2019 [online]. Available from: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/227039/1/Producao-caracterizacao-fisica-quimica-e-funcional-de-frutos-e-semente-de-baru-BOL376.pdf/
https://ainfo.cnptia.embrapa.br/digital/...
). Leaves promote an increase in organic matter in the soil due to the high level of nitrogen, and baru wood is utilized in civil construction (Bispo and Braga, 2021BISPO, T.W. and BRAGA, C.L., 2021. A cadeia produtiva do baru. In: G.S. MEDINA and J.E. CRUZ, eds. Estudos em agronegócio: participação brasileira nas cadeias produtivas. Goiânia: Kelps, pp. 337-339.). Souza et al. (2023)SOUZA, G.G., SANTOS, S.C., SANTOS, C.C., DIAS, A.S., SILVERIO, J.M., TROVATO, V.W. and FLAUZINO, D.S., 2023. Arbuscular mycorrhizal fungi promote the growth of Dipteryx alata Vogel. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 83, e275172. http://doi.org/10.1590/1519-6984.275172. PMid:37909590.
http://doi.org/10.1590/1519-6984.275172...
underscore the positive impact of the symbiotic relationship between arbuscular mycorrhizal fungi and baru, enhancing both biomass production and seedling quality, thus highlighting baru's potential for forest recovery (Bispo and Braga, 2021BISPO, T.W. and BRAGA, C.L., 2021. A cadeia produtiva do baru. In: G.S. MEDINA and J.E. CRUZ, eds. Estudos em agronegócio: participação brasileira nas cadeias produtivas. Goiânia: Kelps, pp. 337-339.).

Baru (bark, stem, leaves, fruits, and seed) is used by microregion Norte do Araguaia and traditional communities of other regions in Brazil for various applications in human food (Ferreira et al., 2020aFERREIRA, T.H.B., FLORIZO, G.K.M. and ARGONDOÑA, E.J.S., 2020a. Shelf life of cookies made from baru Dipteryx alata Vog. pulp under different storage conditions. Journal of Food Processing and Preservation, vol. 44, no. 89, e14702. http://doi.org/10.1111/jfpp.14702.
http://doi.org/10.1111/jfpp.14702...
; Rojas et al., 2019ROJAS, V.M., MARCONI, L.F.C.B., GUIMARÃES-INÁCIO, A., LEIMANN, F.V., TANAMATI, A., GOZZO, A.M., FUCHS, R.H.B., BARREIRO, M.F., BARROS, L., FERREIRA, I.C.F.R., TANAMATI, A.A.C. and GONÇALVES, O.H., 2019. Formulation of mayonnaises containing PUFAs by the addition of microencapsulated chia seeds, pumpkin seeds and baru oils. Food Chemistry, vol. 274, pp. 220-227. http://doi.org/10.1016/j.foodchem.2018.09.015.
http://doi.org/10.1016/j.foodchem.2018.0...
), extractive income sources, forest recovery (Bispo and Braga, 2021BISPO, T.W. and BRAGA, C.L., 2021. A cadeia produtiva do baru. In: G.S. MEDINA and J.E. CRUZ, eds. Estudos em agronegócio: participação brasileira nas cadeias produtivas. Goiânia: Kelps, pp. 337-339.), and traditional medicine (Ribeiro et al., 2017RIBEIRO, R.V., BIESKI, I.G.C., BALOGUN, S.O. and MARTINS, D.T., 2017. Ethnobotanical study of medicinal plants used by ribeirinhos in the North Araguaia microregion, Mato Grosso, Brazil. Journal of Ethnopharmacology, vol. 205, pp. 69-102. http://doi.org/10.1016/j.jep.2017.04.023. PMid:28476677.
http://doi.org/10.1016/j.jep.2017.04.023...
; Bueno et al., 2020BUENO, N.R., MARTINS, L.A., SILVA, M.S. and CAMPOS, E.P., 2020. Plantas medicinais utilizadas para problemas do sistema circulatório em Rondonópolis MT. Biodiversidade, vol. 19, no. 4, pp. 23-31.; Guimarães et al., 2022GUIMARÃES, B.O., MORAIS, I.L. and OLIVEIRA, A.P., 2022. Medicinal plants and their popular use in Boa Esperança Settlement, Piracanjuba, Goiás, Brazil. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, vol. 21, no. 4, pp. 485-513. http://doi.org/10.37360/blacpma.22.21.4.30.
http://doi.org/10.37360/blacpma.22.21.4....
; Paim et al., 2023PAIM, R., FERREIRA, P.L.G., SOARES, D.M., ROCHA, T.F.G., RIBEIRO, A.L., BARROS, N., SANTOS, F.C., FERREIRA, H.D., GOMES-KLEIN, V.L., SOTO-BLANCO, B., OLIVEIRA-FILHO, J.P., CUNHA, P.H.J., RIET-CORREA, F., PFISTER, J., COOK, D., FIORAVANTI, M.C.S. and BOTELHO, A.F.M., 2023. Toxic plants from the perspective of a “Quilombola” community in the Cerrado region of Brazil. Toxicon, vol. 224, pp. 107028. http://doi.org/10.1016/j.toxicon.2023.107028.
http://doi.org/10.1016/j.toxicon.2023.10...
).

The present review discusses the nutritional value and traditional uses of the bark, stem, leaves, fruits, and almond of D. alata. Encouraging the use of this plant could benefit human nutrition and health and strengthen family farming in various regions of the country. A bibliographical survey of the phytochemical composition and biological activities of this plant is also presented to better understand its potential for use and perspectives for future applications.

2. Materials and Methods

2.1. Search strategy

This review followed the recommendations of the methodology Preferred Reporting Items for Systematic reviews and Meta-Analyses - PRISMA. The flow diagram for data collection was described in Scheme 1. The review was performed by two independent evaluators (J.M.D.S. and J.A.T.B.) in the Medline (PubMed), Scopus, Scielo, and ScienceDirect databases using the descriptors “Dipteryx alata” OR “baru nut” OR “baru almond” OR “cumaru” OR “Coumarouna”, during May and July 2023. No restrictions on language or date were made. All selected studies were imported into the Mendeley reference manager.

Scheme 1
Identification of eligible studies for this review (PRISMA, 2020 flow diagram).

2.2. Eligibility, exclusion, and inclusion criteria

Exclusion criteria were: i) review articles; ii) case reports, short communication, and conference documents; iii) incomplete text access, and iv) not related to the goal articles (e.g.: agriculture). Inclusion criteria were: i) original studies covering one or more of the goals: nutritional value and application on human food, ethnopharmacological use, chemical composition, and biological properties of D. alata Vogel; ii) studies published in journals with a rigorous peer review, and iii) books published online.

2.3. Study selection and data collection process

Two independent reviewers (J.M.D.S., J.A.T.B, and S.M.D.S.) performed an initial screening. Duplicates were excluded. Then, the title and abstract were read to apply the exclusion criteria. In case of discrepancies, a third evaluator (A.S.N.F.) judged the inclusion or exclusion of the study. Furthermore, articles found by a manual search performed in the reference list of the selected studies were included in this review. After reading each article in full (J.M.D.S; R.M.M.F.S.; V.D.K; A.S.N.F.), the studies were included in this review if they met one or more of the inclusion criteria. At the end of the selection, all articles were organized in Microsoft Excel software, by date of publication, descending (J.M.D.S and V.D.K).

2.4. Studies included

Scheme 1 summarizes the study selection strategy. The initial electronic database se-arch yielded 822 results. After removing duplicates (n = 276) and inaccessible text (n = 01), a total of 545 records were screened by title and abstract. After applying the exclusion criteria (n = 443), 102 records were eligible. Additionally, the manual bibliography yielded 25 records, totalling 127 studies. All the included articles with titles, authors, publication years, and collection sites are detailed in Table S1 in the supplementary material.

3. Results and Discussion

3.1. Distribution of studies by collection site

We observed that all the articles were performed with plants collected in Brazil. The main baru collection site was in the state of Goiás (41.73%), followed by Mato Grosso (13.39%), Mato Grosso do Sul (11.81%), Minas Gerais (7.87%), Tocantins (7.09%), and Distrito Federal (5.51%). The least sought-after locations were São Paulo (3.15%) and Paraná (0.79%). In addition, one study compared more than one state (0.79%), and 7.87% of the studies did not report the collection site or reported the species in general. Furthermore, the most studied part of the plant was the almond, while the leaves were the least studied (Figure 1).

Figure 1
Number of articles included by plant part.

3.2. Taxonomy, botanical aspects, and distribution

Dipteryx alata Vogel, basionym Dipteryx pterota Benth, Dipteryx pteropus Mart., Coumarouna alata (Vogel) Taub., and Cumaruna alata (Vogel) Kuntze, is commonly known as “baru”, “baruzeiro”, “barujó”, “coco-feijão”, “cumaru”, “cumaruna”, “cumarurana”, “cambaru”, and “almendro” (Carvalho et al., 2022CARVALHO, C.S., LIMA, H.C. and CARDOSO, D.B.O.S., 2022 [viewed 20 February 2023]. Dipteryx [online]. Available from: https://floradobrasil.jbrj.gov.br/FB29628/
https://floradobrasil.jbrj.gov.br/FB2962...
; Tropicos, 2022TROPICOS, 2022 [viewed 22 December 2022]. Dipteryx alata Vogel [online]. Available from: https://www.tropicos.org/name/13000476/
https://www.tropicos.org/name/13000476/...
; Bueno et al., 2020BUENO, N.R., MARTINS, L.A., SILVA, M.S. and CAMPOS, E.P., 2020. Plantas medicinais utilizadas para problemas do sistema circulatório em Rondonópolis MT. Biodiversidade, vol. 19, no. 4, pp. 23-31.; ITIS Catalogue of Life, 2019ITIS CATALOGUE OF LIFE, 2019 [viewed 20 May 2023]. Species details: Dipteryx alata Vogel [online]. Available from: https://www.catalogueoflife.org/annual-checklist/2019/details/species/id/488948594f3c078c43829159d4dc06ff/
https://www.catalogueoflife.org/annual-c...
). The scientific classification (I) class: Equisetopsida C. Agardh; (II) subclass: Magnoliidae Novák ex Takht.; (III) superorder: Rosanae Takht.; (IV) order: Fabales Bromhead; (V) family: Fabaceae Lindl.; (VI) subfamily: Papilionoideae; (VII) tribe: Dipterygeae; (VIII) genus: Dipteryx Schreb., and (IX) species: Dipteryx alata Vogel (The Plant List, 2013THE PLANT LIST, 2013 [viewed 13 March 2023]. Dipteryx alata Vogel [online]. Available from: http://www.theplantlist.org/tpl1.1/record/ild-33413/
http://www.theplantlist.org/tpl1.1/recor...
; Tropicos, 2022TROPICOS, 2022 [viewed 22 December 2022]. Dipteryx alata Vogel [online]. Available from: https://www.tropicos.org/name/13000476/
https://www.tropicos.org/name/13000476/...
).

Baru is a fruit tree (Figure 2) that can reach more than 25 meters in height. The stem can be smooth or irregularly shaped, with scaling plaques that are light grey or cream in colour. The leaves alternate, except for the primordial leaves, compound pinnate, petiolate, without stipules, and winged rachis, which give rise to the species name. The number of leaflets can vary from 7 to 12, and they can be alternate or subopposite, subsessile, or with a petiole up to 2 mm long. The panicle-like inflorescence is formed at the terminal part of the branches and in the axils of the upper leaves, with approximately 200 to 1000 flowers; valve bracts with translucent pits are deciduous before anthesis. The flowers are hermaphroditic. The fruit is of the drupe type, ovoid, slightly flattened, and brown in colour, with no change in colour when ripe. It is approximately 3 to 6 cm long. The endocarp is woody and hard and darker in colour than the fibrous mesocarp. There is a single almond per fruit, rarely more than one. The almonds are ellipsoidal, yellowish-brown, or reddish to almost black, occasionally with darker spots or transverse slits highlighted by lighter cotyledons. They are approximately 2.5 cm in length and 1.0 cm in width, with masses between 1 and 1.2 g and a harder consistency than roasted peanuts. These characteristics may be variable between trees but are uniform across a tree (Sano et al., 2016SANO, S.M., BRITO, M.A. and RIBEIRO, J.F., 2016 [viewed 20 January 2023]. Dipteryx alata baru. In: R.F. VIEIRA, J. CAMILLO and L. CORADIN, eds. Espécies nativas da flora brasileira de valor econômico atual ou potencial: plantas para o futuro: região Centro-Oeste [online]. Brasília: Ministério do Meio Ambiente, pp. 203-210. Available from: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1073295/especies-nativas-da-flora-brasileira-de-valor-economico-atual-ou-potencial-plantas-para-o-futuro-regiao-centro-oeste/
https://www.embrapa.br/busca-de-publicac...
; Rinaldi et al., 2021RINALDI, M.M., ROCHA, F.R., SANTOS, R.M.D., PEREIRA, M.S., DE QUEIROZ, D.B.V. and MORAIS, F.M., 2021 [viewed 22 December 2022]. Produção, caracterização física, química e funcional de frutos e sementes de baru (Dipteryx alata Vog., Fabaceae) oriundos da Embrapa Cerrados e Arinos, MG: safra 2019 [online]. Available from: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/227039/1/Producao-caracterizacao-fisica-quimica-e-funcional-de-frutos-e-semente-de-baru-BOL376.pdf/
https://ainfo.cnptia.embrapa.br/digital/...
).

Figure 2
Baru (Dipteryx alata Vogel). Tree, bark, leaves, flowers, pulp, and almonds. Original images from Santos, J.M.

Baru is a native plant from Bolivia, Paraguay, Peru and Brazil (ITIS Catalogue of Life, 2019ITIS CATALOGUE OF LIFE, 2019 [viewed 20 May 2023]. Species details: Dipteryx alata Vogel [online]. Available from: https://www.catalogueoflife.org/annual-checklist/2019/details/species/id/488948594f3c078c43829159d4dc06ff/
https://www.catalogueoflife.org/annual-c...
). In Brazil, it is found in the states of Rondônia, Tocantins, Bahia, Maranhão, Minas Gerais, São Paulo, Goias, Mato Grosso, and Mato Grosso do Sul and is considered a fast-growing plant that requires few nutrients from the soil, developing well in ciliary forests or Gallery, seasonal semideciduous forests, and the Amazon Savanna (Carvalho et al., 2022CARVALHO, C.S., LIMA, H.C. and CARDOSO, D.B.O.S., 2022 [viewed 20 February 2023]. Dipteryx [online]. Available from: https://floradobrasil.jbrj.gov.br/FB29628/
https://floradobrasil.jbrj.gov.br/FB2962...
).

Baru trees have favourable characteristics for planting, such as high germination and seedling survival rates (Sano et al., 2016SANO, S.M., BRITO, M.A. and RIBEIRO, J.F., 2016 [viewed 20 January 2023]. Dipteryx alata baru. In: R.F. VIEIRA, J. CAMILLO and L. CORADIN, eds. Espécies nativas da flora brasileira de valor econômico atual ou potencial: plantas para o futuro: região Centro-Oeste [online]. Brasília: Ministério do Meio Ambiente, pp. 203-210. Available from: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1073295/especies-nativas-da-flora-brasileira-de-valor-economico-atual-ou-potencial-plantas-para-o-futuro-regiao-centro-oeste/
https://www.embrapa.br/busca-de-publicac...
). This species is sensitive to postflooding stress, and although it can adjust and recover its metabolic characteristics (after 100 days) after water stress, the quality of the seedlings does not recover (Linné et al., 2021LINNÉ, J.A., JESUS, M.V., LIMA, V.T., REIS, L.C., SANTOS, C.C., SCALON, S.P.Q. and DRESCH, D.M., 2021. Do Dipteryx alata Volgel seedlings recover the quality and the photosynthetic and antioxidant responses in the post-flooding? Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 83, e246451. http://doi.org/10.1590/1519-6984.246451. PMid:34495152.
http://doi.org/10.1590/1519-6984.246451...
). Furthermore, baru has the ability to form symbiotic relationships with mycorrhizal fungi, contributing positively to biomass production and seedling quality (Souza et al., 2023SOUZA, G.G., SANTOS, S.C., SANTOS, C.C., DIAS, A.S., SILVERIO, J.M., TROVATO, V.W. and FLAUZINO, D.S., 2023. Arbuscular mycorrhizal fungi promote the growth of Dipteryx alata Vogel. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 83, e275172. http://doi.org/10.1590/1519-6984.275172. PMid:37909590.
http://doi.org/10.1590/1519-6984.275172...
).

This species has a long flowering period, occurring from November to February, during the rainy season. Its fruits ripen when the tree is almost leafless, from July to October, varying from year to year and by location. The physiological maturation of the seed occurs at the beginning of fruit and leaf fall (Sano et al., 2016SANO, S.M., BRITO, M.A. and RIBEIRO, J.F., 2016 [viewed 20 January 2023]. Dipteryx alata baru. In: R.F. VIEIRA, J. CAMILLO and L. CORADIN, eds. Espécies nativas da flora brasileira de valor econômico atual ou potencial: plantas para o futuro: região Centro-Oeste [online]. Brasília: Ministério do Meio Ambiente, pp. 203-210. Available from: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1073295/especies-nativas-da-flora-brasileira-de-valor-economico-atual-ou-potencial-plantas-para-o-futuro-regiao-centro-oeste/
https://www.embrapa.br/busca-de-publicac...
).

Although Sano et al. (2016)SANO, S.M., BRITO, M.A. and RIBEIRO, J.F., 2016 [viewed 20 January 2023]. Dipteryx alata baru. In: R.F. VIEIRA, J. CAMILLO and L. CORADIN, eds. Espécies nativas da flora brasileira de valor econômico atual ou potencial: plantas para o futuro: região Centro-Oeste [online]. Brasília: Ministério do Meio Ambiente, pp. 203-210. Available from: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1073295/especies-nativas-da-flora-brasileira-de-valor-economico-atual-ou-potencial-plantas-para-o-futuro-regiao-centro-oeste/
https://www.embrapa.br/busca-de-publicac...
claim that fruit production per tree can reach up to 5 thousand units, production may vary by region and year, as reported by Rinaldi et al. (2021)RINALDI, M.M., ROCHA, F.R., SANTOS, R.M.D., PEREIRA, M.S., DE QUEIROZ, D.B.V. and MORAIS, F.M., 2021 [viewed 22 December 2022]. Produção, caracterização física, química e funcional de frutos e sementes de baru (Dipteryx alata Vog., Fabaceae) oriundos da Embrapa Cerrados e Arinos, MG: safra 2019 [online]. Available from: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/227039/1/Producao-caracterizacao-fisica-quimica-e-funcional-de-frutos-e-semente-de-baru-BOL376.pdf/
https://ainfo.cnptia.embrapa.br/digital/...
, who reported a production of fewer than 2 thousand fruits. In this context, the characteristics of sustainable exploitation and dependence on seasonal production cause economic devaluation (Egea and Takeuchi, 2020EGEA, M.B. and TAKEUCHI, K.P., 2020. Bioactive compounds in baru almond (Dipteryx alata Vogel): nutritional composition and health effects. In: H. MURTHY and V. BAPAT, eds. Bioactive compounds in underutilized fruits and nuts. Cham: Springer, pp. 289-302. Reference Series in Phytochemistry. http://doi.org/10.1007/978-3-030-30182-8_17.
http://doi.org/10.1007/978-3-030-30182-8...
).

3.3. Nutritional value of baru almond and pulp

Baru almond is consumed in human food and has high nutritional value because it is rich in proteins, total lipids, and several minerals. Macronutrients such as carbohydrates, proteins, and fats are essential for the body's structure and operation. They provide energy through oxidation, generating adenosine triphosphate (ATP) along with carbon dioxide and water as byproducts. ATP serves as the cell's primary energy currency. Carbohydrates are broken down into glucose, the main energy source. Proteins, which are composed of amino acids, contribute to muscle building. Lipids are crucial for cell membrane structure and function, aid in fat-soluble vitamin absorption, and serve as the body's primary long-term energy storage (Matthewman and Costa-Pinto, 2022MATTHEWMAN, M.C. and COSTA-PINTO, R., 2022. Macronutrients, minerals, vitamins and energy. Anaesthesia and Intensive Care Medicine, vol. 24, no. 2, pp. 134-138. http://doi.org/10.1016/j.mpaic.2022.12.009.
http://doi.org/10.1016/j.mpaic.2022.12.0...
).

In this sense, previous studies characterized the proximal composition of baru almonds (Table 1). The carbohydrate content of the raw almond (15 to 37%) was greater than that of the roasted almond (9 to 29%). Studies have reported that the carbohydrate content of raw almond is up to two times greater of one study (Campidelli et al., 2019CAMPIDELLI, M.L.L., CARNEIRO, J., SOUZA, E.C., MAGALHÃES, M., KONIG, I., BRAGA, M., ORLANDO, T., SIMÃO, S.D., LIMA, L.I. and VILAS BOAS, E.V.B., 2019. Impact of the drying process on the quality and physicochemical and mineral composition of baru almonds Dipteryx Alata Vog. Journal of Culinary Science & Technology, vol. 18, no. 3, pp. 231-243. http://doi.org/10.1080/15428052.2019.1573710.
http://doi.org/10.1080/15428052.2019.157...
) to another (Siqueira et al., 2015SIQUEIRA, A.P.S., PACHECO, M.T.B. and NAVES, M.M.V., 2015. Nutritional quality and bioactive compounds of partially defatted baru almond flour. Food Science and Technology, vol. 35, no. 1, pp. 127-132. http://doi.org/10.1590/1678-457X.6532.
http://doi.org/10.1590/1678-457X.6532...
) and two to three times greater than that of roasted almond. According to Campidelli et al. (2019)CAMPIDELLI, M.L.L., CARNEIRO, J., SOUZA, E.C., MAGALHÃES, M., KONIG, I., BRAGA, M., ORLANDO, T., SIMÃO, S.D., LIMA, L.I. and VILAS BOAS, E.V.B., 2019. Impact of the drying process on the quality and physicochemical and mineral composition of baru almonds Dipteryx Alata Vog. Journal of Culinary Science & Technology, vol. 18, no. 3, pp. 231-243. http://doi.org/10.1080/15428052.2019.1573710.
http://doi.org/10.1080/15428052.2019.157...
and Oliveira-Alves et al. (2020)OLIVEIRA-ALVES, S.C., PEREIRA, R.S., PEREIRA, A.B., FERREIRA, A., MECHA, E., SILVA, A.B., SERRA, A.T. and BRONZE, M.R., 2020. Identification of functional compounds in baru (Dipteryx alata Vog.) nuts: nutritional value, volatile and phenolic composition, antioxidant activity and antiproliferative effect. Food Research International, vol. 131, pp. 109026. http://doi.org/10.1016/j.foodres.2020.109026. PMid:32247467.
http://doi.org/10.1016/j.foodres.2020.10...
, the sum of the values of the proximal component was greater than 100, and the value of dietary fiber was not subtracted from the carbohydrate content. Gonçalves et al., and Filbido (2020) reported a low lipid content (24.2 g.100-1), and the carbohydrate content differed. In these cases, the adjusted carbohydrate content would be similar to that in other studies (Table 1).

Table 1
Proximal composition of baru almonds.

A high protein content in baru almonds (19 to 30 g.100 g-1) has been reported (Table 1). In comparison with other seeds, the protein content in baru almonds is higher than that in Brazil nuts (16 g.100 g-1) (Cardoso et al., 2016CARDOSO, B.R., APOLINÁRIO, D., BANDEIRA, V.S., BUSSE, A.L., MAGALDI, M.R., JACOB-FILHO, W. and COZZOLINO, S.M.F., 2016. Effects of Brazil nut consumption on selenium status and cognitive performance in older adults with mild cognitive impairment: a randomized controlled pilot trial. European Journal of Nutrition, vol. 55, no. 1, pp. 107-116. http://doi.org/10.1007/s00394-014-0829-2. PMid:25567069.
http://doi.org/10.1007/s00394-014-0829-2...
) and similar to that in cashew nuts (23 g.100 g-1) and peanuts (32 g.100 g-1) (Freitas et al., 2012FREITAS, J.B., FERNANDES, D.C., CZEDER, L.P., LIMA, J.C.R., SOUSA, A.G.O. and NAVES, M.M.V., 2012. Edible seeds and nuts grown in brazil as sources of protein for human nutrition. Food and Nutrition Sciences, vol. 3, no. 6, pp. 857-862. http://doi.org/10.4236/fns.2012.36114.
http://doi.org/10.4236/fns.2012.36114...
). In addition, baru almond showed a high in vitro digestibility relative to that of casein, with higher levels of globulins (61.7%), albumin (14%), and globulin (3.3%) (Cruz et al., 2011CRUZ, K.S.D., SILVA, M.A.D., FREITAS, O.D.D. and NEVES, V.A., 2011. Partial characterization of proteins from baru (Dipteryx alata Vog) seeds. Journal of the Science of Food and Agriculture, vol. 91, no. 11, pp. 2006-2012. http://doi.org/10.1002/jsfa.4410. PMid:21484809.
http://doi.org/10.1002/jsfa.4410...
).

In contrast to the findings of most studies, Gonçalves et al., and Filbido (2020) reported that the lower lipid content of roasted almond (24 g.100-1) (Table 1) may be related to the use of the Goldfish method, since other studies that showed superior lipid content used Soxhlet or Bligh & Dyer for the determination of lipids (Fernandes et al., 2015FERNANDES, D.C., ALVES, A.M., CASTRO, G.S.F., JORDÃO JUNIOR, A.A. and NAVES, M.M.V., 2015. Effects of baru almond and Brazil nut against hyperlipidemia and oxidative stress in vivo. Journal of Food Research, vol. 4, no. 4, pp. 38-46. http://doi.org/10.5539/jfr.v4n4p38.
http://doi.org/10.5539/jfr.v4n4p38...
; Santiago et al., 2018SANTIAGO, G.L., OLIVEIRA, I.G., HORST, M.A., NAVES, M.M.V. and SILVA, M.R., 2018. Peel and pulp of baru (Dipteryx alata Vog.) provide high fiber, phenolic content and antioxidant capacity. Food Science and Technology, vol. 38, no. 2, pp. 244-249. http://doi.org/10.1590/1678-457x.36416.
http://doi.org/10.1590/1678-457x.36416...
; Oliveira-Alves et al., 2020OLIVEIRA-ALVES, S.C., PEREIRA, R.S., PEREIRA, A.B., FERREIRA, A., MECHA, E., SILVA, A.B., SERRA, A.T. and BRONZE, M.R., 2020. Identification of functional compounds in baru (Dipteryx alata Vog.) nuts: nutritional value, volatile and phenolic composition, antioxidant activity and antiproliferative effect. Food Research International, vol. 131, pp. 109026. http://doi.org/10.1016/j.foodres.2020.109026. PMid:32247467.
http://doi.org/10.1016/j.foodres.2020.10...
). Furthermore, the lipid content (24 to 45 g.100 g-1) and total energy (458 to 603 Kcal.100 g-1) in baru almonds were lower than those in Brazil nuts (67 g.100 g-1; 714 Kcal.100 g-1) (Cardoso et al., 2016CARDOSO, B.R., APOLINÁRIO, D., BANDEIRA, V.S., BUSSE, A.L., MAGALDI, M.R., JACOB-FILHO, W. and COZZOLINO, S.M.F., 2016. Effects of Brazil nut consumption on selenium status and cognitive performance in older adults with mild cognitive impairment: a randomized controlled pilot trial. European Journal of Nutrition, vol. 55, no. 1, pp. 107-116. http://doi.org/10.1007/s00394-014-0829-2. PMid:25567069.
http://doi.org/10.1007/s00394-014-0829-2...
) and pequi almonds (50 g.100 g-1; 570 Kcal.100 g-1) (Cruz et al., 2011CRUZ, K.S.D., SILVA, M.A.D., FREITAS, O.D.D. and NEVES, V.A., 2011. Partial characterization of proteins from baru (Dipteryx alata Vog) seeds. Journal of the Science of Food and Agriculture, vol. 91, no. 11, pp. 2006-2012. http://doi.org/10.1002/jsfa.4410. PMid:21484809.
http://doi.org/10.1002/jsfa.4410...
). Consequently, almonds are less caloric than these oilseeds.

The dietary fiber content in almond is high (6 to 16 g.100 g-1), especially insoluble fiber (7 to 13 g.100 g-1) (Table 1). The reported values were similar between studies, except for Oliveira-Alves et al. (2020)OLIVEIRA-ALVES, S.C., PEREIRA, R.S., PEREIRA, A.B., FERREIRA, A., MECHA, E., SILVA, A.B., SERRA, A.T. and BRONZE, M.R., 2020. Identification of functional compounds in baru (Dipteryx alata Vog.) nuts: nutritional value, volatile and phenolic composition, antioxidant activity and antiproliferative effect. Food Research International, vol. 131, pp. 109026. http://doi.org/10.1016/j.foodres.2020.109026. PMid:32247467.
http://doi.org/10.1016/j.foodres.2020.10...
, who reported a lower dietary fiber content (6.1 g.100 g-1), although the analysis method was the same as that used in other studies. Moreover, almond had a greater dietary fiber content than other oilseeds, such as cashew nuts (3 to 6 g.100 g-1) and peanuts (5 to 10 g.100 g-1) (Sousa et al., 2011SOUSA, A.G.O., FERNANDES, D.C., ALVES, A.M., DE FREITAS, J.B. and NAVES, M.M.V., 2011. Nutritional quality and protein value of exotic almonds and nut from the Brazilian savanna compared to peanut. Food Research International, vol. 44, no. 7, pp. 2319-2325. http://doi.org/10.1016/j.foodres.2011.02.013.
http://doi.org/10.1016/j.foodres.2011.02...
; Freitas et al., 2012FREITAS, J.B., FERNANDES, D.C., CZEDER, L.P., LIMA, J.C.R., SOUSA, A.G.O. and NAVES, M.M.V., 2012. Edible seeds and nuts grown in brazil as sources of protein for human nutrition. Food and Nutrition Sciences, vol. 3, no. 6, pp. 857-862. http://doi.org/10.4236/fns.2012.36114.
http://doi.org/10.4236/fns.2012.36114...
). Dietary fibers are complex carbohydrates that resist breakdown by the body's internal enzymes in the small intestine, thus not contributing to energy intake. Fibers offer various health advantages, such as lowering the chances of cardiovascular disease and promoting stool bulkiness and softness (Matthewman and Costa-Pinto, 2022MATTHEWMAN, M.C. and COSTA-PINTO, R., 2022. Macronutrients, minerals, vitamins and energy. Anaesthesia and Intensive Care Medicine, vol. 24, no. 2, pp. 134-138. http://doi.org/10.1016/j.mpaic.2022.12.009.
http://doi.org/10.1016/j.mpaic.2022.12.0...
).

The proximal composition of baru pulp has also been studied (Table 2). Baru pulp is rich in carbohydrates (22.5 to 75.4%) and dietary fiber (4.4 to 41.6 g.100 g-1) (Table 2). When the carbohydrate content was higher (75.4%), this difference was indirectly detected (Almeida et al., 2019ALMEIDA, A.B.D., SILVA, A.K.C., LODETE, A.R., EGEA, M.B., LIMA, M.C.P.M. and SILVA, F.G., 2019. Assessment of chemical and bioactive properties of native fruits from the Brazilian Cerrado. Nutrition & Food Science, vol. 49, no. 3, pp. 381-392. http://doi.org/10.1108/NFS-07-2018-0199.
http://doi.org/10.1108/NFS-07-2018-0199...
). This is the case, as the adjusted values of carbohydrate content would be similar between studies.

Table 2
Proximal composition of baru pulp.

Pulp is a source of several sugars, such as glucose, sucrose, and starch. However, the content differed between studies (Table 2). This variation between studies may be associated with the different regions of fruit origin (Vallilo et al., 1990VALLILO, M.I., TAVARES, M.T.A. and AUED, S., 1990. Composição química da polpa e da semente do fruto do cumbaru (Dipteryx alata Vog.) - caracterização do óleo da semente. Revista do Instituto Florestal, vol. 2, no. 2, pp. 115-125. http://doi.org/10.24278/2178-5031.199022137.
http://doi.org/10.24278/2178-5031.199022...
; Silva et al., 2021bSILVA, J.S., FERREIRA, N.B.S., ASQUIERI, E.R., DAMIANI, C. and ASQUIERI, E.M.A.R., 2021b. Chemical monitoring of baru (Dipteryx alata Vog.) pulp fermented beverage. Food Science and Technology, vol. 41, suppl. 1, pp. 155-162. http://doi.org/10.1590/fst.14420.
http://doi.org/10.1590/fst.14420...
) and the fact that Vallilo et al. (1990)VALLILO, M.I., TAVARES, M.T.A. and AUED, S., 1990. Composição química da polpa e da semente do fruto do cumbaru (Dipteryx alata Vog.) - caracterização do óleo da semente. Revista do Instituto Florestal, vol. 2, no. 2, pp. 115-125. http://doi.org/10.24278/2178-5031.199022137.
http://doi.org/10.24278/2178-5031.199022...
evaluated the starch content by difference. Considering the low number of articles, further studies are needed to determine which sugars are present in pulp and their respective amounts.

The lower lipid content in the pulp (0.90 ± 0.10 g.100 g-1) (Almeida et al., 2019ALMEIDA, A.B.D., SILVA, A.K.C., LODETE, A.R., EGEA, M.B., LIMA, M.C.P.M. and SILVA, F.G., 2019. Assessment of chemical and bioactive properties of native fruits from the Brazilian Cerrado. Nutrition & Food Science, vol. 49, no. 3, pp. 381-392. http://doi.org/10.1108/NFS-07-2018-0199.
http://doi.org/10.1108/NFS-07-2018-0199...
) may be associated with the different methods used to analyse the lipids, such as the AOAC (method 920.39) versus the methods of Bligh & Dyer chosen by the other two studies (Santiago et al., 2018SANTIAGO, G.L., OLIVEIRA, I.G., HORST, M.A., NAVES, M.M.V. and SILVA, M.R., 2018. Peel and pulp of baru (Dipteryx alata Vog.) provide high fiber, phenolic content and antioxidant capacity. Food Science and Technology, vol. 38, no. 2, pp. 244-249. http://doi.org/10.1590/1678-457x.36416.
http://doi.org/10.1590/1678-457x.36416...
; Silva et al., 2021bSILVA, J.S., FERREIRA, N.B.S., ASQUIERI, E.R., DAMIANI, C. and ASQUIERI, E.M.A.R., 2021b. Chemical monitoring of baru (Dipteryx alata Vog.) pulp fermented beverage. Food Science and Technology, vol. 41, suppl. 1, pp. 155-162. http://doi.org/10.1590/fst.14420.
http://doi.org/10.1590/fst.14420...
) (Table 2).

The relatively high dietary fiber content in the pulp and peel makes the baru an interesting source, especially insoluble fiber. However, the dietary fiber contents have diverged among studies (Table 2). This variation may be related to the local collection and maturation of the pulp. In addition, the dietary fiber in pulp (4 to 40%) is greater than that in other Cerrado fruits, such as cagaita (1.56%), buriti (2.65%), araçá (9.30%), and yellow mombin (15.23%) (Schiassi et al., 2018SCHIASSI, M.C.E.V., SOUZA, V.R., LAGO, A.M.T., CAMPOS, L.G. and QUEIROZ, F., 2018. Fruits from the Brazilian Cerrado region: physico-chemical characterization, bioactive compounds, antioxidant activities, and sensory evaluation. Food Chemistry, vol. 245, pp. 305-311. http://doi.org/10.1016/j.foodchem.2017.10.104. PMid:29287376.
http://doi.org/10.1016/j.foodchem.2017.1...
). The intake of approximately 21 to 38% of daily dietary fiber is recommended for the maintenance of health at different stages of life (IOM, 2011INSTITUTE OF MEDICINE – IOM, 2011 [viewed 25 October 2022]. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids [online]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK56068/table/summarytables.t4/?report=objectonly/
https://www.ncbi.nlm.nih.gov/books/NBK56...
). In Brazil, the daily reference value for dietary fiber consumption is 25 g.100 g-1 of food (Brasil, 2020BRASIL, 2020 [viewed 2 February 2024]. Instrução Normativa - IN nº 475, de 8 de outubro de 2020 [online]. Diário Oficial da República Federativa do Brasil, Brasilia, 23 nov. Available from: https://antigo.anvisa.gov.br/documents/10181/3882585/%283%29IN_75_2020_COMP.pdf/e5a331f2-86db-4bc8-9f39-afb6c1d7e19f
https://antigo.anvisa.gov.br/documents/1...
). Thus, baru pulp is an ideal option for supporting the adequate consumption of dietary fiber.

Pulp is a good source of energy (Table 2). Compared with those of the other Cerrado fruits, the total energy of baru was greater (145 to 366 Kcal.100 g-1) than that of araçá (38 Kcal.100 g-1), cagaita (39 Kcal.100-1), yellow mombin (53 Kcal.100 g-1), mangaba (67 Kcal.100 g-1) buriti (93 Kcal.100 g-1), marolo (113 Kcal.100 g-1) (Schiassi et al., 2018SCHIASSI, M.C.E.V., SOUZA, V.R., LAGO, A.M.T., CAMPOS, L.G. and QUEIROZ, F., 2018. Fruits from the Brazilian Cerrado region: physico-chemical characterization, bioactive compounds, antioxidant activities, and sensory evaluation. Food Chemistry, vol. 245, pp. 305-311. http://doi.org/10.1016/j.foodchem.2017.10.104. PMid:29287376.
http://doi.org/10.1016/j.foodchem.2017.1...
), and macauba (258 Kcal.100 g-1) (Almeida et al., 2019ALMEIDA, A.B.D., SILVA, A.K.C., LODETE, A.R., EGEA, M.B., LIMA, M.C.P.M. and SILVA, F.G., 2019. Assessment of chemical and bioactive properties of native fruits from the Brazilian Cerrado. Nutrition & Food Science, vol. 49, no. 3, pp. 381-392. http://doi.org/10.1108/NFS-07-2018-0199.
http://doi.org/10.1108/NFS-07-2018-0199...
).

Although baru almond and pulp exhibit distinct nutritional compositions, both serve as sources of essential nutrients and energy; the almond is rich in lipids, proteins, and essential amino acids, while the pulp is rich in dietary fibers, sugars, and vitamin C. In this regard, baru is considered a sociobiodiverse species with nutritional value, and its acquisition in the National School Feeding Program is encouraged by public policies (Brasil, 2021aBRASIL, 2021a [viewed 25 February 2023]. Portaria Interministerial nº 10, de 21 de julho de 2021 [online]. Diário Oficial da República Federativa do Brasil, Brasilia, 22 jul. Available from: https://in.gov.br/en/web/dou/-/portaria-interministerial-mapa/mma-n-10-de-21-de-julho-de-2021-333502918/
https://in.gov.br/en/web/dou/-/portaria-...
, 2023BRASIL, 2023 [viewed 25 February 2023]. Portaria Interministerial nº 7.228, de 22 de janeiro de 2023 [online]. Diário Oficial da República Federativa do Brasil, Brasilia, 13 jul. Available from: https://www.sinj.df.gov.br/sinj/Norma/a9f2e0352919444292fa2ff8de262029/Lei_7228_2023.html/
https://www.sinj.df.gov.br/sinj/Norma/a9...
) (Figure 3).

Figure 3
Amount of essential nutrients (grams.100 g-1) and energy (kilocalories.100 g-1) in baru almond and pulp.

3.4. Vitamins in almond and pulp

Studies have detected ascorbic acid and tocopherol in almond (Fiorini et al., 2017FIORINI, A.M., BARBALHO, S.M., GUIGUER, É.L., OSHIIWA, M., MENDES, C.G., VIEITES, R.L., CHIES, A.B. and OLIVEIRA, P.B., 2017. Dipteryx alata Vogel may improve lipid profile and atherogenic indices in wistar rats dipteryx alata and atherogenic indices. Journal of Medicinal Food, vol. 20, no. 11, pp. 1121-1126. http://doi.org/10.1089/jmf.2017.0052. PMid:29072970.
http://doi.org/10.1089/jmf.2017.0052...
; Gonçalves et al., and Filbido, 2020; Campidelli et al., 2020aCAMPIDELLI, M.L.L., CARNEIRO, J.D.S., SOUZA, E.C., MAGALHÃES, M.F., NUNES, E.E.C., FARIA, P.B., FRANCO, M. and VILAS BOAS, E.V.B., 2020a. Effects of the drying process on the fatty acid content, phenolic profile, tocopherols and antioxidant activity of baru almonds (Dipteryx alata Vog.). Grasas y Aceites, vol. 71, no. 1, e343. http://doi.org/10.3989/gya.1170182.
http://doi.org/10.3989/gya.1170182...
) and ascorbic acid in pulp (Leite et al., 2020LEITE, N.R., ARAÚJO, L.C.A., ROCHA, P.D.S., AGARRAYUA, D.A., ÁVILA, D.S., CAROLLO, C.A., SILVA, D.B., ESTEVINHO, L.M., SOUZA, K.P. and SANTOS, E.L., 2020. Baru pulp (Dipteryx alata Vogel): fruit from the Brazilian savanna protects against oxidative stress and increases the life expectancy of Caenorhabditis elegans via SOD-3 and DAF-16. Biomolecules, vol. 10, no. 8, pp. 1-22. http://doi.org/10.3390/biom10081106.
http://doi.org/10.3390/biom10081106...
; Silva et al., 2021aSILVA, S.R.D., FERREIRA, T.H.B., GIUNCO, A.J. and ARGANDOÑA, E.J.S., 2021a. Nutritional potential and effect of the solvent on the extraction of secondary metabolites from pulp and bark of baru (Dipteryx alata). Journal of Food Measurement and Characterization, vol. 15, no. 4, pp. 3453-3460. http://doi.org/10.1007/s11694-021-00926-6.
http://doi.org/10.1007/s11694-021-00926-...
). The ascorbic acid content in the pulp (113.48 and 224.5 mg.100 g-1) (Almeida et al., 2019ALMEIDA, A.B.D., SILVA, A.K.C., LODETE, A.R., EGEA, M.B., LIMA, M.C.P.M. and SILVA, F.G., 2019. Assessment of chemical and bioactive properties of native fruits from the Brazilian Cerrado. Nutrition & Food Science, vol. 49, no. 3, pp. 381-392. http://doi.org/10.1108/NFS-07-2018-0199.
http://doi.org/10.1108/NFS-07-2018-0199...
; Leite et al., 2020LEITE, N.R., ARAÚJO, L.C.A., ROCHA, P.D.S., AGARRAYUA, D.A., ÁVILA, D.S., CAROLLO, C.A., SILVA, D.B., ESTEVINHO, L.M., SOUZA, K.P. and SANTOS, E.L., 2020. Baru pulp (Dipteryx alata Vogel): fruit from the Brazilian savanna protects against oxidative stress and increases the life expectancy of Caenorhabditis elegans via SOD-3 and DAF-16. Biomolecules, vol. 10, no. 8, pp. 1-22. http://doi.org/10.3390/biom10081106.
http://doi.org/10.3390/biom10081106...
) was greater than that in the raw (18.80 and 39 mg.100-1) and roasted (18.5 to 37.8 mg.100 g-1) almond. This outcome was expected, given that ascorbic acid is hydrophilic (Tiozon et al., 2021TIOZON, R.J.N., FERNIE, A.R. and SREENIVASULU, N., 2021. Meeting human dietary vitamin requirements in the staple rice via strategies of biofortification and post-harvest fortification. Trends in Food Science & Technology, vol. 109, pp. 65-82. http://doi.org/10.1016/j.tifs.2021.01.023.
http://doi.org/10.1016/j.tifs.2021.01.02...
).

Peixoto et al. (2022)PEIXOTO, V.O.D.S., SILVA, L., CASTELO-BRANCO, V.N. and TORRES, A.G., 2022. Baru (Dipteryx alata Vogel) oil extraction by supercritical-CO2: improved composition by using water as cosolvent. Journal of Oleo Science, vol. 71, no. 2, pp. 201-213. http://doi.org/10.5650/jos.ess21115. PMid:35034941.
http://doi.org/10.5650/jos.ess21115...
used different methods and solvents for the extraction of almond oil and obtained better results for tocopherol (3 to 212 mg.100 g-1) than reported in the literature (0.19 to 11 mg.100 g-1) (Lemos et al., 2016LEMOS, M.R.B., ZAMBIAZI, R.C., ALMEIDA, E.M.S.D. and ALENCAR, E.R., 2016. Tocopherols and fatty acid profile in baru nuts (Dipteryx alata Vog.), raw and roasted: important sources in nature that can prevent diseases. Food Science and Nutrition Technology, vol. 1, no. 2, pp. 000107. http://doi.org/10.23880/FSNT-16000107.
http://doi.org/10.23880/FSNT-16000107...
; Fetzer et al., 2018FETZER, D.L., CRUZ, P.N., HAMERSKI, F. and CORAZZA, M.L., 2018. Extraction of baru (Dipteryx alata Vogel) seed oil using compressed solvents technology. The Journal of Supercritical Fluids, vol. 137, pp. 23-33. http://doi.org/10.1016/j.supflu.2018.03.004.
http://doi.org/10.1016/j.supflu.2018.03....
; Campidelli et al., 2020aCAMPIDELLI, M.L.L., CARNEIRO, J.D.S., SOUZA, E.C., MAGALHÃES, M.F., NUNES, E.E.C., FARIA, P.B., FRANCO, M. and VILAS BOAS, E.V.B., 2020a. Effects of the drying process on the fatty acid content, phenolic profile, tocopherols and antioxidant activity of baru almonds (Dipteryx alata Vog.). Grasas y Aceites, vol. 71, no. 1, e343. http://doi.org/10.3989/gya.1170182.
http://doi.org/10.3989/gya.1170182...
). Vitamins are vital to human health (Tiozon et al., 2021TIOZON, R.J.N., FERNIE, A.R. and SREENIVASULU, N., 2021. Meeting human dietary vitamin requirements in the staple rice via strategies of biofortification and post-harvest fortification. Trends in Food Science & Technology, vol. 109, pp. 65-82. http://doi.org/10.1016/j.tifs.2021.01.023.
http://doi.org/10.1016/j.tifs.2021.01.02...
). It acts as an enzyme cofactor and performs catalytic functions in organism (Askin et al., 2021), ensuring physiological and metabolic homeostasis (Tiozon et al., 2021TIOZON, R.J.N., FERNIE, A.R. and SREENIVASULU, N., 2021. Meeting human dietary vitamin requirements in the staple rice via strategies of biofortification and post-harvest fortification. Trends in Food Science & Technology, vol. 109, pp. 65-82. http://doi.org/10.1016/j.tifs.2021.01.023.
http://doi.org/10.1016/j.tifs.2021.01.02...
). Tocopherol is fat soluble and acts synergistically with endogenous antioxidant components to scavenge reactive species (Mattioli et al., 2021MATTIOLI, S., COLLODEL, G., SIGNORINI, C., COTOZZOLO, E., NOTO, D., CERRETANI, D., MICHELI, L., FIASCHI, A.I., BRECCHIA, G., MENCHETTI, L., MORETTI, E., OGER, C., DE FELICE, C. and CASTELLINI, C., 2021. Tissue antioxidant status and lipid peroxidation are related to dietary intake of n-3 polyunsaturated acids: a rabbit model. Antioxidants, vol. 10, no. 5, pp. 681-702. http://doi.org/10.3390/antiox10050681. PMid:33925444.
http://doi.org/10.3390/antiox10050681...
), while ascorbic acid is a water-soluble vitamin. Both are natural antioxidants that act on the body as detoxifiers and ensure the protection of vital organs such as the liver and kidneys (Shotop and Al-Suwiti, 2021SHOTOP, Y.M. and AL-SUWITI, I.N., 2021. The possible role of vitamins E and C in reducing the toxicity of copper nanoparticles in the kidney and liver of the rats (Rattus norvegicus). Journal of King Saud University. Science, vol. 33, no. 2, pp. 101357. http://doi.org/10.1016/j.jksus.2021.101357.
http://doi.org/10.1016/j.jksus.2021.1013...
).

3.5. Minerals in almond and pulp

Nutritional studies with baru almond and pulp also related the presence of several minerals, such as potassium, copper, zinc, and phosphor, and the presence of calcium, iron, magnesium, selenium, and sodium. However, there was variation between studies (Tables 1 and 2). This variation may be related to the region and time of harvest of the plant, sample preparation, and method chosen for the analysis. In this way, it is possible to optimize the extraction of a certain nutrient based on the analysis of the reports of previous studies.

The potassium content of baru almond (811 to 1810 mg.100 g-1) was greater than that of pequi almond (835 mg.100 g-1), cashew nut (556 mg.100 g-1), and peanut (668 mg.100 g-1) (Sousa et al., 2011SOUSA, A.G.O., FERNANDES, D.C., ALVES, A.M., DE FREITAS, J.B. and NAVES, M.M.V., 2011. Nutritional quality and protein value of exotic almonds and nut from the Brazilian savanna compared to peanut. Food Research International, vol. 44, no. 7, pp. 2319-2325. http://doi.org/10.1016/j.foodres.2011.02.013.
http://doi.org/10.1016/j.foodres.2011.02...
). The iron content (3 to 19 mg.100 g-1) was greater in baru almonds than in Brazil nuts (2.2 mg.100-1), cashew nuts (5.4 mg.100 g-1), hazelnuts (2.5 mg.100 g-1), and walnuts (2.1 mg.100 g-1). The zinc content (1 to 6 mg.100 g-1) was greater in baru almonds than in Brazil nuts (2.4 mg.100 g-1), cashew nuts (3.0 mg.100 g-1), hazelnuts (25.1 mg.100 g-1), and walnuts (1.8 mg.100 g-1). The calcium content (82 to 638 mg.100 g-1) was greater than that of cashew nuts (25.1 mg.100 g-1) and walnuts (73.1 mg.100 g-1). The selenium content (260 µg.100 g-1) was greater than that of Brazil nuts (57.7 µg.100 g-1) (Cardoso et al., 2016CARDOSO, B.R., APOLINÁRIO, D., BANDEIRA, V.S., BUSSE, A.L., MAGALDI, M.R., JACOB-FILHO, W. and COZZOLINO, S.M.F., 2016. Effects of Brazil nut consumption on selenium status and cognitive performance in older adults with mild cognitive impairment: a randomized controlled pilot trial. European Journal of Nutrition, vol. 55, no. 1, pp. 107-116. http://doi.org/10.1007/s00394-014-0829-2. PMid:25567069.
http://doi.org/10.1007/s00394-014-0829-2...
), Pequi almonds (1.40 µg.100 g-1), cashew nuts (1.02 µg.100 g-1) and peanuts (2.51 µg.100 g-1), and the phosphorus content was less than that of Pequi nuts (2214 mg.100 g-1) and cashew nuts (1101 mg.100 g-1) (Sousa et al., 2011SOUSA, A.G.O., FERNANDES, D.C., ALVES, A.M., DE FREITAS, J.B. and NAVES, M.M.V., 2011. Nutritional quality and protein value of exotic almonds and nut from the Brazilian savanna compared to peanut. Food Research International, vol. 44, no. 7, pp. 2319-2325. http://doi.org/10.1016/j.foodres.2011.02.013.
http://doi.org/10.1016/j.foodres.2011.02...
). However, the magnesium content (8 to 200 mg.100 g-1) was less than that of Brazil nuts (221.2 mg.100 g-1) and cashew nuts (195.7 mg.100 g-1) (Suliburska and Krejpcio, 2014SULIBURSKA, J. and KREJPCIO, Z., 2014. Evaluation of the content and bioaccessibility of iron, zinc, calcium and magnesium from groats, rice, leguminous grains and nuts. J. Journal of Food Science and Technology, vol. 51, no. 3, pp. 589-594. http://doi.org/10.1007/s13197-011-0535-5. PMid:24587537.
http://doi.org/10.1007/s13197-011-0535-5...
).

In our organism, these minerals are necessary for important biochemical functions, such as forming structural components of bones (calcium, magnesium, phosphorus), red blood cell formation, blood coagulation (copper, iron, calcium), electrolytes, neuromuscular functions (potassium, sodium, calcium, magnesium, phosphorus), protein synthesis (zinc and potassium), glucose and glycogen synthesis (potassium and phosphorus), fatty acid synthesis (magnesium), enzymatic cofactors and antioxidants (selenium and copper), cardiovascular excitability (magnesium), endocrine secretory function and cell membrane integrity (calcium), immunity and growth of genital organs (zinc) and pH maintenance (phosphorus) (Doley, 2017DOLEY, J., 2017. Vitamins and minerals in older adults: causes, diagnosis, and treatment of deficiency, nutrition and functional foods for healthy aging. In: R.R. WATSON, ed. Nutrition and functional foods for healthy aging. London: Academic Press, pp. 125-137. http://doi.org/10.1016/B978-0-12-805376-8.00014-9.
http://doi.org/10.1016/B978-0-12-805376-...
; NIH, 2022NATIONAL INSTITUTES OF HEALTH – NIH, 2022 [viewed 4 February 2023]. Dietary supplement fact sheets [online]. Available from: https://ods.od.nih.gov/factsheets/list-all/
https://ods.od.nih.gov/factsheets/list-a...
).

In addition, evaluating the gastrointestinal bioaccessibility of minerals is important for understanding the nutritional value of Brazilian Cerrado fruits and almond. Mineral bioaccessibility represents how much of a certain mineral will be released from food and may be absorbed by the gastrointestinal tract during the digestion process (Gonçalves et al., and Filbido, 2020).

Gonçalves et al., and Filbido (2020) evaluated the in vitro bioaccessibility of some minerals present in baru almond using a gastrointestinal simulation. The bioaccessibility was 16.8%, 21.4%, 80.3%, and 81.3% for copper, iron, manganese, and zinc, respectively. Pearson's correlation coefficient verified that phytic acid and ascorbic acid can influence bioaccessibility (Gonçalves et al., and Filbido, 2020). A form of better bioaccessibility is to inhibit phytate activity by roasting almond (Feizollahi et al., 2021FEIZOLLAHI, E., MIRMAHDI, R.S., ZOGHI, A., ZIJLSTRA, R.T., ROOPESH, M.S. and VASANTHAN, T., 2021. Review of the beneficial and anti-nutritional qualities of phytic acid, and procedures for removing it from food products. Food Research International, vol. 143, pp. 110284. http://doi.org/10.1016/j.foodres.2021.110284. PMid:33992384.
http://doi.org/10.1016/j.foodres.2021.11...
). In contrast, ascorbic acid facilitates the absorption of Fe (Cilla et al., 2018CILLA, A., BOSCH, L., BARBERÁ, R. and ALEGRÍA, A., 2018. Effect of processing on the bioaccessibility of bioactive compounds - A review focusing on carotenoids, minerals, ascorbic acid, tocopherols and polyphenols. Journal of Food Composition and Analysis, vol. 68, pp. 3-15. http://doi.org/10.1016/j.jfca.2017.01.009.
http://doi.org/10.1016/j.jfca.2017.01.00...
). Thus, baru almond and pulp are natural sources of minerals that are bioaccessible to the human body.

3.6. Amino acids in almond

All the essential amino acids in the baru almond were compatible with or superior to the recommended dietary allowances (RDAs) established by the Dietary Reference Intakes (IOM, 2005INSTITUTE OF MEDICINE – IOM, 2005 [viewed 25 October 2022]. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids [online]. Available from: https://www.nap.edu/read/10490/chapter/12/
https://www.nap.edu/read/10490/chapter/1...
) (Table 3).

Table 3
Amino acids composition of baru almonds.

In addition, almond exhibited excellent protein digestibility-corrected amino acid score (PDCAAS) values (73 and 91%) (Sousa et al., 2011SOUSA, A.G.O., FERNANDES, D.C., ALVES, A.M., DE FREITAS, J.B. and NAVES, M.M.V., 2011. Nutritional quality and protein value of exotic almonds and nut from the Brazilian savanna compared to peanut. Food Research International, vol. 44, no. 7, pp. 2319-2325. http://doi.org/10.1016/j.foodres.2011.02.013.
http://doi.org/10.1016/j.foodres.2011.02...
; Fernandes et al., 2010FERNANDES, D.C., FREITAS, J.B., CZEDER, L.P. and NAVES, M.M.V., 2010. Nutritional composition and protein value of the baru (Dipteryx alata Vog.) almond from the Brazilian Savanna. Journal of the Science of Food and Agriculture, vol. 90, no. 10, pp. 1650-1655. http://doi.org/10.1002/jsfa.3997. PMid:20564449.
http://doi.org/10.1002/jsfa.3997...
), outperforming other oilseeds, such as Brazil nut and peanut (63 and 69%, respectively) (Freitas et al., 2012FREITAS, J.B., FERNANDES, D.C., CZEDER, L.P., LIMA, J.C.R., SOUSA, A.G.O. and NAVES, M.M.V., 2012. Edible seeds and nuts grown in brazil as sources of protein for human nutrition. Food and Nutrition Sciences, vol. 3, no. 6, pp. 857-862. http://doi.org/10.4236/fns.2012.36114.
http://doi.org/10.4236/fns.2012.36114...
). The PDCAAS has been recommended by the FAO/WHO as a tool for evaluating the nutritional value of protein for human consumption (WHO, 2007WORLD HEALTH ORGANIZATION – WHO, 2007 [viewed 18 January 2023]. Joint FAO/WHO/UNU expert consultation on protein and amino acid requirements in human nutrition [online]. Geneva: WHO. Technical Reports Series, no. 935. Available from: https://apps.who.int/iris/handle/10665/43411/
https://apps.who.int/iris/handle/10665/4...
). According to the PDCAAS criteria, baru almond has a high nutritional protein content. Thus, it can be an alternative protein source, especially for people who follow a vegetarian or vegan lifestyle, to increase protein intake.

3.7. Fatty acids in almond

Baru almond oil contains approximately 50% monounsaturated fatty acids, 30% polyunsaturated fatty acids (PUFAs), and 20% saturated fatty acids, with high concentrations of oleic acid (C18:1) and linoleic acid (C18:2), respectively (Table 4). Fetzer et al. (2018)FETZER, D.L., CRUZ, P.N., HAMERSKI, F. and CORAZZA, M.L., 2018. Extraction of baru (Dipteryx alata Vogel) seed oil using compressed solvents technology. The Journal of Supercritical Fluids, vol. 137, pp. 23-33. http://doi.org/10.1016/j.supflu.2018.03.004.
http://doi.org/10.1016/j.supflu.2018.03....
, using supercritical CO2 with ethanol, and Soxhlet, using ethanol and hexane for the extraction of almond oil, reported similar results for oleic acid (50 to 53%) and less linoleic acid (23 to 25%) when compared with other studies (Lemos et al., 2016LEMOS, M.R.B., ZAMBIAZI, R.C., ALMEIDA, E.M.S.D. and ALENCAR, E.R., 2016. Tocopherols and fatty acid profile in baru nuts (Dipteryx alata Vog.), raw and roasted: important sources in nature that can prevent diseases. Food Science and Nutrition Technology, vol. 1, no. 2, pp. 000107. http://doi.org/10.23880/FSNT-16000107.
http://doi.org/10.23880/FSNT-16000107...
; Siqueira et al., 2016SIQUEIRA, A.P.S., CASTRO, C.F.S., SILVEIRA, E.V. and LOURENÇO, M.F.C., 2016. Chemical quality of baru almond (Dipteryx alata oil). Ciência Rural, vol. 46, no. 10, pp. 1865-1867. http://doi.org/10.1590/0103-8478cr20150468.
http://doi.org/10.1590/0103-8478cr201504...
; Oliveira-Alves et al., 2020OLIVEIRA-ALVES, S.C., PEREIRA, R.S., PEREIRA, A.B., FERREIRA, A., MECHA, E., SILVA, A.B., SERRA, A.T. and BRONZE, M.R., 2020. Identification of functional compounds in baru (Dipteryx alata Vog.) nuts: nutritional value, volatile and phenolic composition, antioxidant activity and antiproliferative effect. Food Research International, vol. 131, pp. 109026. http://doi.org/10.1016/j.foodres.2020.109026. PMid:32247467.
http://doi.org/10.1016/j.foodres.2020.10...
). Martins et al. (2013)MARTINS, F.S., BORGES, L.L., PAULA, J.R. and CONCEIÇÃO, E.C., 2013. Impact of different extraction methods on the quality of Dipteryx alata extracts. Revista Brasileira de Farmacognosia, vol. 23, no. 3, pp. 521-526. http://doi.org/10.1590/S0102-695X2013005000033.
http://doi.org/10.1590/S0102-695X2013005...
reported that the extraction method affects the linolenic acid content; when the oil was extracted by Bligh & Dyer, it contained 94.70% more linolenic acid than that obtained by the Shoxlet method. The efficiency of extraction depends on the solvent characteristics. Soxhlet uses hexane, which is known for its effectiveness with apolar acids, although continuous heating may risk lipid oxidation. Bligh & Dyer employed a mixture of methanol and chloroform to efficiently extract a variety of fatty acids, including neutral, polar, and apolar fatty acids (Saini et al., 2021SAINI, R.K., PRASAD, P., SHANG, X. and KEUM, Y.-S., 2021. Advances in lipid extraction methods: a review. International Journal of Molecular Sciences, vol. 22, no. 24, pp. 13643. http://doi.org/10.3390/ijms222413643. PMid:34948437.
http://doi.org/10.3390/ijms222413643...
).

Table 4
Fatty acids composition of baru almonds.

The oleic acid content was greater in baru almond (~ 50%) than in Brazil nut (27%), peanut (41%), and pequi almond (44%). The linoleic acid content was greater than that in cashew nuts (0.03%) (Alves et al., 2016ALVES, A.M., FERNANDES, D.C., BORGES, J.F., SOUSA, A.G.O. and NAVES, M.M.V., 2016. Oilseeds native to the Cerrado have fatty acid profile beneficial for cardiovascular health. Revista de Nutrição, vol. 29, no. 6, pp. 859-866. http://doi.org/10.1590/1678-98652016000600010.
http://doi.org/10.1590/1678-986520160006...
).

The relatively high concentration of unsaturated fatty acids present in almond makes it an interesting source of these fatty acids. Linoleic acid is not synthesized in the human body (Chañi-Paucar et al., 2021CHAÑI-PAUCAR, L.O., OSORIO-TOBÓN, J.F., JOHNER, J.C.F. and MEIRELES, M.A.A., 2021. A comparative and economic study of the extraction of oil from baru Dipteryx alata seeds by supercritical CO2 with and without mechanical pressing. Heliyon, vol. 7, no. 1, e05971. http://doi.org/10.1016/j.heliyon.2021.e05971. PMid:33537470.
http://doi.org/10.1016/j.heliyon.2021.e0...
). Oleic and linoleic acids promote anti-inflammatory effects (Mohammadi et al., 2020MOHAMMADI, I., MAHDAVI, A.H., RABIEE, F., NASR ESFAHANI, M.H. and GHAEDI, K., 2020. Positive effects of conjugated linoleic acid (CLA) on the PGC1-α expression under the inflammatory conditions induced by TNF-α in the C2C12 cell line. Gene, vol. 735, pp. 144394. http://doi.org/10.1016/j.gene.2020.144394. PMid:31987906.
http://doi.org/10.1016/j.gene.2020.14439...
; Pegoraro et al., 2021PEGORARO, N.S., CAMPONOGARA, C., CRUZ, L. and OLIVEIRA, S.M., 2021. Oleic acid exhibits an expressive anti-inflammatory effect in croton oil-induced irritant contact dermatitis without the occurrence of toxicological effects in mice. Journal of Ethnopharmacology, vol. 267, pp. 113486. http://doi.org/10.1016/j.jep.2020.113486. PMid:33091495.
http://doi.org/10.1016/j.jep.2020.113486...
), and linoleic acid promotes cardiovascular protection (Marangoni et al., 2020MARANGONI, F., AGOSTONI, C., BORGHI, C., CATAPANO, A.L., CENA, H., GHISELLI, A., LA VECCHIA, C., LERCKER, G., MANZATO, E., PIRILLO, A., RICCARDI, G., RISÉ, P., VISIOLI, F. and POLI, A., 2020. Dietary linoleic acid and human health: focus on cardiovascular and cardiometabolic effects. Atherosclerosis, vol. 292, no. 1, pp. 90-98. http://doi.org/10.1016/j.atherosclerosis.2019.11.018. PMid:31785494.
http://doi.org/10.1016/j.atherosclerosis...
) and antidiabetic effects (Yoon et al., 2021YOON, S.Y., AHN, D., HWANG, J.Y., KANG, M.J. and CHUNG, S.J., 2021. Linoleic acid exerts antidiabetic effects by inhibiting protein tyrosine phosphatases associated with insulin resistance. Journal of Functional Foods, vol. 83, pp. 104532. http://doi.org/10.1016/j.jff.2021.104532.
http://doi.org/10.1016/j.jff.2021.104532...
). Moreover, the Atherogenic Index of the raw (0.09 ± 0.09) and roasted almond (0.08 ± 0.34) samples were very low. Although no parameter has been established for Atherogenic Index, the smaller the result is, the greater the chances that food will promote cardiovascular protection (Campidelli et al., 2020aCAMPIDELLI, M.L.L., CARNEIRO, J.D.S., SOUZA, E.C., MAGALHÃES, M.F., NUNES, E.E.C., FARIA, P.B., FRANCO, M. and VILAS BOAS, E.V.B., 2020a. Effects of the drying process on the fatty acid content, phenolic profile, tocopherols and antioxidant activity of baru almonds (Dipteryx alata Vog.). Grasas y Aceites, vol. 71, no. 1, e343. http://doi.org/10.3989/gya.1170182.
http://doi.org/10.3989/gya.1170182...
).

3.8. Anti-nutrients

Baru pulp has low amounts of antinutrients such as tannins (472 mg quercitannic acid, 100 g pulp-1 and 440 to 609 mg catechin, 100 g pulp-1) (Marin et al., 2009MARIN, A.M., SIQUEIRA, E.M. and ARRUDA, S.F., 2009. Minerals, phytic acid and tannin contents of 18 fruits from the Brazilian savanna. International Journal of Food Sciences and Nutrition, vol. 60, Suppl. 7, pp. 180-190. http://doi.org/10.1080/09637480902789342. PMid:19353365.
http://doi.org/10.1080/09637480902789342...
; Silva et al., 2021aSILVA, S.R.D., FERREIRA, T.H.B., GIUNCO, A.J. and ARGANDOÑA, E.J.S., 2021a. Nutritional potential and effect of the solvent on the extraction of secondary metabolites from pulp and bark of baru (Dipteryx alata). Journal of Food Measurement and Characterization, vol. 15, no. 4, pp. 3453-3460. http://doi.org/10.1007/s11694-021-00926-6.
http://doi.org/10.1007/s11694-021-00926-...
) and phytic acid (0.43% to 1%) (Marin et al., 2009MARIN, A.M., SIQUEIRA, E.M. and ARRUDA, S.F., 2009. Minerals, phytic acid and tannin contents of 18 fruits from the Brazilian savanna. International Journal of Food Sciences and Nutrition, vol. 60, Suppl. 7, pp. 180-190. http://doi.org/10.1080/09637480902789342. PMid:19353365.
http://doi.org/10.1080/09637480902789342...
; Gonçalves et al., and Filbido, 2020). For baru almond, trypsin inhibitors were used for sequencing (Kalume et al., 1995KALUME, D.E., SOUSA, M.V. and MORHY, L., 1995. Purification, characterization, sequence determination, and mass spectrometric analysis of a trypsin inhibitor from seeds of the Brazilian tree Dipteryx alata Leguminosae. Journal of Protein Chemistry, vol. 14, no. 8, pp. 685-693. http://doi.org/10.1007/BF01886907. PMid:8747429.
http://doi.org/10.1007/BF01886907...
). It is known that the interaction of tannins with carbohydrates, proteins, and microelements may reduce the bioavailability of these nutrients (Das et al., 2022DAS, G., SHARMA, A. and SARKAR, P.K., 2022. Conventional and emerging processing techniques for the post-harvest reduction of antinutrients in edible legumes. Applied Food Research, vol. 2, no. 1, pp. 100112. http://doi.org/10.1016/j.afres.2022.100112.
http://doi.org/10.1016/j.afres.2022.1001...
). Phytic acid may reduce the bioavailability of copper, iron, and manganese (Gonçalves et al., and Filbido, 2020), and the presence of trypsin inhibitors can reduce the digestive activity of this enzyme (Nath et al., 2022NATH, H., SAMTIYA, M. and DHEWA, T., 2022. Beneficial attributes and adverse effects of major plant-based foods. Human Nutrition & Metabolism, vol. 28, pp. 200147. http://doi.org/10.1016/j.hnm.2022.200147.
http://doi.org/10.1016/j.hnm.2022.200147...
). Unbalanced concentrations cause adverse effects, such as reduced bioavailability of minerals and digestibility of protein, and may also lead to toxicity (Nath et al., 2022NATH, H., SAMTIYA, M. and DHEWA, T., 2022. Beneficial attributes and adverse effects of major plant-based foods. Human Nutrition & Metabolism, vol. 28, pp. 200147. http://doi.org/10.1016/j.hnm.2022.200147.
http://doi.org/10.1016/j.hnm.2022.200147...
). Most secondary metabolites, which act as antinutrients, elicit very harmful biological responses, while some of them are widely applied in nutrition and as pharmacologically active agents; for example, tannins have been reported to have strong antioxidant and bactericidal effects (Pizzi, 2021PIZZI, A., 2021. Tannins medical/pharmacological and related applications: a critical review. Sustainable Chemistry and Pharmacy, vol. 22, pp. 100481. http://doi.org/10.1016/j.scp.2021.100481.
http://doi.org/10.1016/j.scp.2021.100481...
).

In an attempt to minimize the concentration of tannins or be used as a pretreatment to remove part of the tannins (Silva et al., 2021aSILVA, S.R.D., FERREIRA, T.H.B., GIUNCO, A.J. and ARGANDOÑA, E.J.S., 2021a. Nutritional potential and effect of the solvent on the extraction of secondary metabolites from pulp and bark of baru (Dipteryx alata). Journal of Food Measurement and Characterization, vol. 15, no. 4, pp. 3453-3460. http://doi.org/10.1007/s11694-021-00926-6.
http://doi.org/10.1007/s11694-021-00926-...
) and improve the acceptability of the pulp flour and products developed, researchers have reported the combination of methodologies (Ferreira et al., 2020bFERREIRA, T.H.B., DA SILVA, S.R., MUNHOZ, C.L. and ARGANDOÑA, E.J.S., 2020b. Elaboration of biscuits type cookies with pre-treated baru (Dipteryx alata Vog.) pulp flour. Journal of Food Measurement and Characterization, vol. 14, no. 1, pp. 3156-3162. http://doi.org/10.1007/s11694-020-00557-3.
http://doi.org/10.1007/s11694-020-00557-...
). Phytic acid can be inactivated by heat treatment (3 h at 100 °C or 1.5 h at 121 °C) (Feizollahi et al., 2021FEIZOLLAHI, E., MIRMAHDI, R.S., ZOGHI, A., ZIJLSTRA, R.T., ROOPESH, M.S. and VASANTHAN, T., 2021. Review of the beneficial and anti-nutritional qualities of phytic acid, and procedures for removing it from food products. Food Research International, vol. 143, pp. 110284. http://doi.org/10.1016/j.foodres.2021.110284. PMid:33992384.
http://doi.org/10.1016/j.foodres.2021.11...
). Therefore, partial, or total elimination depends on the purpose of the application of the food.

3.9. Applications in human food and ethnopharmacological uses

Whether for health reasons or because of concerns about the environment, eating less or no meat is becoming more popular around the globe (WHO, 2021aWORLD HEALTH ORGANIZATION – WHO, 2021a [viewed 21 November 2022]. New WHO factsheet: how can we tell if plant-based products are healthy? [online]. Geneva: WHO. Available from: https://www.who.int/europe/news/item/22-12-2021-new-who-factsheet-how-can-we-tell-if-plant-based-products-are-healthy
https://www.who.int/europe/news/item/22-...
). Thus, new sources of protein need to be explored. In this sense, baru almonds are rich in protein and amino acids (Siqueira et al., 2015SIQUEIRA, A.P.S., PACHECO, M.T.B. and NAVES, M.M.V., 2015. Nutritional quality and bioactive compounds of partially defatted baru almond flour. Food Science and Technology, vol. 35, no. 1, pp. 127-132. http://doi.org/10.1590/1678-457X.6532.
http://doi.org/10.1590/1678-457X.6532...
; Sousa et al., 2011SOUSA, A.G.O., FERNANDES, D.C., ALVES, A.M., DE FREITAS, J.B. and NAVES, M.M.V., 2011. Nutritional quality and protein value of exotic almonds and nut from the Brazilian savanna compared to peanut. Food Research International, vol. 44, no. 7, pp. 2319-2325. http://doi.org/10.1016/j.foodres.2011.02.013.
http://doi.org/10.1016/j.foodres.2011.02...
; Czeder et al., 2012CZEDER, L.P., FERNANDES, D.C., FREITAS, J.B. and NAVES, M.M., 2012. Baru almonds from different regions of the Brazilian Savanna: implications on physical and nutritional characteristics. Agricultural Sciences, vol. 3, no. 5, pp. 745-754. http://doi.org/10.4236/as.2012.35090.
http://doi.org/10.4236/as.2012.35090...
). This vantage has been explored in the elaboration of functional foods. Flour and defatted flour (Siqueira et al., 2015SIQUEIRA, A.P.S., PACHECO, M.T.B. and NAVES, M.M.V., 2015. Nutritional quality and bioactive compounds of partially defatted baru almond flour. Food Science and Technology, vol. 35, no. 1, pp. 127-132. http://doi.org/10.1590/1678-457X.6532.
http://doi.org/10.1590/1678-457X.6532...
; Reis et al., 2018aREIS, D.R., BRUM, F.B., SOARES, E.J.O., MAGALHÃES, J.R., SILVA, F.S. and PORTO, A.G., 2018a. Drying kinetics of baru flours as function of temperature. Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 22, no. 10, pp. 713-719. http://doi.org/10.1590/1807-1929/agriambi.v22n10p713-719.
http://doi.org/10.1590/1807-1929/agriamb...
; Alves et al., 2021aALVES, N.M.C., SILVA, T.A.A., GALLE, N.B.C., SILVA, I.D.F. and SILVA, M.I.P., 2021a. Drying kinetics and thermodynamic properties of ‘baru’ almond flours. Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 25, no. 1, pp. 30-36. http://doi.org/10.1590/1807-1929/agriambi.v25n1p30-36.
http://doi.org/10.1590/1807-1929/agriamb...
; Arruda-Silva et al., 2022ARRUDA-SILVA, T.A., ALVES, N.M.C., GALLE, N.B.C., SANTOS, S.B. and ANDREATTA, E., 2022. Thermodynamic properties of the water adsorption process in baru flours. Engenharia Agrícola, vol. 42, no. 2, e20200141. http://doi.org/10.1590/1809-4430-eng.agric.v42n2e20200141/2022.
http://doi.org/10.1590/1809-4430-eng.agr...
; Aracava et al., 2022ARACAVA, K.K., CAPELLINI, M.C., GONÇALVES, D., MORE, I.D.S., MARGOTO, C.M. and RODRIGUES, C.E.C., 2022. Valorization of the baru Dipteryx alata Vog. processing chain: technological properties of defatted nut flour and oil solubility in ethanol and isopropanol. Food Chemistry, vol. 383, pp. 132587. http://doi.org/10.1016/j.foodchem.2022.132587. PMid:35247726.
http://doi.org/10.1016/j.foodchem.2022.1...
), concentrates, and protein isolates constitute potential sources of proteins (Guimarães et al., 2012aGUIMARÃES, R.C.A., FAVARO, S.P., SOUZA, A.D.V., SOARES, C.M., NUNES, A.A., OLIVEIRA, L.C.S. and HONER, M.R., 2012a. Thermal properties of defatted meal, concentrate, and protein isolate of baru nuts (Dipteryx alata Vog.). Food Science and Technology, vol. 32, no. 1, pp. 52-55. http://doi.org/10.1590/S0101-20612012005000031.
http://doi.org/10.1590/S0101-20612012005...
; Nunes et al., 2017NUNES, Â.A., FAVARO, S.P., MIRANDA, C.H.B. and NEVES, V.A., 2017. Preparation and characterization of baru (Dipteryx alata Vog) nut protein isolate and comparison of its physico-chemical properties with commercial animal and plant protein isolates. Journal of the Science of Food and Agriculture, vol. 97, no. 1, pp. 151-157. http://doi.org/10.1002/jsfa.7702. PMid:26954302.
http://doi.org/10.1002/jsfa.7702...
).

The process of producing autoclaved partially defatted baru almond flour (autoclaved BAF), which involves removing a portion of the lipids, results in a protein content greater than 50%, a dietary fiber content of 40%, and a phenolic compound content of 70% compared to that of whole almond flour. The autoclaved partially defatted baru almond flour (autoclaved-BAF) results in a protein content greater than 50%, 40% greater dietary fiber, and 70% greater phenolic compound content than whole almond, which in part involves removing a portion of the lipids. In addition, autoclaved BAF is 30% less caloric and has a lower phytate content (Siqueira et al., 2015SIQUEIRA, A.P.S., PACHECO, M.T.B. and NAVES, M.M.V., 2015. Nutritional quality and bioactive compounds of partially defatted baru almond flour. Food Science and Technology, vol. 35, no. 1, pp. 127-132. http://doi.org/10.1590/1678-457X.6532.
http://doi.org/10.1590/1678-457X.6532...
). BAF has been used in the preparation of various nutritious and functional foods, such as cookies (Freitas et al., 2014FREITAS, C.D.J., VALENTE, D.R. and CRUZ, S.P., 2014. Caracterização física, química e sensorial de biscoitos confeccionados com farinha de semente de abóbora (FSA) e farinha de semente de baru (FSB) para celíacos. DEMETRA: Alimentação Nutrição & Saúde, vol. 9, no. 4, pp. 1003-1018. http://doi.org/10.12957/demetra.2014.13301.
http://doi.org/10.12957/demetra.2014.133...
; Pineli et al., 2015aPINELI, L.L.O., CARVALHO, M.V., AGUIAR, L.A., OLIVEIRA, G.T., CELESTINO, S.M.C., BOTELHO, R.B.A. and CHIARELLO, M.D., 2015a. Use of baru Brazilian almond waste from physical extraction of oil to produce flour and cookies. Lebensmittel-Wissenschaft + Technologie, vol. 60, no. 1, pp. 50-55. http://doi.org/10.1016/j.lwt.2014.09.035.
http://doi.org/10.1016/j.lwt.2014.09.035...
; Caetano et al., 2017CAETANO, K.A., CEOTTO, J.M., RIBEIRO, A.P.B., MORAIS, F.P.R., FERRARI, R.A., PACHECO, M.T.B. and CAPITANI, C.D., 2017. Effect of baru Dipteryx alata Vog. addition on the composition and nutritional quality of cookies. Food Science and Technology, vol. 37, no. 2, pp. 239-245. http://doi.org/10.1590/1678-457x.19616.
http://doi.org/10.1590/1678-457x.19616...
) and cakes (Pineli et al., 2015bPINELI, L.L.O., AGUIAR, L.A., OLIVEIRA, G.T., BOTELHO, R.B.A., IBIAPINA, M.F.P., LIMA, H.C. and COSTA, A.M., 2015b. Use of baru Brazilian almond waste from physical extraction of oil to produce gluten free cakes. Plant Foods for Human Nutrition, vol. 70, no. 1, pp. 50-55. http://doi.org/10.1007/s11130-014-0460-7.
http://doi.org/10.1007/s11130-014-0460-7...
; Paglarini et al., 2018PAGLARINI, C.S., QUEIRÓS, M.S., TUYAMA, S.S., MOREIRA, A.C.V., CHANG, Y.K. and STEEL, C.J., 2018. Characterization of baru nut (Dipteryx alata Vog) flour and its application in reduced-fat cupcakes. Journal of Food Science and Technology, vol. 55, no. 1, pp. 164-172. http://doi.org/10.1007/s13197-017-2876-1. PMid:29358807.
http://doi.org/10.1007/s13197-017-2876-1...
). Moreover, when used as a substitute for wheat flour, baru flour can benefit individuals with gluten intolerance (Freitas et al., 2014FREITAS, C.D.J., VALENTE, D.R. and CRUZ, S.P., 2014. Caracterização física, química e sensorial de biscoitos confeccionados com farinha de semente de abóbora (FSA) e farinha de semente de baru (FSB) para celíacos. DEMETRA: Alimentação Nutrição & Saúde, vol. 9, no. 4, pp. 1003-1018. http://doi.org/10.12957/demetra.2014.13301.
http://doi.org/10.12957/demetra.2014.133...
; Silva et al., 2015SILVA, L.M.S.F., MENDES, J.F., SILVA, C.L.M., FRANÇA, W.F.L., ARAÚJO, C.I.A. and VIEIRA, C.R., 2015 [viewed 22 December 2022]. Bolo sem glúten a base de farinha de arroz e farinha de baru. Caderno de Ciências Agrárias [online], vol. 7, no. 2, pp. 23-28. Available from: https://periodicos.ufmg.br/index.php/ccaufmg/article/view/2838
https://periodicos.ufmg.br/index.php/cca...
; Pineli et al., 2015bPINELI, L.L.O., AGUIAR, L.A., OLIVEIRA, G.T., BOTELHO, R.B.A., IBIAPINA, M.F.P., LIMA, H.C. and COSTA, A.M., 2015b. Use of baru Brazilian almond waste from physical extraction of oil to produce gluten free cakes. Plant Foods for Human Nutrition, vol. 70, no. 1, pp. 50-55. http://doi.org/10.1007/s11130-014-0460-7.
http://doi.org/10.1007/s11130-014-0460-7...
).

Protein isolates from BAF presented higher protein content than soybean, casein, and albumin commercial protein isolates and showed high in vitro digestibility. The technological properties, which include water absorption capacity, oil absorption capacity, emulsifying properties, and foamability, indicate the possibility of their use for the development of functional foods (Guimarães et al., 2012bGUIMARÃES, R.C.A., FAVARO, S.P., VIANA, A.C.A., BRAGA NETO, J.A., NEVES, V.A. and HONER, M.R., 2012b. Study of the proteins in the defatted flour and protein concentrate of baru nuts (Dipteryx alata Vog). Food Science and Technology, vol. 32, no. 3, pp. 464-470. http://doi.org/10.1590/S0101-20612012005000065.
http://doi.org/10.1590/S0101-20612012005...
; Nunes et al., 2017NUNES, Â.A., FAVARO, S.P., MIRANDA, C.H.B. and NEVES, V.A., 2017. Preparation and characterization of baru (Dipteryx alata Vog) nut protein isolate and comparison of its physico-chemical properties with commercial animal and plant protein isolates. Journal of the Science of Food and Agriculture, vol. 97, no. 1, pp. 151-157. http://doi.org/10.1002/jsfa.7702. PMid:26954302.
http://doi.org/10.1002/jsfa.7702...
). The BAF was also used to develop a fermented flavoured drink with probiotics that presented nutritional characteristics and good acceptability in sensory tests (Fioravante et al., 2017FIORAVANTE, M.B., HIANE, P.A. and BRAGA NETO, J.A., 2017. Elaboration, sensorial acceptance and characterization of fermented flavored drink based on water-soluble extract of baru almond. Ciência Rural, vol. 47, no. 9, pp. 5-10. http://doi.org/10.1590/0103-8478cr20151646.
http://doi.org/10.1590/0103-8478cr201516...
; Coutinho et al., 2021COUTINHO, G.S.M., RIBEIRO, A.E.C., PRADO, P.M.C., OLIVEIRA, E.R., CARELI-GONDIM, I., OLIVEIRA, A.R., SOARES JÚNIOR, M.S., CALIARI, M. and VILAS BOAS, E.V.B., 2021. Green banana starch enhances physicochemical and sensory quality of baru almond-based fermented product with probiotic bacteria. International Journal of Food Science & Technology, vol. 56, no. 10, pp. 5097-5106. http://doi.org/10.1111/ijfs.15260.
http://doi.org/10.1111/ijfs.15260...
; Fernandes et al., 2021FERNANDES, A.B., MARCOLINO, V.A., SILVA, C., BARÃO, C.E. and PIMENTEL, T.C., 2021. Potentially synbiotic fermented beverages processed with water-soluble extract of baru almond. Food Bioscience, vol. 42, pp. 101200. http://doi.org/10.1016/j.fbio.2021.101200.
http://doi.org/10.1016/j.fbio.2021.10120...
).

Another common approach is the addition of crushed almond to improve the nutritional and functional quality of preparations such as cereal bars (Lima et al., 2010LIMA, J.C.R., FREITAS, J.B., CZEDER, L.P., FERNANDES, D.C. and NAVES, M.M.V., 2010. Qualidade microbiológica, aceitabilidade e valor nutricional de barras de cereais formuladas com polpa e amêndoa de baru. Boletim do Centro de Pesquisa e Processamento de Alimentos, vol. 28, no. 2, pp. 331-343. http://doi.org/10.5380/cep.v28i2.20450.
http://doi.org/10.5380/cep.v28i2.20450...
; Mendes et al., 2013MENDES, N.S.R., GOMES-RUFFI, C.R., LAGE, M.E., BECKER, F.S., MELO, A.A.M., SILVA, F.A. and DAMIANI, C., 2013. Oxidative stability of cereal bars made with fruit peels and baru nuts packaged in different types of packaging. Food Science and Technology, vol. 33, no. 4, pp. 730-736. http://doi.org/10.1590/S0101-20612013000400019.
http://doi.org/10.1590/S0101-20612013000...
; Campidelli et al., 2020aCAMPIDELLI, M.L.L., CARNEIRO, J.D.S., SOUZA, E.C., MAGALHÃES, M.F., NUNES, E.E.C., FARIA, P.B., FRANCO, M. and VILAS BOAS, E.V.B., 2020a. Effects of the drying process on the fatty acid content, phenolic profile, tocopherols and antioxidant activity of baru almonds (Dipteryx alata Vog.). Grasas y Aceites, vol. 71, no. 1, e343. http://doi.org/10.3989/gya.1170182.
http://doi.org/10.3989/gya.1170182...
; Lima et al., 2021aLIMA, D.S., EGEA, M.B., CABASSA, I., ALMEIDA, A.B., SOUSA, T.L., LIMA, T.M., LOSS, R.A., VOLP, A.C.P., VASCONCELOS, L.G., DALL’OGLIO, E.L., HERNANDES, T. and TAKEUCHI, K.P., 2021a. Technological quality and sensory acceptability of nutritive bars produced with Brazil nut and baru almond coproducts. Lebensmittel-Wissenschaft + Technologie, vol. 137, pp. 110467. http://doi.org/10.1016/j.lwt.2020.110467.
http://doi.org/10.1016/j.lwt.2020.110467...
), granola (Souza and Silva, 2015SOUZA, P.L.C. and SILVA, M.R., 2015. Quality of granola prepared with dried caju-do-cerrado (Anacardium othonianum Rizz) and baru almonds (Dipteryx alata Vog). Journal of Food Science and Technology, vol. 52, no. 3, pp. 1712-1717. http://doi.org/10.1007/s13197-013-1134-4. PMid:25745245.
http://doi.org/10.1007/s13197-013-1134-4...
), sweets (Santos et al., 2012SANTOS, G.G., SILVA, M.R., LACERDA, D.B.C.L., MARTINS, D.M.O. and ALMEIDA, R.A., 2012. Aceitabilidade e qualidade físico-química de paçocas elaboradas com amêndoa de baru. Pesquisa Agropecuária Tropical, vol. 42, no. 2, pp. 159-165. http://doi.org/10.1590/S1983-40632012000200003.
http://doi.org/10.1590/S1983-40632012000...
; Pinho et al., 2015PINHO, L., SANDRELY, D., MESQUITA, R., SARMENTO, A.F. and FLÁVIO, E.F., 2015 [viewed 4 February 2023]. Enriquecimento de sorvete com castanha de baru (Dipteryx Alata Vogel) e aceitabilidade pelos consumidores. Revista Unimontes Científica [online], vol. 17, no. 1, pp. 39-49. Available from: https://www.periodicos.unimontes.br/index.php/unicientifica/article/view/1942
https://www.periodicos.unimontes.br/inde...
; Silva et al., 2018SILVA, C.C.F.D., SILVA, G.L.P., SOARES JÚNIOR, M.S., BELÉIA, A.P. and CALIARI, M., 2018. Addition of toasted baru nut (Dypteryx alata Vog.) and extruded rice bran to sugar cane candy (“rapadura”). Food Science and Technology, vol. 38, no. 4, pp. 584-590. http://doi.org/10.1590/fst.37016.
http://doi.org/10.1590/fst.37016...
; Cruz et al., 2019CRUZ, P.N.D., GAMA, L.A., AMÉRICO, M.F. and PERTUZATTI, P.B., 2019. Baru (Dipteryx alata Vogel) almond and dairy desserts with baru regulates gastrointestinal transit in rats. Journal of Food Processing and Preservation, vol. 43, no. 11, pp. 1-8. http://doi.org/10.1111/jfpp.14167.
http://doi.org/10.1111/jfpp.14167...
; Jesus et al., 2023JESUS, E.P.J., DINIZ, L.G.T., ALVES, V., DA SILVA, Y.P., SCHMITZ, A.C., QUAST, L.B., FRANCISCO, C.T.P., TORMEN, L. and BERTAN, L.C., 2023. From nut to Dulce de leche: development of a vegan alternative: physicochemical characterization, microbiological evaluation and sensory analysis. Food and Human, vol. 1, pp. 581-588. http://doi.org/10.1016/j.foohum.2023.06.027.
http://doi.org/10.1016/j.foohum.2023.06....
), and frozen yogurt (Arelhano et al., 2019ARELHANO, L.E., CANDIDO, C.J., GUIMARÃES, R.C.A. and PRATES, M.F.O., 2019. Nutritive, bioactive and sensory characterization of frozen yogurt with added baru nuts. Interações, vol. 20, no. 1, pp. 257-265. http://doi.org/10.20435/inter.v0i0.1648.
http://doi.org/10.20435/inter.v0i0.1648...
). The addition of almond to a dairy dessert preserved the antioxidant capacity of the product (Cruz et al., 2019CRUZ, P.N.D., GAMA, L.A., AMÉRICO, M.F. and PERTUZATTI, P.B., 2019. Baru (Dipteryx alata Vogel) almond and dairy desserts with baru regulates gastrointestinal transit in rats. Journal of Food Processing and Preservation, vol. 43, no. 11, pp. 1-8. http://doi.org/10.1111/jfpp.14167.
http://doi.org/10.1111/jfpp.14167...
).

Considering the high content of unsaturated fatty acids in almonds, baru oil has been extracted by different methods, most of which employ organic solvents (Martins et al., 2013MARTINS, F.S., BORGES, L.L., PAULA, J.R. and CONCEIÇÃO, E.C., 2013. Impact of different extraction methods on the quality of Dipteryx alata extracts. Revista Brasileira de Farmacognosia, vol. 23, no. 3, pp. 521-526. http://doi.org/10.1590/S0102-695X2013005000033.
http://doi.org/10.1590/S0102-695X2013005...
; Fetzer et al., 2018FETZER, D.L., CRUZ, P.N., HAMERSKI, F. and CORAZZA, M.L., 2018. Extraction of baru (Dipteryx alata Vogel) seed oil using compressed solvents technology. The Journal of Supercritical Fluids, vol. 137, pp. 23-33. http://doi.org/10.1016/j.supflu.2018.03.004.
http://doi.org/10.1016/j.supflu.2018.03....
), authorized as adjuvant technologies (Brasil, 2021bBRASIL, 2021b [viewed 2 February 2024]. Resolução da Diretoria Colegiada - RDC nº 466, de 10 de fevereiro de 2021 [online]. Diário Oficial da República Federativa do Brasil, Brasilia, 17 fev. Available from: https://antigo.anvisa.gov.br/documents/10181/5918056/RDC_466_2021_COMP.pdf/9b6e0905-5198-4d53-8ecb-09fd14237bd8
https://antigo.anvisa.gov.br/documents/1...
). Several studies have shown the advantages of the supercritical extraction process (SFE), which is a highly selective method using pressurized fluids as solvents (Santos et al., 2016SANTOS, P.D., AGUIAR, A.C., VIGANÓ, J., BOEING, J.S., VISENTAINER, J.V. and MARTÍNEZ, J., 2016. Supercritical CO2 extraction of cumbaru oil (Dipteryx alata Vogel) assisted by ultrasound: global yield, kinetics and fatty acid composition. The Journal of Supercritical Fluids, vol. 107, pp. 75-83. http://doi.org/10.1016/j.supflu.2015.08.018.
http://doi.org/10.1016/j.supflu.2015.08....
; Fetzer et al., 2018FETZER, D.L., CRUZ, P.N., HAMERSKI, F. and CORAZZA, M.L., 2018. Extraction of baru (Dipteryx alata Vogel) seed oil using compressed solvents technology. The Journal of Supercritical Fluids, vol. 137, pp. 23-33. http://doi.org/10.1016/j.supflu.2018.03.004.
http://doi.org/10.1016/j.supflu.2018.03....
; Chañi-Paucar et al., 2021CHAÑI-PAUCAR, L.O., OSORIO-TOBÓN, J.F., JOHNER, J.C.F. and MEIRELES, M.A.A., 2021. A comparative and economic study of the extraction of oil from baru Dipteryx alata seeds by supercritical CO2 with and without mechanical pressing. Heliyon, vol. 7, no. 1, e05971. http://doi.org/10.1016/j.heliyon.2021.e05971. PMid:33537470.
http://doi.org/10.1016/j.heliyon.2021.e0...
; Peixoto et al., 2022PEIXOTO, V.O.D.S., SILVA, L., CASTELO-BRANCO, V.N. and TORRES, A.G., 2022. Baru (Dipteryx alata Vogel) oil extraction by supercritical-CO2: improved composition by using water as cosolvent. Journal of Oleo Science, vol. 71, no. 2, pp. 201-213. http://doi.org/10.5650/jos.ess21115. PMid:35034941.
http://doi.org/10.5650/jos.ess21115...
). In SFE, temperature, pressure, type of solvent, and flow, among other factors, can be controlled to maximize the total yield of the oil or a specific compound. In addition, the SFE can be combined with other techniques (Santos et al., 2016SANTOS, P.D., AGUIAR, A.C., VIGANÓ, J., BOEING, J.S., VISENTAINER, J.V. and MARTÍNEZ, J., 2016. Supercritical CO2 extraction of cumbaru oil (Dipteryx alata Vogel) assisted by ultrasound: global yield, kinetics and fatty acid composition. The Journal of Supercritical Fluids, vol. 107, pp. 75-83. http://doi.org/10.1016/j.supflu.2015.08.018.
http://doi.org/10.1016/j.supflu.2015.08....
; Chañi-Paucar et al., 2022CHAÑI-PAUCAR, L.O., JOHNER, J.C.F., HATAMI, T. and MEIRELES, M.A.A., 2022. Simultaneous integration of supercritical fluid extraction and mechanical cold pressing for the extraction from baru seed. The Journal of Supercritical Fluids, vol. 183, no. 1, pp. 105553. http://doi.org/10.1016/j.supflu.2022.105553.
http://doi.org/10.1016/j.supflu.2022.105...
). In this sense, ultrasound assisted SFE increased the initial extraction rate for all groups of fatty acids without modifying the fatty acid composition (Santos et al., 2016SANTOS, P.D., AGUIAR, A.C., VIGANÓ, J., BOEING, J.S., VISENTAINER, J.V. and MARTÍNEZ, J., 2016. Supercritical CO2 extraction of cumbaru oil (Dipteryx alata Vogel) assisted by ultrasound: global yield, kinetics and fatty acid composition. The Journal of Supercritical Fluids, vol. 107, pp. 75-83. http://doi.org/10.1016/j.supflu.2015.08.018.
http://doi.org/10.1016/j.supflu.2015.08....
). Compared with the normal SFE, SFE assisted by cold pressing results in a baru oil rich in unsaturated fatty acids and bioactive compounds with a higher yield and lower manufacturing cost (Chañi-Paucar et al., 2021CHAÑI-PAUCAR, L.O., OSORIO-TOBÓN, J.F., JOHNER, J.C.F. and MEIRELES, M.A.A., 2021. A comparative and economic study of the extraction of oil from baru Dipteryx alata seeds by supercritical CO2 with and without mechanical pressing. Heliyon, vol. 7, no. 1, e05971. http://doi.org/10.1016/j.heliyon.2021.e05971. PMid:33537470.
http://doi.org/10.1016/j.heliyon.2021.e0...
). Subsequently, SFE-integrated mechanical cold pressing was as efficient as the Soxhlet method for oil extraction but had the advantage of significantly reducing the extraction pressure used (Chañi-Paucar et al., 2022CHAÑI-PAUCAR, L.O., JOHNER, J.C.F., HATAMI, T. and MEIRELES, M.A.A., 2022. Simultaneous integration of supercritical fluid extraction and mechanical cold pressing for the extraction from baru seed. The Journal of Supercritical Fluids, vol. 183, no. 1, pp. 105553. http://doi.org/10.1016/j.supflu.2022.105553.
http://doi.org/10.1016/j.supflu.2022.105...
).

With increasing market interest in new sources of vegetable oils, ensuring oil quality is essential. In this sense, analysis by 1H and 13C NMR (Nascimento et al., 2021NASCIMENTO, T.A., LOPES, T.I.B., NAZARIO, C.E.D., OLIVEIRA, S.L. and ALCANTARA, G.B., 2021. Vegetable oils: are they true? A point of view from ATR-FTIR, 1H NMR, and regiospecific analysis by 13C NMR. Food Research International, vol. 144, pp. 110362. http://doi.org/10.1016/j.foodres.2021.110362. PMid:34053555.
http://doi.org/10.1016/j.foodres.2021.11...
; Prestes et al., 2007PRESTES, R.A., COLNAGO, L.A., FORATO, L.A., VIZZOTTO, L., NOVOTNY, E.H. and CARRILHO, E., 2007. A rapid and automated low resolution NMR method to analyze oil quality in intact oilseeds. Analytica Chimica Acta, vol. 596, no. 2, pp. 325-329. http://doi.org/10.1016/j.aca.2007.06.022. PMid:17631114.
http://doi.org/10.1016/j.aca.2007.06.022...
) and ATR-FTIR (Nascimento et al., 2021NASCIMENTO, T.A., LOPES, T.I.B., NAZARIO, C.E.D., OLIVEIRA, S.L. and ALCANTARA, G.B., 2021. Vegetable oils: are they true? A point of view from ATR-FTIR, 1H NMR, and regiospecific analysis by 13C NMR. Food Research International, vol. 144, pp. 110362. http://doi.org/10.1016/j.foodres.2021.110362. PMid:34053555.
http://doi.org/10.1016/j.foodres.2021.11...
) spectroscopy can provide information about the chemical composition and adulteration. Considering the feasibility and cost of this methodology, it is interesting that new techniques have been explored to ensure a quality product at an affordable cost for the final consumer.

Fernandes et al. (2020)FERNANDES, D.S., DONADON, J.R., RANGEL, T.F., GUIMARÃES, R.C.A., CAMPOS, R.P., LIMA, L.B. and HIANE, P.A., 2020. Quality of roasted baru almonds stored in different packages. Food Science and Technology, vol. 41, no. 4, pp. 953-960. http://doi.org/10.1590/fst.10720.
http://doi.org/10.1590/fst.10720...
reported that roasted baru almonds maintain the composition of unsaturated fatty acids when packaged in different packages and stored for up to 150 days. Futhermore, after 180 days of storage, the sensory characteristics and chemical composition of baru oil were preserved, and it presented acceptable peroxide and acidity values (Pineli et al., 2015cPINELI, L., OLIVEIRA, G., MENDONÇA, M., BORGO, L., FREIRE, É., CELESTINO, S., CHIARELLO, M. and BOTELHO, R., 2015c. Tracing chemical and sensory characteristics of baru oil during storage under nitrogen. Lebensmittel-Wissenschaft + Technologie, vol. 62, no. 2, pp. 976-982. http://doi.org/10.1016/j.lwt.2015.02.015.
http://doi.org/10.1016/j.lwt.2015.02.015...
). For flour, storage at a temperature between 25 and 35 °C is recommended, according to water and lipid content (Alves et al., 2021bALVES, N.M.C., SILVA, T.A.A., GALLE, N.B.C. and SAIKHONEM, I.D., 2021b. Moisture adsorption isotherms of baru almond flours. Agrária, vol. 16, no. 2, pp. 1-7. http://doi.org/10.5039/agraria.v16i3a8719.
http://doi.org/10.5039/agraria.v16i3a871...
), making it an excellent alternative for the development of foods rich in polyunsaturated fatty acids. Mayonnaise formulated with microencapsulated oil showed good protection against oxidative degradation and high added nutritional value (Rojas et al., 2019ROJAS, V.M., MARCONI, L.F.C.B., GUIMARÃES-INÁCIO, A., LEIMANN, F.V., TANAMATI, A., GOZZO, A.M., FUCHS, R.H.B., BARREIRO, M.F., BARROS, L., FERREIRA, I.C.F.R., TANAMATI, A.A.C. and GONÇALVES, O.H., 2019. Formulation of mayonnaises containing PUFAs by the addition of microencapsulated chia seeds, pumpkin seeds and baru oils. Food Chemistry, vol. 274, pp. 220-227. http://doi.org/10.1016/j.foodchem.2018.09.015.
http://doi.org/10.1016/j.foodchem.2018.0...
).

In addition to functional foods, research has tested the technological potential of almonds and oil for other products, such as lamellar gel phase emulsions for cutaneous application (Moraes et al., 2018MORAES, C., ANJOS, L.V., MARUNO, M., ALONSO, A. and ROCHA-FILHO, P., 2018. Development of lamellar gel phase emulsion containing baru oil (Dipteryx alata Vog.) as a prospective delivery system for cutaneous application. Asian Journal of Pharmaceutical Sciences, vol. 13, no. 2, pp. 183-190. http://doi.org/10.1016/j.ajps.2017.09.003. PMid:32104391.
http://doi.org/10.1016/j.ajps.2017.09.00...
), in the production of bio-oil, biochar (Rambo et al., 2020RAMBO, M.K.D., RAMBO, M.C.D., MELO, P.M. and OLIVEIRA, N.M.L., 2020. Sustainability of biorefinery processes based on baru biomass waste. Journal of the Brazilian Chemical Society, vol. 31, no. 2, pp. 273-279. http://doi.org/10.21577/0103-5053.20190169.
http://doi.org/10.21577/0103-5053.201901...
), or epoxidized oil that can be used as a lubricant (Alarcon et al., 2020ALARCON, R.T., GAGLIERI, C., LAMB, K.J., NORTH, M. and BANNACH, G., 2020. Spectroscopic characterization and thermal behavior of baru nut and macaw palm vegetable oils and their epoxidized derivatives. Industrial Crops and Products, vol. 154, pp. 112585. http://doi.org/10.1016/j.indcrop.2020.112585.
http://doi.org/10.1016/j.indcrop.2020.11...
). Recently, Prando et al. (2023)PRANDO, W.L.M., HOSHINO, T.T., RAISER, A.L., CAVALETTI, J.C.S., RIBEIRO, E.B., COTRIM, A.C.M. and VALLADÃO, D.M.S., 2023. The potential antioxidant activity of incorporating bacaba (Oenocarpus bacaba Mart.) extract into a nanoemulsion system with baru oil. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 83, e276545. http://doi.org/10.1590/1519-6984.276545.
http://doi.org/10.1590/1519-6984.276545...
developed a nanoemulsified system from baru oil, enhancing the antioxidant activity of the plant extract of Oenocarpus bacaba Mart.

Baru pulp is consumed less than the whole almonds (Silva et al., 2021cSILVA, S.R., FERREIRA, T.H.B., SOUZA, C.J.F. and SANJINEZ-ARGANDOÑA, E.J., 2021c. Dipteryx alata Vog. In: F.F. LIMA, C.H. LESCANO and I.P. OLIVEIRA, eds. Fruits of the Brazilian Cerrado: composition and functional benefits. 1st ed. Cham: Springer, pp. 99-113. http://doi.org/10.1007/978-3-030-62949-6_6.
http://doi.org/10.1007/978-3-030-62949-6...
). Normally, the peel and pulp are considered byproducts and are discarded during almond extraction (Alves-Santos et al., 2023ALVES-SANTOS, A.M., SAMPAIO, K.B., LIMA, M.S., COELHO, A.S.G., SOUZA, E.L. and NAVES, M.M.V., 2023. Chemical composition and prebiotic activity of baru Dipteryx alata Vog. pulp on probiotic strains and human colonic microbiota. Food Research International, vol. 164, pp. 112366. http://doi.org/10.1016/j.foodres.2022.112366. PMid:36737953.
http://doi.org/10.1016/j.foodres.2022.11...
). The pulp can be consumed in natura. It presents a variation in texture, from farinaceous to pasty, and the taste can be sweet to bitter (Sano et al., 2006SANO, S.M., BRITO, M.A. and RIBEIRO, J.F., 2006 [viewed 20 January 2023]. Dipteryx alata baru. In: R.F. VIEIRA, T.S.A. COSTA, D.B. SILVA, F.R. FERREIRA and S.M. SANO, eds. Frutas nativas da região centro-oeste do Brasil [online]. Brasília: Embrapa, pp. 76-94. Available from: http://www.agabrasil.org.br/_Dinamicos/livro_frutas_nativas_Embrapa.pdf/
http://www.agabrasil.org.br/_Dinamicos/l...
). A high content of tannins can give it an astringent and bitter taste and thus reduce the palatability and acceptability of the pulp for consumption (Ferreira et al., 2020bFERREIRA, T.H.B., DA SILVA, S.R., MUNHOZ, C.L. and ARGANDOÑA, E.J.S., 2020b. Elaboration of biscuits type cookies with pre-treated baru (Dipteryx alata Vog.) pulp flour. Journal of Food Measurement and Characterization, vol. 14, no. 1, pp. 3156-3162. http://doi.org/10.1007/s11694-020-00557-3.
http://doi.org/10.1007/s11694-020-00557-...
).

With the increased interest in foods that are beneficial to human health, the use of baru pulp for the production of flour (Resende and Franca, 2019RESENDE, L.M. and FRANCA, A.S., 2019. Flours based on exotic fruits and their processing residues-features and potential applications to health and disease prevention. In: V.R. PREEDY and R.R. WATSON, eds. Flour breads and their fortification in health and disease. 2nd ed. London: Academic Press, pp. 387-401. http://doi.org/10.1016/B978-0-12-814639-2.00030-7.
http://doi.org/10.1016/B978-0-12-814639-...
; Oliveira et al., 2018OLIVEIRA, P.M.D., OLIVEIRA, D.E.C.D., RESENDE, O. and SILVA, D.V., 2018. Study of the drying of mesocarp of baru Dipteryx alata Vogel fruits. Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 22, no. 12, pp. 872-877. http://doi.org/10.1590/1807-1929/agriambi.v22n12p872-877.
http://doi.org/10.1590/1807-1929/agriamb...
) and the development of functional foods such as cookies (Viana et al., 2023VIANA, H.N.A.C., SGANZERLA, W.G., CASTRO, L.E.N. and VEECK, A.P.L., 2023. Characterization of baru (Dipteryx alata Vog.) and application of its agro-industrial by-product in the formulation of cookies. Journal of Agriculture and Food Research, vol. 12, pp. 100577. http://doi.org/10.1016/j.jafr.2023.100577.
http://doi.org/10.1016/j.jafr.2023.10057...
; Ferreira et al., 2020bFERREIRA, T.H.B., DA SILVA, S.R., MUNHOZ, C.L. and ARGANDOÑA, E.J.S., 2020b. Elaboration of biscuits type cookies with pre-treated baru (Dipteryx alata Vog.) pulp flour. Journal of Food Measurement and Characterization, vol. 14, no. 1, pp. 3156-3162. http://doi.org/10.1007/s11694-020-00557-3.
http://doi.org/10.1007/s11694-020-00557-...
), bread (Rocha and Cardoso Santiago, 2009ROCHA, L.S. and CARDOSO SANTIAGO, R.A.C., 2009. Implicações nutricionais e sensoriais da polpa e casca de baru (Dipteryx alata Vog.) na elaboração de pães. Food Science and Technology, vol. 29, no. 4, pp. 820-825. http://doi.org/10.1590/S0101-20612009000400019.
http://doi.org/10.1590/S0101-20612009000...
), bars (Lima et al., 2010LIMA, J.C.R., FREITAS, J.B., CZEDER, L.P., FERNANDES, D.C. and NAVES, M.M.V., 2010. Qualidade microbiológica, aceitabilidade e valor nutricional de barras de cereais formuladas com polpa e amêndoa de baru. Boletim do Centro de Pesquisa e Processamento de Alimentos, vol. 28, no. 2, pp. 331-343. http://doi.org/10.5380/cep.v28i2.20450.
http://doi.org/10.5380/cep.v28i2.20450...
), cupcakes (Ortolan et al., 2016ORTOLAN, A.V., EING, K.K.C., SANTOS, M.M.R., CANDIDO, C.J., SANTOS, E.F. and NOVELLO, D., 2016. Adição de farinha de baru em cupcakes: caracterização físico-química e sensorial entre crianças. Mundo da Saúde, vol. 40, no. 2, pp. 213-220. http://doi.org/10.15343/0104-7809.20164002.
http://doi.org/10.15343/0104-7809.201640...
), and fermented beverages (Silva et al., 2021bSILVA, J.S., FERREIRA, N.B.S., ASQUIERI, E.R., DAMIANI, C. and ASQUIERI, E.M.A.R., 2021b. Chemical monitoring of baru (Dipteryx alata Vog.) pulp fermented beverage. Food Science and Technology, vol. 41, suppl. 1, pp. 155-162. http://doi.org/10.1590/fst.14420.
http://doi.org/10.1590/fst.14420...
) has increased. When used for the production of cake, it becomes dark, resembling chocolate (Sano et al., 2016SANO, S.M., BRITO, M.A. and RIBEIRO, J.F., 2016 [viewed 20 January 2023]. Dipteryx alata baru. In: R.F. VIEIRA, J. CAMILLO and L. CORADIN, eds. Espécies nativas da flora brasileira de valor econômico atual ou potencial: plantas para o futuro: região Centro-Oeste [online]. Brasília: Ministério do Meio Ambiente, pp. 203-210. Available from: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1073295/especies-nativas-da-flora-brasileira-de-valor-economico-atual-ou-potencial-plantas-para-o-futuro-regiao-centro-oeste/
https://www.embrapa.br/busca-de-publicac...
).

Studies have sought to establish the thermodynamic properties of pulp. Araujo et al. (2013)ARAUJO, W.O., SANTOS, D.M. and ASCHERI, D.P.R., 2013. Otimização do processo de extração de açúcares redutores da polpa do baru. Revista Agrotecnologia, vol. 4, no. 2, pp. 118-133. http://doi.org/10.12971/2179-5959/agrotecnologia.v4n2p118-133.
http://doi.org/10.12971/2179-5959/agrote...
observed that sugar extraction was optimized at 35 °C for 90 minutes; Resende et al. (2017RESENDE, O., OLIVEIRA, D.E.C., COSTA, L.M. and FERREIRA-JÚNIOR, W.N., 2017. Thermodynamic properties of baru fruits (Dipteryx alata Vogel). Engenharia Agrícola, vol. 37, no. 4, pp. 739-749. http://doi.org/10.1590/1809-4430-eng.agric.v37n4p739-749/2017.
http://doi.org/10.1590/1809-4430-eng.agr...
, 2018)RESENDE, O., OLIVEIRA, D.E.C., COSTA, L.M. and FERREIRA-JÚNIOR, W.N., 2018. Drying kinetics of baru fruits (Dipteryx alata Vogel). Engenharia Agrícola, vol. 38, no. 1, pp. 103-109. http://doi.org/10.1590/1809-4430-eng.agric.v38n1p103-109/2018.
http://doi.org/10.1590/1809-4430-eng.agr...
established the best drying conditions (266.3 hours for a temperature of 40 °C and 22.8 hours for a temperature of 100 °C); and Ferreira et al. (2020a)FERREIRA, T.H.B., FLORIZO, G.K.M. and ARGONDOÑA, E.J.S., 2020a. Shelf life of cookies made from baru Dipteryx alata Vog. pulp under different storage conditions. Journal of Food Processing and Preservation, vol. 44, no. 89, e14702. http://doi.org/10.1111/jfpp.14702.
http://doi.org/10.1111/jfpp.14702...
revealed that drying extends the storage time (80 days without microorganism growth) of products developed from it, increases their technological application, and reduces waste.

Furthermore, different parts of baru are used as medicine by Brazilian communities (Ribeiro et al., 2017RIBEIRO, R.V., BIESKI, I.G.C., BALOGUN, S.O. and MARTINS, D.T., 2017. Ethnobotanical study of medicinal plants used by ribeirinhos in the North Araguaia microregion, Mato Grosso, Brazil. Journal of Ethnopharmacology, vol. 205, pp. 69-102. http://doi.org/10.1016/j.jep.2017.04.023. PMid:28476677.
http://doi.org/10.1016/j.jep.2017.04.023...
; Paim et al., 2023PAIM, R., FERREIRA, P.L.G., SOARES, D.M., ROCHA, T.F.G., RIBEIRO, A.L., BARROS, N., SANTOS, F.C., FERREIRA, H.D., GOMES-KLEIN, V.L., SOTO-BLANCO, B., OLIVEIRA-FILHO, J.P., CUNHA, P.H.J., RIET-CORREA, F., PFISTER, J., COOK, D., FIORAVANTI, M.C.S. and BOTELHO, A.F.M., 2023. Toxic plants from the perspective of a “Quilombola” community in the Cerrado region of Brazil. Toxicon, vol. 224, pp. 107028. http://doi.org/10.1016/j.toxicon.2023.107028.
http://doi.org/10.1016/j.toxicon.2023.10...
). Ethnopharmacological studies have reported the use of different baru parts, such as almond, pulp, leaves, and bark, to treat several illnesses. However, we observed that some ethnopharmacological studies do not specify the part of the plant used and/or the preparation method for that specific disease. Table 5 shows the medicinal uses of this species in Brazil.

Table 5
Ethnopharmacological uses of baru.

3.10. Secondary metabolites of almond, pulp, and bark

Phytochemical screenings of the almond and pulp revealed the presence of total phenolic compounds (TPC) (Lemos et al., 2012LEMOS, M.R.B., SIQUEIRA, E.M.A., ARRUDA, S.F. and ZAMBIAZI, R.C., 2012. The effect of roasting on the phenolic compounds and antioxidant potential of baru nuts [Dipteryx alata Vog.]. Food Research International, vol. 48, no. 2, pp. 592-597. http://doi.org/10.1016/j.foodres.2012.05.027.
http://doi.org/10.1016/j.foodres.2012.05...
; Siqueira et al., 2012SIQUEIRA, E.M.A., MARIN, A.M.F., CUNHA, M.S.B., FUSTINONI, A.M., SANTANA, L.P. and ARRUDA, S.F., 2012. Consumption of baru seeds [Dipteryx alata Vog.], a Brazilian savanna nut, prevents iron-induced oxidative stress in rats. Food Research International, vol. 45, no. 1, pp. 427-433. http://doi.org/10.1016/j.foodres.2011.11.005.
http://doi.org/10.1016/j.foodres.2011.11...
, 2013SIQUEIRA, E.M.A., ROSA, F.R., FUSTINONI, A.M., DE SANT’ANA, L.P. and ARRUDA, S.F., 2013. Brazilian savanna fruits contain higher bioactive compounds content and higher antioxidant activity relative to the conventional red delicious apple. PLoS One, vol. 8, no. 8, e72826. http://doi.org/10.1371/journal.pone.0072826. PMid:23991156.
http://doi.org/10.1371/journal.pone.0072...
; Santos et al., 2016SANTOS, P.D., AGUIAR, A.C., VIGANÓ, J., BOEING, J.S., VISENTAINER, J.V. and MARTÍNEZ, J., 2016. Supercritical CO2 extraction of cumbaru oil (Dipteryx alata Vogel) assisted by ultrasound: global yield, kinetics and fatty acid composition. The Journal of Supercritical Fluids, vol. 107, pp. 75-83. http://doi.org/10.1016/j.supflu.2015.08.018.
http://doi.org/10.1016/j.supflu.2015.08....
; Santiago et al., 2018SANTIAGO, G.L., OLIVEIRA, I.G., HORST, M.A., NAVES, M.M.V. and SILVA, M.R., 2018. Peel and pulp of baru (Dipteryx alata Vog.) provide high fiber, phenolic content and antioxidant capacity. Food Science and Technology, vol. 38, no. 2, pp. 244-249. http://doi.org/10.1590/1678-457x.36416.
http://doi.org/10.1590/1678-457x.36416...
; Almeida et al., 2019ALMEIDA, A.B.D., SILVA, A.K.C., LODETE, A.R., EGEA, M.B., LIMA, M.C.P.M. and SILVA, F.G., 2019. Assessment of chemical and bioactive properties of native fruits from the Brazilian Cerrado. Nutrition & Food Science, vol. 49, no. 3, pp. 381-392. http://doi.org/10.1108/NFS-07-2018-0199.
http://doi.org/10.1108/NFS-07-2018-0199...
; Silva et al., 2019SILVA, D.V., OLIVEIRA, D.E.C., RESENDE, O., SILVA, M.A.P. and BARCELOS, K.R., 2019. Nutritional quality of the epicarp and mesocarp flours of baru fruits submitted to drying. Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 23, no. 1, pp. 65-70. http://doi.org/10.1590/1807-1929/agriambi.v23n1p65-70.
http://doi.org/10.1590/1807-1929/agriamb...
; Oliveira-Alves et al., 2020OLIVEIRA-ALVES, S.C., PEREIRA, R.S., PEREIRA, A.B., FERREIRA, A., MECHA, E., SILVA, A.B., SERRA, A.T. and BRONZE, M.R., 2020. Identification of functional compounds in baru (Dipteryx alata Vog.) nuts: nutritional value, volatile and phenolic composition, antioxidant activity and antiproliferative effect. Food Research International, vol. 131, pp. 109026. http://doi.org/10.1016/j.foodres.2020.109026. PMid:32247467.
http://doi.org/10.1016/j.foodres.2020.10...
; Campidelli et al., 2020aCAMPIDELLI, M.L.L., CARNEIRO, J.D.S., SOUZA, E.C., MAGALHÃES, M.F., NUNES, E.E.C., FARIA, P.B., FRANCO, M. and VILAS BOAS, E.V.B., 2020a. Effects of the drying process on the fatty acid content, phenolic profile, tocopherols and antioxidant activity of baru almonds (Dipteryx alata Vog.). Grasas y Aceites, vol. 71, no. 1, e343. http://doi.org/10.3989/gya.1170182.
http://doi.org/10.3989/gya.1170182...
; Leite et al., 2020LEITE, N.R., ARAÚJO, L.C.A., ROCHA, P.D.S., AGARRAYUA, D.A., ÁVILA, D.S., CAROLLO, C.A., SILVA, D.B., ESTEVINHO, L.M., SOUZA, K.P. and SANTOS, E.L., 2020. Baru pulp (Dipteryx alata Vogel): fruit from the Brazilian savanna protects against oxidative stress and increases the life expectancy of Caenorhabditis elegans via SOD-3 and DAF-16. Biomolecules, vol. 10, no. 8, pp. 1-22. http://doi.org/10.3390/biom10081106.
http://doi.org/10.3390/biom10081106...
; Barizão et al., 2021BARIZÃO, E.O., BOEING, J.S., ROTTA, E.M., VOLPATO, H., NAKAMURA, C.V., MALDANER, L. and VISENTAINER, J.V., 2021. Phenolic composition of Dipteryx alata Vogel pulp + peel and its antioxidant and cytotoxic properties. Journal of the Brazilian Chemical Society, vol. 32, no. 12, pp. 2206-2214. http://doi.org/10.21577/0103-5053.20210112.
http://doi.org/10.21577/0103-5053.202101...
; Barros et al., 2021BARROS, H.E.A.D., ALEXANDRE, A.C.S., CAMPOLINA, G.A., ALVARENGA, G.F., SILVA, L.M.S.F., NATARELLI, C.V.L., CARVALHO, E.E.N. and VILAS BOAS, E.V.B., 2021. Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysis. Lebensmittel-Wissenschaft + Technologie, vol. 152, pp. 112372. http://doi.org/10.1016/j.lwt.2021.112372.
http://doi.org/10.1016/j.lwt.2021.112372...
; Silva et al., 2021aSILVA, S.R.D., FERREIRA, T.H.B., GIUNCO, A.J. and ARGANDOÑA, E.J.S., 2021a. Nutritional potential and effect of the solvent on the extraction of secondary metabolites from pulp and bark of baru (Dipteryx alata). Journal of Food Measurement and Characterization, vol. 15, no. 4, pp. 3453-3460. http://doi.org/10.1007/s11694-021-00926-6.
http://doi.org/10.1007/s11694-021-00926-...
; Alves-Santos et al., 2023ALVES-SANTOS, A.M., SAMPAIO, K.B., LIMA, M.S., COELHO, A.S.G., SOUZA, E.L. and NAVES, M.M.V., 2023. Chemical composition and prebiotic activity of baru Dipteryx alata Vog. pulp on probiotic strains and human colonic microbiota. Food Research International, vol. 164, pp. 112366. http://doi.org/10.1016/j.foodres.2022.112366. PMid:36737953.
http://doi.org/10.1016/j.foodres.2022.11...
; Bidô et al., 2023BIDÔ, R.C.A., PEREIRA, D.E., ALVES, M.C., DUTRA, L.M.G., COSTA, A.C.S., VIERA, V.B., ARAÚJO, W.J., LEITE, E.L., OLIVEIRA, C.J.B., ALVES, A.F., FREITAS, J.C.R., MARTINS, A.C.S., CIRINO, J.A. and SOARES, J.K.B., 2023. Mix of almond baru (Dipteryx alata Vog.) and goat whey modulated intestinal microbiota, improved memory and induced anxiolytic like behavior in aged rats. Journal of Psychiatric Research, vol. 164, pp. 98-117. http://doi.org/10.1016/j.jpsychires.2023.05.046. PMid:37331263.
http://doi.org/10.1016/j.jpsychires.2023...
) and carotenoids (Fiorini et al., 2017FIORINI, A.M., BARBALHO, S.M., GUIGUER, É.L., OSHIIWA, M., MENDES, C.G., VIEITES, R.L., CHIES, A.B. and OLIVEIRA, P.B., 2017. Dipteryx alata Vogel may improve lipid profile and atherogenic indices in wistar rats dipteryx alata and atherogenic indices. Journal of Medicinal Food, vol. 20, no. 11, pp. 1121-1126. http://doi.org/10.1089/jmf.2017.0052. PMid:29072970.
http://doi.org/10.1089/jmf.2017.0052...
; Almeida et al., 2019ALMEIDA, A.B.D., SILVA, A.K.C., LODETE, A.R., EGEA, M.B., LIMA, M.C.P.M. and SILVA, F.G., 2019. Assessment of chemical and bioactive properties of native fruits from the Brazilian Cerrado. Nutrition & Food Science, vol. 49, no. 3, pp. 381-392. http://doi.org/10.1108/NFS-07-2018-0199.
http://doi.org/10.1108/NFS-07-2018-0199...
; Silva et al., 2019SILVA, D.V., OLIVEIRA, D.E.C., RESENDE, O., SILVA, M.A.P. and BARCELOS, K.R., 2019. Nutritional quality of the epicarp and mesocarp flours of baru fruits submitted to drying. Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 23, no. 1, pp. 65-70. http://doi.org/10.1590/1807-1929/agriambi.v23n1p65-70.
http://doi.org/10.1590/1807-1929/agriamb...
; Gonçalves et al., and Filbido, 2020).

The reported TPC values range from 3.1 to 1,306.34 mg GAE g-1 for almond (Siqueira et al., 2012SIQUEIRA, E.M.A., MARIN, A.M.F., CUNHA, M.S.B., FUSTINONI, A.M., SANTANA, L.P. and ARRUDA, S.F., 2012. Consumption of baru seeds [Dipteryx alata Vog.], a Brazilian savanna nut, prevents iron-induced oxidative stress in rats. Food Research International, vol. 45, no. 1, pp. 427-433. http://doi.org/10.1016/j.foodres.2011.11.005.
http://doi.org/10.1016/j.foodres.2011.11...
; Campidelli et al., 2020aCAMPIDELLI, M.L.L., CARNEIRO, J.D.S., SOUZA, E.C., MAGALHÃES, M.F., NUNES, E.E.C., FARIA, P.B., FRANCO, M. and VILAS BOAS, E.V.B., 2020a. Effects of the drying process on the fatty acid content, phenolic profile, tocopherols and antioxidant activity of baru almonds (Dipteryx alata Vog.). Grasas y Aceites, vol. 71, no. 1, e343. http://doi.org/10.3989/gya.1170182.
http://doi.org/10.3989/gya.1170182...
) and from 186 to 477 mg GAE g-1 for pulp (Santiago et al., 2018SANTIAGO, G.L., OLIVEIRA, I.G., HORST, M.A., NAVES, M.M.V. and SILVA, M.R., 2018. Peel and pulp of baru (Dipteryx alata Vog.) provide high fiber, phenolic content and antioxidant capacity. Food Science and Technology, vol. 38, no. 2, pp. 244-249. http://doi.org/10.1590/1678-457x.36416.
http://doi.org/10.1590/1678-457x.36416...
; Silva et al., 2019SILVA, D.V., OLIVEIRA, D.E.C., RESENDE, O., SILVA, M.A.P. and BARCELOS, K.R., 2019. Nutritional quality of the epicarp and mesocarp flours of baru fruits submitted to drying. Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 23, no. 1, pp. 65-70. http://doi.org/10.1590/1807-1929/agriambi.v23n1p65-70.
http://doi.org/10.1590/1807-1929/agriamb...
). Factors such as the solvent used and heat treatment can influence the TPC of almond and pulp. Silva et al. (2021a)SILVA, S.R.D., FERREIRA, T.H.B., GIUNCO, A.J. and ARGANDOÑA, E.J.S., 2021a. Nutritional potential and effect of the solvent on the extraction of secondary metabolites from pulp and bark of baru (Dipteryx alata). Journal of Food Measurement and Characterization, vol. 15, no. 4, pp. 3453-3460. http://doi.org/10.1007/s11694-021-00926-6.
http://doi.org/10.1007/s11694-021-00926-...
reported the effect of different solvents on the extraction of phenolic compounds from baru pulp flour (BFF), with acetone being the least efficient (6.60 ± 0.15 mg GAE g-1) and sodium hydroxide 3%/sodium sulfite 3% being the most efficient (360.50 ± 0.69 mg GAE g-1).

Heat treatment at 105 °C for 30 min did not seem to affect the TPC (Campidelli et al., 2020aCAMPIDELLI, M.L.L., CARNEIRO, J.D.S., SOUZA, E.C., MAGALHÃES, M.F., NUNES, E.E.C., FARIA, P.B., FRANCO, M. and VILAS BOAS, E.V.B., 2020a. Effects of the drying process on the fatty acid content, phenolic profile, tocopherols and antioxidant activity of baru almonds (Dipteryx alata Vog.). Grasas y Aceites, vol. 71, no. 1, e343. http://doi.org/10.3989/gya.1170182.
http://doi.org/10.3989/gya.1170182...
), but heat treatment at 140 °C for 30 min reduced the TPC by 34% compared to that of raw almond (Santiago et al., 2018SANTIAGO, G.L., OLIVEIRA, I.G., HORST, M.A., NAVES, M.M.V. and SILVA, M.R., 2018. Peel and pulp of baru (Dipteryx alata Vog.) provide high fiber, phenolic content and antioxidant capacity. Food Science and Technology, vol. 38, no. 2, pp. 244-249. http://doi.org/10.1590/1678-457x.36416.
http://doi.org/10.1590/1678-457x.36416...
). On the other hand, BFF had a 2.3 times greater TPC when heated to 100 °C (Silva et al., 2019SILVA, D.V., OLIVEIRA, D.E.C., RESENDE, O., SILVA, M.A.P. and BARCELOS, K.R., 2019. Nutritional quality of the epicarp and mesocarp flours of baru fruits submitted to drying. Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 23, no. 1, pp. 65-70. http://doi.org/10.1590/1807-1929/agriambi.v23n1p65-70.
http://doi.org/10.1590/1807-1929/agriamb...
). In this sense, the baru almond and the pulp are a great source of phenolic compounds, and knowing the influencing factors, their extraction can be optimized according to the application of interest.

High-performance liquid chromatography (HPLC) revealed more than thirty phenolic compounds, especially phenolic acids, and flavonoids in extracts from almond (Lemos et al., 2012LEMOS, M.R.B., SIQUEIRA, E.M.A., ARRUDA, S.F. and ZAMBIAZI, R.C., 2012. The effect of roasting on the phenolic compounds and antioxidant potential of baru nuts [Dipteryx alata Vog.]. Food Research International, vol. 48, no. 2, pp. 592-597. http://doi.org/10.1016/j.foodres.2012.05.027.
http://doi.org/10.1016/j.foodres.2012.05...
; Oliveira-Alves et al., 2020OLIVEIRA-ALVES, S.C., PEREIRA, R.S., PEREIRA, A.B., FERREIRA, A., MECHA, E., SILVA, A.B., SERRA, A.T. and BRONZE, M.R., 2020. Identification of functional compounds in baru (Dipteryx alata Vog.) nuts: nutritional value, volatile and phenolic composition, antioxidant activity and antiproliferative effect. Food Research International, vol. 131, pp. 109026. http://doi.org/10.1016/j.foodres.2020.109026. PMid:32247467.
http://doi.org/10.1016/j.foodres.2020.10...
), pulp or pulp+peel (Leite et al., 2020LEITE, N.R., ARAÚJO, L.C.A., ROCHA, P.D.S., AGARRAYUA, D.A., ÁVILA, D.S., CAROLLO, C.A., SILVA, D.B., ESTEVINHO, L.M., SOUZA, K.P. and SANTOS, E.L., 2020. Baru pulp (Dipteryx alata Vogel): fruit from the Brazilian savanna protects against oxidative stress and increases the life expectancy of Caenorhabditis elegans via SOD-3 and DAF-16. Biomolecules, vol. 10, no. 8, pp. 1-22. http://doi.org/10.3390/biom10081106.
http://doi.org/10.3390/biom10081106...
; Barizão et al., 2021BARIZÃO, E.O., BOEING, J.S., ROTTA, E.M., VOLPATO, H., NAKAMURA, C.V., MALDANER, L. and VISENTAINER, J.V., 2021. Phenolic composition of Dipteryx alata Vogel pulp + peel and its antioxidant and cytotoxic properties. Journal of the Brazilian Chemical Society, vol. 32, no. 12, pp. 2206-2214. http://doi.org/10.21577/0103-5053.20210112.
http://doi.org/10.21577/0103-5053.202101...
), and bark (Ferraz et al., 2014FERRAZ, M.C., YOSHIDA, E.H., TAVARES, R.V.S., COGO, J.C., CINTRA, A.C.O., DAL BELO, C.A., FRANCO, L.M., SANTOS, M.G., RESENDE, F.A., VARANDA, E.A., HYSLOP, S., PUEBLA, P., FELICIANO, A.S. and OSHIMA-FRANCO, Y., 2014. An isoflavone from Dipteryx alata Vogel is active against the in vitro neuromuscular paralysis of Bothrops jararacussu snake venom and bothropstoxin I, and prevents venom-induced myonecrosis. Molecules, vol. 19, no. 5, pp. 5790-5805. http://doi.org/10.3390/molecules19055790. PMid:24806579.
http://doi.org/10.3390/molecules19055790...
; Nazato, et al., 2010NAZATO, V.S., RUBEM-MAURO, L., VIEIRA, N.A.G., ROCHA-JUNIOR, D.S., SILVA, M.G., LOPES, P.S., DAL-BELO, C.A., COGO, J.C., SANTOS, M.G., CRUZ-HÖFLING, M.A. and OSHIMA-FRANCO, Y., 2010. In vitro antiophidian properties of Dipteryx alata Vogel bark extracts. Molecules, vol. 15, no. 9, pp. 5956-5970. http://doi.org/10.3390/molecules15095956. PMid:20877202.
http://doi.org/10.3390/molecules15095956...
; Puebla et al., 2010PUEBLA, P., OSHIMA-FRANCO, Y., FRANCO, L.M., SANTOS, M.G., SILVA, R.V., RUBEM-MAURO, L. and FELICIANO, A.S., 2010. Chemical constituents of the bark of Dipteryx alata Vogel, an active species against Bothrops jararacussu venom. Molecules, vol. 15, no. 11, pp. 8193-8204. http://doi.org/10.3390/molecules15118193. PMid:21076386.
http://doi.org/10.3390/molecules15118193...
). The compounds identified from the different parts of the baru are described in Table 6 and Figures 4 to 9.

Table 6
Phytochemical composition of baru.
Figure 4
Chemical structures of compounds found in different parts of the baru - part 1.
Figure 5
Chemical structures of compounds found in different parts of the baru - part 2.
Figure 6
Chemical structures of compounds found in different parts of the baru - part 3.
Figure 7
Chemical structures of compounds found in different parts of the baru - part 4.
Figure 8
Chemical structures of compounds found in different parts of the baru - part 5.
Figure 9
Chemical structures of compounds found in different parts of the baru - part 6.

Phenolic compounds have the ability to eliminate and stabilize reactive species, chelate, or complex with metals (El-Megharbel and Hamza, 2022EL-MEGHARBEL, S.M. and HAMZA, R.Z., 2022. Synthesis, spectroscopic characterizations, conductometric titration and investigation of potent antioxidant activities of gallic acid complexes with Ca (II), Cu (II), Zn(III), Cr(III) and Se (IV) metal ions. Journal of Molecular Liquids, vol. 358, pp. 119196. http://doi.org/10.1016/j.molliq.2022.119196.
http://doi.org/10.1016/j.molliq.2022.119...
; Boudou et al., 2019BOUDOU, F., BENDAHMANE-SALMI, M., BENABDERRAHMANE, M., BELAKREDAR, A., BERROUKCHE, A. and ZAOUI, O., 2019. Assessment of a new approach of metal ions chelation by Gallic acid. Journal of Desalination and Water Purification, vol. 15, pp. 3-6.) and inhibit peroxidation reactions (Shokry et al., 2022SHOKRY, A.A., EL-SHIEKH, R.A., KAMEL, G., BAKR, A.F., and RAMADAN, A., 2022. Bioactive phenolics fraction of Hedera helix L. (Common Ivy Leaf) standardized extract ameliorates LPS-induced acute lung injury in the mouse model through the inhibition of proinflammatory cytokines and oxidative stress. Heliyon, vol. 8, no. 5, pp. e09477. https://doi.org/10.1016/j.heliyon.2022.e09477.
https://doi.org/10.1016/j.heliyon.2022.e...
). Furthermore, some phenolics have been described in the literature for their antioxidant (El-Megharbel and Hamza, 2022EL-MEGHARBEL, S.M. and HAMZA, R.Z., 2022. Synthesis, spectroscopic characterizations, conductometric titration and investigation of potent antioxidant activities of gallic acid complexes with Ca (II), Cu (II), Zn(III), Cr(III) and Se (IV) metal ions. Journal of Molecular Liquids, vol. 358, pp. 119196. http://doi.org/10.1016/j.molliq.2022.119196.
http://doi.org/10.1016/j.molliq.2022.119...
), antimicrobial (Sorrentino et al., 2018SORRENTINO, E., SUCCI, M., TIPALDI, L., PANNELLA, G., MAIURO, L., STURCHIO, M., COPPOLA, R. and TREMONTE, P., 2018. Antimicrobial activity of gallic acid against food-related Pseudomonas strains and its use as biocontrol tool to improve the shelf life of fresh black truffles. International Journal of Food Microbiology, vol. 266, pp. 183-189. http://doi.org/10.1016/j.ijfoodmicro.2017.11.026. PMid:29227905.
http://doi.org/10.1016/j.ijfoodmicro.201...
), and anti-inflammatory effects (Lee et al., 2020LEE, D., YU, J.S., HUANG, P., QADER, M., MANAVALAN, A., WU, X., KIM, J., PANG, C., CAO, S., KANG, K.S. and KIM, K.H., 2020. Identification of anti-inflammatory compounds from Hawaiian Noni (Morinda citrifolia L.) fruit juice. Molecules, vol. 25, no. 21, pp. 1-12. http://doi.org/10.3390/molecules25214968. PMid:33121016.
http://doi.org/10.3390/molecules25214968...
) and for their ability to control body weight gain (Santamarina et al., 2019aSANTAMARINA, A.B., JAMAR, G., MENNITTI, L.V., CARDOSO, C.M., DE ROSSO, V.V., OYAMA, L.M. and PISANI, L.P., 2019a. Polyphenols-rich fruit Euterpe edulis mart. prevents peripheral inflammatory pathway activation by the short-term high-fat diet. Molecules, vol. 24, no. 9, pp. 1-14. http://doi.org/10.3390/molecules24091655. PMid:31035535.
http://doi.org/10.3390/molecules24091655...
). Terpenes are volatile compounds known for their antimicrobial (Li et al., 2021LI, H., LIU, J., LIU, C.-F., LI, H., LUO, J., FANG, S., CHEN, Y., ZHONG, R., LIU, S., and LIN, S., 2021. Design, synthesis, and biological evaluation of membrane-active bakuchiol derivatives as effective broad-spectrum antibacterial agents. Journal of Medicinal Chemistry, vol. 64, pp. 5603–5619. https://doi.org/10.1021/acs.jmedchem.0c02059.
https://doi.org/10.1021/acs.jmedchem.0c0...
), anti-inflammatory (Yang and Liao, 2021YANG, L. and LIAO, M., 2021. Influence of myrcene on inflammation, matrix accumulation in the kidney tissues of streptozotocin-induced diabetic rat. Saudi Journal of Biological Sciences, vol. 28, no. 10, pp. 5555-5560. http://doi.org/10.1016/j.sjbs.2020.11.090. PMid:34588865.
http://doi.org/10.1016/j.sjbs.2020.11.09...
), and antioxidant potential (Dzoyem et al., 2017DZOYEM, J.P., MELONG, R., TSAMO, A.T., TCHINDA, A.T., KAPCHE, D.G.W.F., NGADJUI, B.T., MCGAW, L.J. and ELOFF, J.N., 2017. Cytotoxicity, antimicrobial and antioxidant activity of eight compounds isolated from Entada abyssinica (Fabaceae). BMC Research Notes, vol. 10, no. 1, pp. 118. http://doi.org/10.1186/s13104-017-2441-z. PMid:28264698.
http://doi.org/10.1186/s13104-017-2441-z...
). Phytosterols and their derivatives can reduce the concentration of low-density lipoprotein-cholesterol (LDL-C) in human plasma (Bai et al., 2021BAI, G., MA, C. and CHEN, X., 2021. Phytosterols in edible oil: Distribution, analysis and variation during processing. Grain & Oil Science and Technology, vol. 4, no. 1, pp. 33-44. http://doi.org/10.1016/j.gaost.2020.12.003.
http://doi.org/10.1016/j.gaost.2020.12.0...
). In this sense, the compounds present in baru may be, at least in part, responsible for its biological properties.

3.11. Biological activities

It is common knowledge that plant products are used to maintain good health. Plants contain chemical compounds that possess medicinal and healing properties (Parveen et al., 2021PARVEEN, S., RASOOL, F., AKRAM, M.N., KHAN, N., ULLAH, M., MAHMOOD, S., RABBANI, G. and MANZOORB, K., 2021. Effect of Moringa olifera leaves on growth and gut microbiota of Nile tilapia (Oreochromis niloticus). Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 84, e250916. http://doi.org/10.1590/1519-6984.250916. PMid:34705952.
http://doi.org/10.1590/1519-6984.250916...
). In this context, baru is used for the treatment and prevention of many diseases. Almond and stem bark are the most commonly evaluated parts, although leaves and fruits are also used in traditional medicine. Due to the widespread use of these terms, in this review, the biological effects were grouped into 12 categories (Figure 10) and subsequently described.

Figure 10
Biological effects category grouped of baru. (TXE) Toxicological evidence, (AOX) antioxidant activity, (EOS) effects on oxidative stress, (CVE) cardiovascular effects, (AA) Antiophidic activity, (OBE) overweight and obesity, (GR) gastrointestinal regulation, (APA) Antiproliferative activity, (ALA) Antimicrobial and leishmanicidal activities, (WHP) Wound Healing potential, (ANA) Anti-inflammatory activity, (MAB) Memory and anxiolytic-like behavior.

3.11.1. Toxicological evidence (TXE) and antiproliferative activity (APA)

The hydroethanolic extract from the pulp + peel showed weak cytotoxicity against nontumor (HaCaT and L929) cell lines (0.7 mg.mL-1) (Barizão et al., 2021BARIZÃO, E.O., BOEING, J.S., ROTTA, E.M., VOLPATO, H., NAKAMURA, C.V., MALDANER, L. and VISENTAINER, J.V., 2021. Phenolic composition of Dipteryx alata Vogel pulp + peel and its antioxidant and cytotoxic properties. Journal of the Brazilian Chemical Society, vol. 32, no. 12, pp. 2206-2214. http://doi.org/10.21577/0103-5053.20210112.
http://doi.org/10.21577/0103-5053.202101...
). The lyophilized pulp was not toxic to the nematodes (Leite et al., 2020LEITE, N.R., ARAÚJO, L.C.A., ROCHA, P.D.S., AGARRAYUA, D.A., ÁVILA, D.S., CAROLLO, C.A., SILVA, D.B., ESTEVINHO, L.M., SOUZA, K.P. and SANTOS, E.L., 2020. Baru pulp (Dipteryx alata Vogel): fruit from the Brazilian savanna protects against oxidative stress and increases the life expectancy of Caenorhabditis elegans via SOD-3 and DAF-16. Biomolecules, vol. 10, no. 8, pp. 1-22. http://doi.org/10.3390/biom10081106.
http://doi.org/10.3390/biom10081106...
). The hexane and ethanol extracts from the leaves were not toxic to the macrophages (Ribeiro et al., 2014RIBEIRO, T.G., CHÁVEZ-FUMAGALLI, M.A., VALADARES, D.G., FRANCA, J.R., LAGE, P.S., DUARTE, M.C., ANDRADE, P.H.R., MARTINS, V.T., COSTA, L.E., ARRUDA, A.L.A., FARACO, A.A.G., COELHO, E.A.F. and CASTILHO, R.O., 2014. Antileishmanial activity and cytotoxicity of Brazilian plants. Experimental Parasitology, vol. 143, pp. 60-68. http://doi.org/10.1016/j.exppara.2014.05.004. PMid:24846006.
http://doi.org/10.1016/j.exppara.2014.05...
). The ethanolic extract of the bark had no toxic effect on the Chinese hamster ovary (CHO) cell Line K1131 and did not cause abnormalities in the offspring of pregnant rats (500 mg.mL-1) (Esteves-Pedro et al., 2012ESTEVES-PEDRO, N.M., BORIM, T., NAZATO, V.S., SILVA, M.G., LOPES, P.S., SANTOS, M.G., DAL BELO, C.A., PRIMILA CARDOSO, C.R., VARANDA, E.A., GROPPO, F.C., GERENUTTI, M. and OSHIMA-FRANCO, Y., 2012. In vitro and in vivo safety evaluation of Dipteryx alata Vogel extract. BMC Complementary and Alternative Medicine, vol. 12, no. 9, pp. 9. http://doi.org/10.1186/1472-6882-12-9. PMid:22305153.
http://doi.org/10.1186/1472-6882-12-9...
). When exposed to the ethanolic extract of the bark, different strains of Salmonella sp. showed no mutagenicity (Esteves-Pedro et al., 2012ESTEVES-PEDRO, N.M., BORIM, T., NAZATO, V.S., SILVA, M.G., LOPES, P.S., SANTOS, M.G., DAL BELO, C.A., PRIMILA CARDOSO, C.R., VARANDA, E.A., GROPPO, F.C., GERENUTTI, M. and OSHIMA-FRANCO, Y., 2012. In vitro and in vivo safety evaluation of Dipteryx alata Vogel extract. BMC Complementary and Alternative Medicine, vol. 12, no. 9, pp. 9. http://doi.org/10.1186/1472-6882-12-9. PMid:22305153.
http://doi.org/10.1186/1472-6882-12-9...
). However, in the presence of the metabolic activation system and hydroalcoholic extract of bark (0.016 and 0.05 mg.mL-1), CHO cells showed an increase in micronucleus frequency, which can indicate genotoxicity (Esteves-Pedro et al., 2011ESTEVES-PEDRO, N.M., RODAS, A.C.D., DAL BELO, C.A., OSHIMA-FRANCO, Y., DOS SANTOS, M.G. and LOPES, P.S., 2011. Implementation of the three Rs in the human hazard assessment of Brazilian medicinal plants: an evaluation of the cytotoxic and genotoxic potentials of Dipteryx alata Vogel. Alternatives to Laboratory Animals, vol. 39, no. 2, pp. 189-196. http://doi.org/10.1177/026119291103900207. PMid:21639681.
http://doi.org/10.1177/02611929110390020...
). However, a hyperlipidic diet supplemented with almond (30%) for 35 days did not show genotoxicity (Campidelli et al., 2022CAMPIDELLI, M.L.L., CARNEIRO, J.D.S., SOUZA, E.C., VILAS BOAS, E.V.B., BERTOLUCCI, S.K.V., AAZZA, S. and OLIVEIRA, R.R., 2022. Baru almonds Dipteryx alata Vog. and baru almond paste promote metabolic modulation associated with antioxidant, anti-inflammatory, and neuroprotective effects. Innovative Food Science & Emerging Technologies, vol. 80, pp. 103068. http://doi.org/10.1016/j.ifset.2022.103068.
http://doi.org/10.1016/j.ifset.2022.1030...
).

The antiproliferative potential of these compounds was also investigated. Extracts from almond and their phenolic compounds reduced the proliferation of monolayer and spheroid human colorectal cancer cell lines (Oliveira-Alves et al., 2020OLIVEIRA-ALVES, S.C., PEREIRA, R.S., PEREIRA, A.B., FERREIRA, A., MECHA, E., SILVA, A.B., SERRA, A.T. and BRONZE, M.R., 2020. Identification of functional compounds in baru (Dipteryx alata Vog.) nuts: nutritional value, volatile and phenolic composition, antioxidant activity and antiproliferative effect. Food Research International, vol. 131, pp. 109026. http://doi.org/10.1016/j.foodres.2020.109026. PMid:32247467.
http://doi.org/10.1016/j.foodres.2020.10...
), while the hydroethanolic extract from the pulp+peel inhibited the growth of cervical cancer cell lines (SiHa and C33A) (Campidelli et al., 2022CAMPIDELLI, M.L.L., CARNEIRO, J.D.S., SOUZA, E.C., VILAS BOAS, E.V.B., BERTOLUCCI, S.K.V., AAZZA, S. and OLIVEIRA, R.R., 2022. Baru almonds Dipteryx alata Vog. and baru almond paste promote metabolic modulation associated with antioxidant, anti-inflammatory, and neuroprotective effects. Innovative Food Science & Emerging Technologies, vol. 80, pp. 103068. http://doi.org/10.1016/j.ifset.2022.103068.
http://doi.org/10.1016/j.ifset.2022.1030...
).

Considering that several plants are used as medicines in traditional communities, evaluating the safety of medicinal plants is essential. Recently, a review revealed evidence that many species and compounds from Cerrado plants, despite having high cytotoxicity against tumour cells, showed low toxicity, genotoxicity, and mutagenicity against nontumor cells and no toxic effects on murine models of acute and chronic treatments (Rocha et al., 2022ROCHA, J.D., CARNEIRO, F.M., FERNANDES, A.S., MORAIS, J.M., BORGES, L.L., CHEN-CHEN, L., ALMEIDA, L.M.D. and BAILÃO, E.F.L.C., 2022. Toxic potential of cerrado plants on different organisms. International Journal of Molecular Sciences, vol. 23, no. 7, pp. 1-22. http://doi.org/10.3390/ijms23073413. PMid:35408775.
http://doi.org/10.3390/ijms23073413...
).

3.11.2. Antimicrobial and leishmanicidal activities (ALAs)

Hydroalcoholic extracts from baru exhibited moderate antimicrobial potential, showing minimum inhibitory concentrations (620 to > 1000 μg.mL-1) and minimum microbicidal concentrations (620 to > 1000 μg.mL-1) against Staphylococcus aureus and Escherichia coli. Interestingly, the peel (2.6 to 3.3) and pulp (4.0) extracts displayed greater inhibition zones for S. aureus than did the almond (Santos et al., 2017SANTOS, F.B., RAMOS, M.I.L. and MIYAGUSKU, L., 2017. Antimicrobial activity of hydroalcoholic extracts from genipap, baru and taruma. Ciência Rural, vol. 47, no. 8, pp. 6-11. http://doi.org/10.1590/0103-8478cr20160252.
http://doi.org/10.1590/0103-8478cr201602...
). However, the authors did not investigate the chemical composition of the extracts to clarify this difference.

Hexanic extracts of the leaves of baru were as effective as amphotericin B (IC50 = 0.08 μg.mL-1) and were more effective than extracts from 15 other Brazilian plants of the genera Campomanesia, Cecropia, Diospyros, Syzygium, Eugenia, Hymenaea, Jacaranda, Licania, Vernonia and Melancium against leishmaniasis (IC50 = 4.69-199.4 μg.mL-1) (Ribeiro et al., 2014RIBEIRO, T.G., CHÁVEZ-FUMAGALLI, M.A., VALADARES, D.G., FRANCA, J.R., LAGE, P.S., DUARTE, M.C., ANDRADE, P.H.R., MARTINS, V.T., COSTA, L.E., ARRUDA, A.L.A., FARACO, A.A.G., COELHO, E.A.F. and CASTILHO, R.O., 2014. Antileishmanial activity and cytotoxicity of Brazilian plants. Experimental Parasitology, vol. 143, pp. 60-68. http://doi.org/10.1016/j.exppara.2014.05.004. PMid:24846006.
http://doi.org/10.1016/j.exppara.2014.05...
). In addition, the inhibitory effect against Leishmania amazonensis promastigotes internalized by macrophages occurred in a dose-dependent manner (up to 95%) (Ribeiro et al., 2014RIBEIRO, T.G., CHÁVEZ-FUMAGALLI, M.A., VALADARES, D.G., FRANCA, J.R., LAGE, P.S., DUARTE, M.C., ANDRADE, P.H.R., MARTINS, V.T., COSTA, L.E., ARRUDA, A.L.A., FARACO, A.A.G., COELHO, E.A.F. and CASTILHO, R.O., 2014. Antileishmanial activity and cytotoxicity of Brazilian plants. Experimental Parasitology, vol. 143, pp. 60-68. http://doi.org/10.1016/j.exppara.2014.05.004. PMid:24846006.
http://doi.org/10.1016/j.exppara.2014.05...
). As suggested by researchers, the leishmanicidal potential may be related to the presence of phenolic and terpene compounds (Garcia et al., 2019GARCIA, A.R., OLIVEIRA, D.M.P., AMARAL, A.C.F., JESUS, J.B., RENNÓ SODERO, A.C., SOUZA, A.M.T., SUPURAN, C.T., VERMELHO, A.B., RODRIGUES, I.A. and PINHEIRO, A.S., 2019. Leishmania infantum arginase: biochemical characterization and inhibition by naturally occurring phenolic substances. Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 34, no. 1, pp. 1100-1109. http://doi.org/10.1080/14756366.2019.1616182. PMid:31124384.
http://doi.org/10.1080/14756366.2019.161...
; Shilling et al., 2020SHILLING, A.J., WITOWSKI, C.G., MASCHEK, J.A., AZHARI, A., VESELY, B.A., KYLE, D.E., AMSLER, C.D., MCCLINTOCK, J.B. and BAKER, B.J., 2020. Spongian diterpenoids derived from the antarctic sponge Dendrilla antarctica are potent inhibitors of the Leishmania parasite. Journal of Natural Products, vol. 83, no. 5, pp. 1553-1562. http://doi.org/10.1021/acs.jnatprod.0c00025. PMid:32281798.
http://doi.org/10.1021/acs.jnatprod.0c00...
).

Microbial resistance is a global public health problem (WHO, 2021bWORLD HEALTH ORGANIZATION – WHO, 2021b [viewed 21 November 2022]. Antimicrobial resistance [online]. Geneva: WHO. Available from:https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance#:~:text=What%20is%20antimicrobial%20resistance%3F,spread%2C%20severe%20illness%20and%20death/
https://www.who.int/news-room/fact-sheet...
), similar to leishmaniasis, which is a neglected tropical disease with more than one million new cases each year and up to 30,000 deaths (WHO, 2022WORLD HEALTH ORGANIZATION – WHO, 2022 [viewed 21 April 2023]. Leishmaniasis [online]. Available from: https://www.paho.org/en/topics/leishmaniasis
https://www.paho.org/en/topics/leishmani...
). Both conditions motivate the search for treatments that can replace antibiotics (Santos et al., 2017SANTOS, F.B., RAMOS, M.I.L. and MIYAGUSKU, L., 2017. Antimicrobial activity of hydroalcoholic extracts from genipap, baru and taruma. Ciência Rural, vol. 47, no. 8, pp. 6-11. http://doi.org/10.1590/0103-8478cr20160252.
http://doi.org/10.1590/0103-8478cr201602...
) and are effective against parasites (Gervazoni et al., 2020GERVAZONI, L.F.O., BARCELLOS, G.B.B., FERREIRA-PAES, T. and ALMEIDA-AMARAL, E.E., 2020. Use of natural products in leishmaniasis chemotherapy: an overview. Frontiers in Chemistry, vol. 8, pp. 579891. http://doi.org/10.3389/fchem.2020.579891. PMid:33330368.
http://doi.org/10.3389/fchem.2020.579891...
). Several species from the Cerrado contain bioactive compounds with antimicrobial and leishmanicidal potential (Rocha et al., 2022ROCHA, J.D., CARNEIRO, F.M., FERNANDES, A.S., MORAIS, J.M., BORGES, L.L., CHEN-CHEN, L., ALMEIDA, L.M.D. and BAILÃO, E.F.L.C., 2022. Toxic potential of cerrado plants on different organisms. International Journal of Molecular Sciences, vol. 23, no. 7, pp. 1-22. http://doi.org/10.3390/ijms23073413. PMid:35408775.
http://doi.org/10.3390/ijms23073413...
). Studies suggest that baru extracts can be used to develop antimicrobial and antiparasitic products.

3.11.3. Wound Healing potential (WHP)

The ethanolic extract of baru almond improved wound healing in human pulmonary epithelial cell lines (NCI-H441 and A549) (Coco et al., 2021COCO, J.C., ATAIDE, J.A., SAKE, J.A., TAMBOURGI, E.B., EHRHARDT, C. and MAZZOLA, P.V., 2021. In vitro antioxidant and wound healing properties of baru nut extract Dipteryx alata Vog. in pulmonary epithelial cells for therapeutic application in chronic pulmonary obstructive disease. COPD. Natural Product Research, vol. 7, no. 17, pp. 4475-4481. http://doi.org/10.1080/14786419.2021.1984909. PMid:34618614.
http://doi.org/10.1080/14786419.2021.198...
). However, the topical use of ointment with hydroethanolic extracts of almond or bark (10%) for 21 days did not affect the speed of wound closure, quality of reepithelialisation, neovascularization, or collagenization in mice and did not demonstrate its applicability for wound healing (Gouveia et al., 2021GOUVEIA, M.C.P., MINTO, B.W., SARGI, L.F., SOUZA, R.L., PAZZINI, J.M., COLODEL, E.M., SILVA, V.C.P., CASSINO, P.C. and DIAS, L.G.G.G., 2021. Evaluation of the alcoholic extract of Dipteryx alata Vogel almonds and bark in skin wound healing in C57BL6 mice. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, vol. 73, no. 6, pp. 1315-1322. http://doi.org/10.1590/1678-4162-12289.
http://doi.org/10.1590/1678-4162-12289...
). Thus, future studies exploring other forms of administration and doses are needed to elucidate whether baru has wound healing potential, mainly because it is one of the most popular uses of this plant.

3.11.4. Antiophidic activity (AA)

Snakebite envenomation is a neglected tropical disease with a high economic cost, particularly in low- and middle-income countries (WHO, 2019WORLD HEALTH ORGANIZATION – WHO, 2019 [viewed 21 July 2023]. Snakebite envenoming: a strategy for prevention and control: executive summary [online]. Geneva: WHO. Available from: https://apps.who.int/iris/handle/10665/312195/
https://apps.who.int/iris/handle/10665/3...
). In Brazil, the limited supply of antivenom for public health (Schneider et al., 2021SCHNEIDER, M.C., MIN, K.D., HAMRICK, P.N., MONTEBELLO, L.R., RANIERI, T.M., MARDINI, L., CAMARA, V.M., LUIZ, R.R., LIESE, B., VUCKOVIC, M., MORAES, M.O. and LIMA, N.T., 2021. Overview of snakebite in Brazil: possible drivers and a tool for risk mapping. PLoS Neglected Tropical Diseases, vol. 15, no. 1, e0009044. http://doi.org/10.1371/journal.pntd.0009044. PMid:33513145.
http://doi.org/10.1371/journal.pntd.0009...
) has stimulated the discovery of new plants and molecules with antiophidic potential (Trento et al., 2021TRENTO, M.V.C., CARAPIÁ, M.S., CESAR, P.H.S., BRAGA, M.A., SOARES, A.M. and MARCUSSI, S., 2021. In vivo and in vitro prospection of the anti-ophidic properties exercised by the extracts of Jacaranda decurrens L. Acta Scientiarum. Biological Sciences, vol. 43, e57016. http://doi.org/10.4025/actascibiolsci.v43i1.57016.
http://doi.org/10.4025/actascibiolsci.v4...
).

Extracts from the bark of baru were able to reduce the neuromuscular blockade caused by Bothrops jararacussu venom in the phrenic nerve-diaphragm. Methanolic extract from the bark had a greater protective effect on neuromuscular capacity (Puebla et al., 2010PUEBLA, P., OSHIMA-FRANCO, Y., FRANCO, L.M., SANTOS, M.G., SILVA, R.V., RUBEM-MAURO, L. and FELICIANO, A.S., 2010. Chemical constituents of the bark of Dipteryx alata Vogel, an active species against Bothrops jararacussu venom. Molecules, vol. 15, no. 11, pp. 8193-8204. http://doi.org/10.3390/molecules15118193. PMid:21076386.
http://doi.org/10.3390/molecules15118193...
; Nazato et al., 2010NAZATO, V.S., RUBEM-MAURO, L., VIEIRA, N.A.G., ROCHA-JUNIOR, D.S., SILVA, M.G., LOPES, P.S., DAL-BELO, C.A., COGO, J.C., SANTOS, M.G., CRUZ-HÖFLING, M.A. and OSHIMA-FRANCO, Y., 2010. In vitro antiophidian properties of Dipteryx alata Vogel bark extracts. Molecules, vol. 15, no. 9, pp. 5956-5970. http://doi.org/10.3390/molecules15095956. PMid:20877202.
http://doi.org/10.3390/molecules15095956...
). In addition, the bark reduced myonecrosis (Nazato et al., 2010NAZATO, V.S., RUBEM-MAURO, L., VIEIRA, N.A.G., ROCHA-JUNIOR, D.S., SILVA, M.G., LOPES, P.S., DAL-BELO, C.A., COGO, J.C., SANTOS, M.G., CRUZ-HÖFLING, M.A. and OSHIMA-FRANCO, Y., 2010. In vitro antiophidian properties of Dipteryx alata Vogel bark extracts. Molecules, vol. 15, no. 9, pp. 5956-5970. http://doi.org/10.3390/molecules15095956. PMid:20877202.
http://doi.org/10.3390/molecules15095956...
).

To clarify the possible causes of these effects, some bioactive compounds isolated from the bark were also investigated for their effects on snake venom. 7,8,3’-Trihydroxy-4’-methoxyisoflavone and the triterpenoids betulin, lupeol, lupenone, and 28-OH-lupenone showed a high protective effect against the neuromuscular blockade, and myotoxicity caused by snake venom (Ferraz et al., 2012FERRAZ, M.C., PARRILHA, A.C., MORAES, M., AMARAL FILHO, J., CARLOS COGO, J., SANTOS, M.G., FRANCO, L.M., GROPPO, F.C., PUEBLA, P., SAN FELICIANO, A. and OSHIMA-FRANCO, Y., 2012. The effect of lupane triterpenoids (Dipteryx alata Vogel) in the in vitro neuromuscular blockade and myotoxicity of two snake venoms. Current Organic Chemistry, vol. 16, no. 22, pp. 2717-2723. http://doi.org/10.2174/138527212804004481.
http://doi.org/10.2174/13852721280400448...
; Ferraz et al., 2014FERRAZ, M.C., YOSHIDA, E.H., TAVARES, R.V.S., COGO, J.C., CINTRA, A.C.O., DAL BELO, C.A., FRANCO, L.M., SANTOS, M.G., RESENDE, F.A., VARANDA, E.A., HYSLOP, S., PUEBLA, P., FELICIANO, A.S. and OSHIMA-FRANCO, Y., 2014. An isoflavone from Dipteryx alata Vogel is active against the in vitro neuromuscular paralysis of Bothrops jararacussu snake venom and bothropstoxin I, and prevents venom-induced myonecrosis. Molecules, vol. 19, no. 5, pp. 5790-5805. http://doi.org/10.3390/molecules19055790. PMid:24806579.
http://doi.org/10.3390/molecules19055790...
). In addition, betulin, and lupenone are protective against Crotalus durissus terrificus envenomation (Ferraz et al., 2012FERRAZ, M.C., PARRILHA, A.C., MORAES, M., AMARAL FILHO, J., CARLOS COGO, J., SANTOS, M.G., FRANCO, L.M., GROPPO, F.C., PUEBLA, P., SAN FELICIANO, A. and OSHIMA-FRANCO, Y., 2012. The effect of lupane triterpenoids (Dipteryx alata Vogel) in the in vitro neuromuscular blockade and myotoxicity of two snake venoms. Current Organic Chemistry, vol. 16, no. 22, pp. 2717-2723. http://doi.org/10.2174/138527212804004481.
http://doi.org/10.2174/13852721280400448...
). Posteriorly, betulin was efficient in attenuating the neuromuscular effects of B. jararacussu venom in vivo (Ferraz et al., 2015FERRAZ, M.C., OLIVEIRA, J.L., OLIVEIRA JUNIOR, J.R., COGO, J.C., SANTOS, M.G., FRANCO, L.M., PUEBLA, P., FERRAZ, H.O., FERRAZ, H.G., ROCHA, M.M.T., HYSLOP, S., SAN FELICIANO, A. and OSHIMA-FRANCO, Y., 2015. The triterpenoid betulin protects against the neuromuscular effects of Bothrops jararacussu snake venom in vivo. Evidence-Based Complementary and Alternative Medicine, vol. 2015, pp. 939523. http://doi.org/10.1155/2015/939523. PMid:26633987.
http://doi.org/10.1155/2015/939523...
). These studies indicate that the bark of baru has the potential to be applied as an antiophidic product.

3.11.5. Antioxidant activity (AOX)

Various methods of i) radical scavenging, such as 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+), ii) inhibition of peroxidation as a β-carotene/linoleate bleaching system, iii) ability to reduce an Fe(3) complex to an Fe(2) complex containing 2,4,6-tri(2-pyridyl)-1,3,5-triazine (TPTZ) ligand, as in the ferric reducing antioxidant power method (FRAP), and iv) the elimination of the peroxyl radical generated by the thermal reaction between 2,2’-azobis-(2-methylpropionamidine)-dihydrochloride (AAPH) and atmospheric oxygen (pH 7.4) at 37 °C (Marchi et al., 2022MARCHI, R.C., CAMPOS, I.A.S., SANTANA, V.T. and CARLOS, R.M., 2022. Chemical implications and considerations on techniques used to assess the in vitro antioxidant activity of coordination compounds. Coordination Chemistry Reviews, vol. 451, pp. 214275. http://doi.org/10.1016/j.ccr.2021.214275.
http://doi.org/10.1016/j.ccr.2021.214275...
), have been used to evaluate the antioxidant potential and distinguish the mechanism of baru.

Table 7 shows the antioxidant potential of baru almond, pulp, and leaves against different oxidant agents. Was observed that raw almond showed greater antioxidant activity (81, 100, and 157 μMol.TE g-1) than did roasted almond (76, 77, and 136.8 μMol. TE g-1) in the DPPH, ABTS, and FRAP methods, respectively (Santiago et al., 2018SANTIAGO, G.L., OLIVEIRA, I.G., HORST, M.A., NAVES, M.M.V. and SILVA, M.R., 2018. Peel and pulp of baru (Dipteryx alata Vog.) provide high fiber, phenolic content and antioxidant capacity. Food Science and Technology, vol. 38, no. 2, pp. 244-249. http://doi.org/10.1590/1678-457x.36416.
http://doi.org/10.1590/1678-457x.36416...
). Studies have reported that heat treatment at 100 °C or more can reduce the antioxidant capacity by 36% to 56% and that heat treatment at 65 °C for 30 minutes did not affect the antioxidant capacity compared to that of raw almond (Campidelli et al., 2020aCAMPIDELLI, M.L.L., CARNEIRO, J.D.S., SOUZA, E.C., MAGALHÃES, M.F., NUNES, E.E.C., FARIA, P.B., FRANCO, M. and VILAS BOAS, E.V.B., 2020a. Effects of the drying process on the fatty acid content, phenolic profile, tocopherols and antioxidant activity of baru almonds (Dipteryx alata Vog.). Grasas y Aceites, vol. 71, no. 1, e343. http://doi.org/10.3989/gya.1170182.
http://doi.org/10.3989/gya.1170182...
; Silva et al., 2022SILVA, D.V., OLIVEIRA, D.E.C., RESENDE, O., MARTINS, K.R.B., FONSECA, N.N., QUEQUETO, W.D., SILVA, L.C.D.M. and SOUZA, D.G., 2022. Nutritional properties of baru almond (Dipteryx alata Vogel) flours produced from fruits subjected to drying. Australian Journal of Crop Science, vol. 16, no. 2, pp. 171-176. http://doi.org/10.21475/ajcs.22.16.02.3246.
http://doi.org/10.21475/ajcs.22.16.02.32...
).

Table 7
Antioxidant activity of baru.

The antioxidant capacity of the raw almond (100 to 473 μM. Trolox g-1) (Santiago et al., 2018SANTIAGO, G.L., OLIVEIRA, I.G., HORST, M.A., NAVES, M.M.V. and SILVA, M.R., 2018. Peel and pulp of baru (Dipteryx alata Vog.) provide high fiber, phenolic content and antioxidant capacity. Food Science and Technology, vol. 38, no. 2, pp. 244-249. http://doi.org/10.1590/1678-457x.36416.
http://doi.org/10.1590/1678-457x.36416...
; Lima et al., 2021aLIMA, D.S., EGEA, M.B., CABASSA, I., ALMEIDA, A.B., SOUSA, T.L., LIMA, T.M., LOSS, R.A., VOLP, A.C.P., VASCONCELOS, L.G., DALL’OGLIO, E.L., HERNANDES, T. and TAKEUCHI, K.P., 2021a. Technological quality and sensory acceptability of nutritive bars produced with Brazil nut and baru almond coproducts. Lebensmittel-Wissenschaft + Technologie, vol. 137, pp. 110467. http://doi.org/10.1016/j.lwt.2020.110467.
http://doi.org/10.1016/j.lwt.2020.110467...
; Barros et al., 2021BARROS, H.E.A.D., ALEXANDRE, A.C.S., CAMPOLINA, G.A., ALVARENGA, G.F., SILVA, L.M.S.F., NATARELLI, C.V.L., CARVALHO, E.E.N. and VILAS BOAS, E.V.B., 2021. Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysis. Lebensmittel-Wissenschaft + Technologie, vol. 152, pp. 112372. http://doi.org/10.1016/j.lwt.2021.112372.
http://doi.org/10.1016/j.lwt.2021.112372...
) was also greater than that of almond oil (Fetzer et al., 2018FETZER, D.L., CRUZ, P.N., HAMERSKI, F. and CORAZZA, M.L., 2018. Extraction of baru (Dipteryx alata Vogel) seed oil using compressed solvents technology. The Journal of Supercritical Fluids, vol. 137, pp. 23-33. http://doi.org/10.1016/j.supflu.2018.03.004.
http://doi.org/10.1016/j.supflu.2018.03....
) in the ABTS assay. Antioxidant activity can be influenced by the chosen method for the extraction of the sample evaluated. Therefore, Fetzer et al. (2018)FETZER, D.L., CRUZ, P.N., HAMERSKI, F. and CORAZZA, M.L., 2018. Extraction of baru (Dipteryx alata Vogel) seed oil using compressed solvents technology. The Journal of Supercritical Fluids, vol. 137, pp. 23-33. http://doi.org/10.1016/j.supflu.2018.03.004.
http://doi.org/10.1016/j.supflu.2018.03....
evaluated the antioxidant capacity of baru almond oil extracted by different methods. The oil obtained by the supercritical CO2 method using propane as the solvent showed greater antioxidant activity (96.57 μM. Trolox g-1) than the oil extracted by Soxhlet using hexane (9.98 μM. Trolox g-1). Posteriorly, Peixoto et al. (2022)PEIXOTO, V.O.D.S., SILVA, L., CASTELO-BRANCO, V.N. and TORRES, A.G., 2022. Baru (Dipteryx alata Vogel) oil extraction by supercritical-CO2: improved composition by using water as cosolvent. Journal of Oleo Science, vol. 71, no. 2, pp. 201-213. http://doi.org/10.5650/jos.ess21115. PMid:35034941.
http://doi.org/10.5650/jos.ess21115...
proposed the extraction of almond oil using the supercritical CO2 method with water as a cosolvent and showed greater extraction of antioxidant compounds.

The baru pulp flour exhibited weak DPPH free radical scavenging potential (9 to 12 μMol. Trolox g-1) and ABTS (13 to 34 μMol. Trolox g-1) (Silva et al., 2019SILVA, D.V., OLIVEIRA, D.E.C., RESENDE, O., SILVA, M.A.P. and BARCELOS, K.R., 2019. Nutritional quality of the epicarp and mesocarp flours of baru fruits submitted to drying. Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 23, no. 1, pp. 65-70. http://doi.org/10.1590/1807-1929/agriambi.v23n1p65-70.
http://doi.org/10.1590/1807-1929/agriamb...
), while the IC50 values for lyophilized pulp were 416.0 ± 28.00 and 2306.33 ± 101.83 μg.mL-1 for the ABTS and DPPH methods, respectively (Leite et al., 2020LEITE, N.R., ARAÚJO, L.C.A., ROCHA, P.D.S., AGARRAYUA, D.A., ÁVILA, D.S., CAROLLO, C.A., SILVA, D.B., ESTEVINHO, L.M., SOUZA, K.P. and SANTOS, E.L., 2020. Baru pulp (Dipteryx alata Vogel): fruit from the Brazilian savanna protects against oxidative stress and increases the life expectancy of Caenorhabditis elegans via SOD-3 and DAF-16. Biomolecules, vol. 10, no. 8, pp. 1-22. http://doi.org/10.3390/biom10081106.
http://doi.org/10.3390/biom10081106...
). The hydroethanolic extract also had a low antioxidant effect on the pulp (21.2 to 49 μMol. TE g-1) and to the peel of fruit (45 to 60 μMol. TE g-1) in different methods (Santiago et al., 2018SANTIAGO, G.L., OLIVEIRA, I.G., HORST, M.A., NAVES, M.M.V. and SILVA, M.R., 2018. Peel and pulp of baru (Dipteryx alata Vog.) provide high fiber, phenolic content and antioxidant capacity. Food Science and Technology, vol. 38, no. 2, pp. 244-249. http://doi.org/10.1590/1678-457x.36416.
http://doi.org/10.1590/1678-457x.36416...
). These findings corroborate the results obtained with different peel+pulp extracts (2 to 29 μMol. TE g-1) evaluated by the DPPH and ORAC methods (Barizão et al., 2021BARIZÃO, E.O., BOEING, J.S., ROTTA, E.M., VOLPATO, H., NAKAMURA, C.V., MALDANER, L. and VISENTAINER, J.V., 2021. Phenolic composition of Dipteryx alata Vogel pulp + peel and its antioxidant and cytotoxic properties. Journal of the Brazilian Chemical Society, vol. 32, no. 12, pp. 2206-2214. http://doi.org/10.21577/0103-5053.20210112.
http://doi.org/10.21577/0103-5053.202101...
) (Table 7).

The ethanolic and hexanic extracts of the baru leaves demonstrated antioxidant potential (52 to 169 ppm) and effective tyrosinase inhibition (Silvério et al., 2013SILVÉRIO, M.D.O., CASTRO, C.F.S. and MIRANDA, A.R., 2013. Avaliação da atividade antioxidante e inibitória da tirosinase das folhas de Dipteryx alata Vogel (baru). Revista Brasileira de Plantas Medicinais, vol. 15, no. 1, pp. 59-65. http://doi.org/10.1590/S1516-05722013000100008.
http://doi.org/10.1590/S1516-05722013000...
) (Table 7). Tyrosinase is a key enzyme in skin hyperpigmentation and food browning. Thus, the discovery of natural inhibitors has been of interest to the pharmaceutical, cosmetic, and food industries (Zolghadri et al., 2019ZOLGHADRI, S., BAHRAMI, A., KHAN, M.T.H., MUNOZ-MUNOZ, J., GARCIA-MOLINA, F., GARCIA-CANOVAS, F. and SABOURY, A.A., 2019. A comprehensive review on tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 34, no. 1, pp. 279-309. http://doi.org/10.1080/14756366.2018.1545767. PMid:30734608.
http://doi.org/10.1080/14756366.2018.154...
). Previous studies have demonstrated that phenolic compounds are effective tyrosinase inhibitors (Nguyen et al., 2012NGUYEN, M.H.K., NGUYEN, H.X., NGUYEN, M.T.T. and NGUYEN, N.T., 2012. Phenolic constituents from the heartwood of Artocapus altilis and their tyrosinase inhibitory activity. Natural Product Communications, vol. 7, no. 2, pp. 185-186. http://doi.org/10.1177/1934578X1200700214. PMid:22474950.
http://doi.org/10.1177/1934578X120070021...
; Sasaki et al., 2018SASAKI, A., YAMANO, Y., SUGIMOTO, S., OTSUKA, H., MATSUNAMI, K. and SHINZATO, T., 2018. Phenolic compounds from the leaves of Breynia officinalis and their tyrosinase and melanogenesis inhibitory activities. Journal of Natural Medicines, vol. 72, no. 2, pp. 381-389. http://doi.org/10.1007/s11418-017-1148-8. PMid:29264846.
http://doi.org/10.1007/s11418-017-1148-8...
). Thus, at least partially, this inhibitory effect on baru leaves may be associated with the presence of phenolic compounds. However, as the leaves did not show a copper chelating capacity, it is suggested that there are other mechanisms involved (Silvério et al., 2013SILVÉRIO, M.D.O., CASTRO, C.F.S. and MIRANDA, A.R., 2013. Avaliação da atividade antioxidante e inibitória da tirosinase das folhas de Dipteryx alata Vogel (baru). Revista Brasileira de Plantas Medicinais, vol. 15, no. 1, pp. 59-65. http://doi.org/10.1590/S1516-05722013000100008.
http://doi.org/10.1590/S1516-05722013000...
). In addition, the antioxidant activity of bark has not yet been reported. Some bioactive compounds present in plant species are natural antioxidants capable of maintaining the redox balance in the organism (Carvalho and Conte-Júnior, 2021). Thus, the presence of phenolic compounds and terpenes supports the antioxidant potential showed in baru almond, pulp, and leaves.

3.11.6. Effects on oxidative stress (EOS), overweight/obesity (OBE), and the cardiovascular system (CVE)

Oxidative stress is a biological condition of disbalance between the production of reactive species and antioxidant defense (Maurya et al., 2016MAURYA, P.K., NOTO, C., RIZZO, L.B., RIOS, A.C., NUNES, S.O.V., SABBATINI, D., SETHI, S., ZENI, M., MANSUR, R.B., MAES, M. and BRIETZKE, E., 2016. The role of oxidative and nitrosative stress in accelerated aging and major depressive disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry, vol. 65, pp. 134-144. http://doi.org/10.1016/j.pnpbp.2015.08.016. PMid:26348786.
http://doi.org/10.1016/j.pnpbp.2015.08.0...
). This condition can be responsible for protein damage (Siqueira et al., 2012SIQUEIRA, E.M.A., MARIN, A.M.F., CUNHA, M.S.B., FUSTINONI, A.M., SANTANA, L.P. and ARRUDA, S.F., 2012. Consumption of baru seeds [Dipteryx alata Vog.], a Brazilian savanna nut, prevents iron-induced oxidative stress in rats. Food Research International, vol. 45, no. 1, pp. 427-433. http://doi.org/10.1016/j.foodres.2011.11.005.
http://doi.org/10.1016/j.foodres.2011.11...
), lipid peroxidation, and a reduction in endogenous antioxidant defences, such as glutathione peroxidase (GPx) levels and superoxide dismutase (SOD) and catalase (CAT) activities. Consequently, oxidative stress is associated with the development of chronic diseases, such as diabetes, dyslipidaemia (Erukainure et al., 2020ERUKAINURE, O.L., IJOMONE, O.M., CHUKWUMA, C.I., XIAO, X., SALAU, V.F. and ISLAM, M.S., 2020. Dacryodes edulis G. Don H.J. Lam modulates glucose metabolism, cholinergic activities and NRF2 expression, while suppressing oxidative stress and dyslipidemia in diabetic rats. Journal of Ethnopharmacology, vol. 255, pp. 112744. http://doi.org/10.1016/j.jep.2020.112744. PMid:32165174.
http://doi.org/10.1016/j.jep.2020.112744...
), obesity, and metabolic syndrome (Ruiz-Ojeda et al., 2018RUIZ-OJEDA, F.J., OLZA, J., GIL, Á. and AGUILERA, C.M., 2018. Oxidative stress and inflammation in obesity and metabolic syndrome. In: Del MORAL, A.M. and GARCÍA, C.M.A. eds. Obesity: oxidative stress and dietary antioxidants. London: Academic Press, pp. 1-15. http://doi.org/10.1016/B978-0-12-812504-5.00001-5/.
http://doi.org/10.1016/B978-0-12-812504-...
).

Baru almond and almond oils have been suggested to reduce oxidative stress (Siqueira et al., 2012SIQUEIRA, E.M.A., MARIN, A.M.F., CUNHA, M.S.B., FUSTINONI, A.M., SANTANA, L.P. and ARRUDA, S.F., 2012. Consumption of baru seeds [Dipteryx alata Vog.], a Brazilian savanna nut, prevents iron-induced oxidative stress in rats. Food Research International, vol. 45, no. 1, pp. 427-433. http://doi.org/10.1016/j.foodres.2011.11.005.
http://doi.org/10.1016/j.foodres.2011.11...
; Fernandes et al., 2015FERNANDES, D.C., ALVES, A.M., CASTRO, G.S.F., JORDÃO JUNIOR, A.A. and NAVES, M.M.V., 2015. Effects of baru almond and Brazil nut against hyperlipidemia and oxidative stress in vivo. Journal of Food Research, vol. 4, no. 4, pp. 38-46. http://doi.org/10.5539/jfr.v4n4p38.
http://doi.org/10.5539/jfr.v4n4p38...
; Reis et al., 2018bREIS, M.Á., NOVAES, R.D., BAGGIO, S.R., VIANA, A.L.M., SALLES, B.C.C., DUARTE, S.M.D.S., RODRIGUES, M.R. and PAULA, F.B.D.A., 2018b. Hepatoprotective and antioxidant activities of oil from baru almonds (Dipteryx alata Vog.) in a preclinical model of lipotoxicity and dyslipidemia. Evidence-Based Complementary and Alternative Medicine, vol. 2018, pp. 8376081. http://doi.org/10.1155/2018/8376081. PMid:30369957.
http://doi.org/10.1155/2018/8376081...
; Souza et al., 2018SOUZA, R.G.M.D., GOMES, A.C., NAVARRO, A.M., SILVA, M.A.C., BARBOSA JÚNIOR, F. and MOTA, J.F., 2018. A baru almond-enriched diet reduces abdominal adiposity and improves high-density lipoprotein concentrations: a randomized, placebo-controlled trial. Nutrition, vol. 55-56, pp. 154-160. http://doi.org/10.1016/j.nut.2018.06.001. PMid:30086484.
http://doi.org/10.1016/j.nut.2018.06.001...
, 2019SOUZA, R.G.M.D., GOMES, A.C., NAVARRO, A.M., CUNHA, L.C., SILVA, M.A.C., BARBOSA JÚNIOR, F. and MOTA, J.F., 2019. Baru almonds increase the activity of glutathione peroxidase in overweight and obese women: a randomized, placebo-controlled trial. Nutrients, vol. 11, no. 8, pp. 1750. http://doi.org/10.3390/nu11081750. PMid:31366053.
http://doi.org/10.3390/nu11081750...
). Supplementation of almond in iron-induced oxidative stress in rats was effective in preventing lipid oxidation in the liver and spleen and reducing carbonyl levels in the liver, spleen, and heart (Siqueira et al., 2012SIQUEIRA, E.M.A., MARIN, A.M.F., CUNHA, M.S.B., FUSTINONI, A.M., SANTANA, L.P. and ARRUDA, S.F., 2012. Consumption of baru seeds [Dipteryx alata Vog.], a Brazilian savanna nut, prevents iron-induced oxidative stress in rats. Food Research International, vol. 45, no. 1, pp. 427-433. http://doi.org/10.1016/j.foodres.2011.11.005.
http://doi.org/10.1016/j.foodres.2011.11...
). Roasted almond decreased lipid oxidation and increased vitamin E in the liver of hyperlipidaemic rats (Fernandes et al., 2015FERNANDES, D.C., ALVES, A.M., CASTRO, G.S.F., JORDÃO JUNIOR, A.A. and NAVES, M.M.V., 2015. Effects of baru almond and Brazil nut against hyperlipidemia and oxidative stress in vivo. Journal of Food Research, vol. 4, no. 4, pp. 38-46. http://doi.org/10.5539/jfr.v4n4p38.
http://doi.org/10.5539/jfr.v4n4p38...
). Its oil promoted hepatoprotective effects and decreased peroxidation in the aorta of rats (Reis et al., 2018bREIS, M.Á., NOVAES, R.D., BAGGIO, S.R., VIANA, A.L.M., SALLES, B.C.C., DUARTE, S.M.D.S., RODRIGUES, M.R. and PAULA, F.B.D.A., 2018b. Hepatoprotective and antioxidant activities of oil from baru almonds (Dipteryx alata Vog.) in a preclinical model of lipotoxicity and dyslipidemia. Evidence-Based Complementary and Alternative Medicine, vol. 2018, pp. 8376081. http://doi.org/10.1155/2018/8376081. PMid:30369957.
http://doi.org/10.1155/2018/8376081...
).

Dietary supplementation with baru almond (30%) improved the antioxidant capacity (FRAP), increased the glutathione reductase content, and reduced the malondialdehyde (MDA) content in the rat liver (Campidelli et al., 2022CAMPIDELLI, M.L.L., CARNEIRO, J.D.S., SOUZA, E.C., VILAS BOAS, E.V.B., BERTOLUCCI, S.K.V., AAZZA, S. and OLIVEIRA, R.R., 2022. Baru almonds Dipteryx alata Vog. and baru almond paste promote metabolic modulation associated with antioxidant, anti-inflammatory, and neuroprotective effects. Innovative Food Science & Emerging Technologies, vol. 80, pp. 103068. http://doi.org/10.1016/j.ifset.2022.103068.
http://doi.org/10.1016/j.ifset.2022.1030...
). Daily consumption of 20 g of almond increased GPx activity and serum copper levels but did not improve MDA or cytokine levels in overweight or obese women (Souza et al., 2019SOUZA, R.G.M.D., GOMES, A.C., NAVARRO, A.M., CUNHA, L.C., SILVA, M.A.C., BARBOSA JÚNIOR, F. and MOTA, J.F., 2019. Baru almonds increase the activity of glutathione peroxidase in overweight and obese women: a randomized, placebo-controlled trial. Nutrients, vol. 11, no. 8, pp. 1750. http://doi.org/10.3390/nu11081750. PMid:31366053.
http://doi.org/10.3390/nu11081750...
). The intake of the same serving of almond by mildly hypercholesterolaemic individuals also did not promote changes in SOD activity, thiobarbituric acid reactive substance concentration, or serum antioxidant status (Bento et al., 2014BENTO, A.P.N., COMINETTI, C., SIMÕES FILHO, A. and NAVES, M.M.V., 2014. Baru almond improves lipid profile in mildly hypercholesterolemic subjects: a randomized, controlled, crossover study. Nutrition, Metabolism, and Cardiovascular Diseases, vol. 24, no. 12, pp. 1330-1336. http://doi.org/10.1016/j.numecd.2014.07.002. PMid:25149894.
http://doi.org/10.1016/j.numecd.2014.07....
).

Baru pulp promoted the control of oxidative stress and increased the expression of SOD and the nuclear translocation of DAF-16, resulting in an increase in life expectancy in the nematode Caenorhabditis elegans (Leite et al., 2020LEITE, N.R., ARAÚJO, L.C.A., ROCHA, P.D.S., AGARRAYUA, D.A., ÁVILA, D.S., CAROLLO, C.A., SILVA, D.B., ESTEVINHO, L.M., SOUZA, K.P. and SANTOS, E.L., 2020. Baru pulp (Dipteryx alata Vogel): fruit from the Brazilian savanna protects against oxidative stress and increases the life expectancy of Caenorhabditis elegans via SOD-3 and DAF-16. Biomolecules, vol. 10, no. 8, pp. 1-22. http://doi.org/10.3390/biom10081106.
http://doi.org/10.3390/biom10081106...
).

Bioactive compounds that are present in almond and pulp can be responsible for their antioxidant potential. Phenols are known for their ability to scavenge reactive species (Yu et al., 2021YU, M., GOUVINHAS, I., ROCHA, J. and BARROS, A.I.R.N.A., 2021. Phytochemical and antioxidant analysis of medicinal and food plants towards bioactive food and pharmaceutical resources. Scientific Reports, vol. 11, no. 1, pp. 10041. http://doi.org/10.1038/s41598-021-89437-4. PMid:33976317.
http://doi.org/10.1038/s41598-021-89437-...
). Phytic acid can prevent tissue protein damage (Siqueira et al., 2012SIQUEIRA, E.M.A., MARIN, A.M.F., CUNHA, M.S.B., FUSTINONI, A.M., SANTANA, L.P. and ARRUDA, S.F., 2012. Consumption of baru seeds [Dipteryx alata Vog.], a Brazilian savanna nut, prevents iron-induced oxidative stress in rats. Food Research International, vol. 45, no. 1, pp. 427-433. http://doi.org/10.1016/j.foodres.2011.11.005.
http://doi.org/10.1016/j.foodres.2011.11...
). Ascorbic acid reduces lipid peroxidation and restores the levels of liver enzymes, kidney function, and glutathione (Shotop and Al-Suwiti, 2021SHOTOP, Y.M. and AL-SUWITI, I.N., 2021. The possible role of vitamins E and C in reducing the toxicity of copper nanoparticles in the kidney and liver of the rats (Rattus norvegicus). Journal of King Saud University. Science, vol. 33, no. 2, pp. 101357. http://doi.org/10.1016/j.jksus.2021.101357.
http://doi.org/10.1016/j.jksus.2021.1013...
). Tocopheryl acetate (a-tocopherol) and PUFA (n-3) reduce lipid peroxidation in different tissues, and PUFA (n-3) increases GPx activity (Mattioli et al., 2021MATTIOLI, S., COLLODEL, G., SIGNORINI, C., COTOZZOLO, E., NOTO, D., CERRETANI, D., MICHELI, L., FIASCHI, A.I., BRECCHIA, G., MENCHETTI, L., MORETTI, E., OGER, C., DE FELICE, C. and CASTELLINI, C., 2021. Tissue antioxidant status and lipid peroxidation are related to dietary intake of n-3 polyunsaturated acids: a rabbit model. Antioxidants, vol. 10, no. 5, pp. 681-702. http://doi.org/10.3390/antiox10050681. PMid:33925444.
http://doi.org/10.3390/antiox10050681...
).

The use of native Brazilian foods and plants with antioxidant and protective effects against oxidative stress can improve human health in the face of various metabolic diseases (Carvalho and Conte-Junior, 2021CARVALHO, A.P.A. and CONTE-JUNIOR, C.A., 2021. Health benefits of phytochemicals from Brazilian native foods and plants: antioxidant, antimicrobial, anti-cancer, and risk factors of metabolic/endocrine disorders control. Trends in Food Science & Technology, vol. 111, pp. 534-548. http://doi.org/10.1016/j.tifs.2021.03.006.
http://doi.org/10.1016/j.tifs.2021.03.00...
). Considering the ethnopharmacological applications of this species, several studies have investigated the effects of the consumption of baru almond and almond oils on metabolic diseases.

The consumption of a dessert made with the almond (14%) for two weeks reduced triglyceride (TG) and very low-density lipoprotein (VLDL-c) levels and increased high-density lipoprotein-cholesterol (HDL-c) levels in rats (Cruz et al., 2019CRUZ, P.N.D., GAMA, L.A., AMÉRICO, M.F. and PERTUZATTI, P.B., 2019. Baru (Dipteryx alata Vogel) almond and dairy desserts with baru regulates gastrointestinal transit in rats. Journal of Food Processing and Preservation, vol. 43, no. 11, pp. 1-8. http://doi.org/10.1111/jfpp.14167.
http://doi.org/10.1111/jfpp.14167...
). The intake of a hyperlipidic diet supplemented with almond (30%) for 35 days prevented the increase in total cholesterol (TC) and low-density lipoprotein cholesterol. In addition, HDL-c levels were similar to those in the control group (Campidelli et al., 2022CAMPIDELLI, M.L.L., CARNEIRO, J.D.S., SOUZA, E.C., VILAS BOAS, E.V.B., BERTOLUCCI, S.K.V., AAZZA, S. and OLIVEIRA, R.R., 2022. Baru almonds Dipteryx alata Vog. and baru almond paste promote metabolic modulation associated with antioxidant, anti-inflammatory, and neuroprotective effects. Innovative Food Science & Emerging Technologies, vol. 80, pp. 103068. http://doi.org/10.1016/j.ifset.2022.103068.
http://doi.org/10.1016/j.ifset.2022.1030...
). Almond diet supplementation (35%) for 63 days reduced the serum TC and TG levels in rats fed a high-fat diet (Fernandes et al., 2015FERNANDES, D.C., ALVES, A.M., CASTRO, G.S.F., JORDÃO JUNIOR, A.A. and NAVES, M.M.V., 2015. Effects of baru almond and Brazil nut against hyperlipidemia and oxidative stress in vivo. Journal of Food Research, vol. 4, no. 4, pp. 38-46. http://doi.org/10.5539/jfr.v4n4p38.
http://doi.org/10.5539/jfr.v4n4p38...
). A similar intake (20 to 40%) of baru almond for 40 days reduced the serum TG, LDL-c, VLDL-c, and alanine aminotransferase levels and increased the HDL-c level in rats (Fiorini et al., 2017FIORINI, A.M., BARBALHO, S.M., GUIGUER, É.L., OSHIIWA, M., MENDES, C.G., VIEITES, R.L., CHIES, A.B. and OLIVEIRA, P.B., 2017. Dipteryx alata Vogel may improve lipid profile and atherogenic indices in wistar rats dipteryx alata and atherogenic indices. Journal of Medicinal Food, vol. 20, no. 11, pp. 1121-1126. http://doi.org/10.1089/jmf.2017.0052. PMid:29072970.
http://doi.org/10.1089/jmf.2017.0052...
). However, almond oil did not alter the lipid profile in hypercholesterolaemic rats (Reis et al., 2018bREIS, M.Á., NOVAES, R.D., BAGGIO, S.R., VIANA, A.L.M., SALLES, B.C.C., DUARTE, S.M.D.S., RODRIGUES, M.R. and PAULA, F.B.D.A., 2018b. Hepatoprotective and antioxidant activities of oil from baru almonds (Dipteryx alata Vog.) in a preclinical model of lipotoxicity and dyslipidemia. Evidence-Based Complementary and Alternative Medicine, vol. 2018, pp. 8376081. http://doi.org/10.1155/2018/8376081. PMid:30369957.
http://doi.org/10.1155/2018/8376081...
).

Supplementation with 20 g of baru almond for six weeks reduced TC and LDL-c in mildly hypercholesterolaemic individuals (Bento et al., 2014BENTO, A.P.N., COMINETTI, C., SIMÕES FILHO, A. and NAVES, M.M.V., 2014. Baru almond improves lipid profile in mildly hypercholesterolemic subjects: a randomized, controlled, crossover study. Nutrition, Metabolism, and Cardiovascular Diseases, vol. 24, no. 12, pp. 1330-1336. http://doi.org/10.1016/j.numecd.2014.07.002. PMid:25149894.
http://doi.org/10.1016/j.numecd.2014.07....
). The same serving of almond for eight weeks reduced the serum TC, TG, LDL-c, and non-HDL-c levels and increased the HDL-c level in overweight or obese women (Souza et al., 2018SOUZA, R.G.M.D., GOMES, A.C., NAVARRO, A.M., SILVA, M.A.C., BARBOSA JÚNIOR, F. and MOTA, J.F., 2018. A baru almond-enriched diet reduces abdominal adiposity and improves high-density lipoprotein concentrations: a randomized, placebo-controlled trial. Nutrition, vol. 55-56, pp. 154-160. http://doi.org/10.1016/j.nut.2018.06.001. PMid:30086484.
http://doi.org/10.1016/j.nut.2018.06.001...
). The intake of baru oil (7.2 mL.kg-1) for ten days exerted an antithrombotic effect, reduced platelet aggregation, decreased reactive oxygen species production, and improved vascular function in rats, suggesting its use in the prevention and treatment of cardiovascular conditions (Silva-Luis et al., 2022SILVA-LUIS, C.C., BRITO ALVES, J.L., OLIVEIRA, J.C.P.L., SOUSA LUIS, J.A., ARAÚJO, I.G.A., TAVARES, J.F., NASCIMENTO, Y.M., BEZERRA, L.S., ARAÚJO DE AZEVEDO, F.L.A., SOBRAL, M.V., MANGUEIRA, V.M., MEDEIROS, I.A. and VERAS, R.C., 2022. Effects of baru almond oil (Dipteryx alata Vog.) treatment on thrombotic processes, platelet aggregation, and vascular function in aorta arteries. Nutrients, vol. 14, no. 10, pp. 2098. http://doi.org/10.3390/nu14102098.
http://doi.org/10.3390/nu14102098...
).

The effects of baru almond on the lipid profile may be related to its chemical and nutritional composition. The intake of soluble and insoluble dietary fiber (Wu et al., 2020WU, W., HU, J., GAO, H., CHEN, H., FANG, X., MU, H., HAN, Y. and LIU, R., 2020. The potential cholesterol-lowering and prebiotic effects of bamboo shoot dietary fibers and their structural characteristics. Food Chemistry, vol. 332, pp. 127372. http://doi.org/10.1016/j.foodchem.2020.127372. PMid:32615381.
http://doi.org/10.1016/j.foodchem.2020.1...
; Liu et al., 2021LIU, H., ZENG, X., HUANG, J., YUAN, X., WANG, Q. and MA, L., 2021. Dietary fiber extracted from pomelo fruitlets promotes intestinal functions, both in vitro and in vivo. Carbohydrate Polymers, vol. 252, pp. 117186. http://doi.org/10.1016/j.carbpol.2020.117186. PMid:33183633.
http://doi.org/10.1016/j.carbpol.2020.11...
) and phytosterols (Salehi et al., 2021SALEHI, B., QUISPE, C., SHARIFI-RAD, J., CRUZ-MARTINS, N., NIGAM, M., MISHRA, A.P., KONOVALOV, D.A., OROBINSKAYA, V., ABU-REIDAH, I.M., ZAM, W., SHAROPOV, F., VENNERI, T., CAPASSO, R., KUKULA-KOCH, W., WAWRUSZAK, A. and KOCH, W., 2021. Phytosterols: from preclinical evidence to potential clinical applications. Frontiers in Pharmacology, vol. 11, pp. 599959. http://doi.org/10.3389/fphar.2020.599959. PMid:33519459.
http://doi.org/10.3389/fphar.2020.599959...
) promotes cholesterol adsorption and decreases TC levels. Moreover, unsaturated fatty acids, such as oleic (Piccinin et al., 2019PICCININ, E., CARIELLO, M., SANTIS, S., DUCHEIX, S., SABBÀ, C., NTAMBI, J.M. and MOSCHETTA, A., 2019. Role of oleic acid in the gut-liver axis: from diet to the regulation of its synthesis via Stearoyl-CoA desaturase 1 (SCD1). Nutrients, vol. 11, no. 10, pp. 1-22. http://doi.org/10.3390/nu11102283. PMid:31554181.
http://doi.org/10.3390/nu11102283...
) and linoleic acids (Maki et al., 2018MAKI, K.C., EREN, F., CASSENS, M.E., DICKLIN, M.R. and DAVIDSON, M.H., 2018. ω-6 polyunsaturated fatty acids and cardiometabolic health: current evidence, controversies, and research gaps. Advances in Nutrition, vol. 9, no. 6, pp. 688-700. http://doi.org/10.1093/advances/nmy038. PMid:30184091.
http://doi.org/10.1093/advances/nmy038...
), are already well described in the literature as bioactive compounds that contribute to improving lipid profiles and preventing cardiovascular diseases.

Preclinical and clinical studies have reported normal body weight gain or a reduction in adiposity after the consumption of baru almond. After nine weeks, the consumption of almond (15% lipids) promoted less body weight gain and TC and TG levels than did the consumption of Brazil nut (15% lipids) in rats (Fernandes et al., 2015FERNANDES, D.C., ALVES, A.M., CASTRO, G.S.F., JORDÃO JUNIOR, A.A. and NAVES, M.M.V., 2015. Effects of baru almond and Brazil nut against hyperlipidemia and oxidative stress in vivo. Journal of Food Research, vol. 4, no. 4, pp. 38-46. http://doi.org/10.5539/jfr.v4n4p38.
http://doi.org/10.5539/jfr.v4n4p38...
). Araújo et al. (2017)ARAÚJO, A.C.F., ROCHA, J.C., PARAISO, A.F., FERREIRA, A.V.M., SANTOS, S.H.S. and PINHO, L., 2017. Consumption of baru nuts Dipteryx alata in the treatment of obese mice. Ciência Rural, vol. 47, no. 2, pp. 1-4. http://doi.org/10.1590/0103-8478cr20151337.
http://doi.org/10.1590/0103-8478cr201513...
reported a reduction in body weight and glycaemic levels in obese mice fed 8% almond in food for eight weeks. These effects may be related to the presence of alpha-amylase inhibitors in baru almond (Bonavides et al., 2007BONAVIDES, K.B., PELEGRINI, P.B., LAUMANN, R.A., GROSSI-DE-SÁ, M.F., BLOCH JUNIOR, C., MELO, J.A.T., QUIRINO, B.F., NORONHA, E.F. and FRANCO, O.L., 2007. Molecular identification of four different alpha-amylase inhibitors from baru Dipteryx alata seeds with activity toward insect enzymes. Journal of Biochemistry and Molecular Biology, vol. 40, no. 4, pp. 494-500. http://doi.org/10.5483/BMBRep.2007.40.4.494. PMid:17669264.
http://doi.org/10.5483/BMBRep.2007.40.4....
). Consistent with these findings, the consumption of 20 g of almond per day for eight weeks increased HDL-c and reduced abdominal adiposity in obese women (Souza et al., 2018SOUZA, R.G.M.D., GOMES, A.C., NAVARRO, A.M., SILVA, M.A.C., BARBOSA JÚNIOR, F. and MOTA, J.F., 2018. A baru almond-enriched diet reduces abdominal adiposity and improves high-density lipoprotein concentrations: a randomized, placebo-controlled trial. Nutrition, vol. 55-56, pp. 154-160. http://doi.org/10.1016/j.nut.2018.06.001. PMid:30086484.
http://doi.org/10.1016/j.nut.2018.06.001...
).

Obesity is a chronic disease that can be the cause and/or consequence of other metabolic disorders, such as dyslipidaemia and glycaemic dysregulation (Safaei et al., 2021SAFAEI, M., SUNDARARAJAN, E.A., DRISS, M., BOULILA, W. and SHAPI’I, A., 2021. A systematic literature review on obesity: understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity. Computers in Biology and Medicine, vol. 136, pp. 104754. http://doi.org/10.1016/j.compbiomed.2021.104754. PMid:34426171.
http://doi.org/10.1016/j.compbiomed.2021...
). Different nutritional and functional interventions can mitigate obesity and associated metabolic disorders. Several bioactive compounds have been isolated from the baru almond and pulp, and their synergistic effects can explain the nutritional and functional benefits already observed for this species.

Soluble fiber can absorb water and form a mucilage that promotes satiety, regulates gut microbiota function (Soukoulis et al., 2018SOUKOULIS, C., GAIANI, C. and HOFFMANN, L., 2018. Plant seed mucilage as emerging biopolymer in food industry applications. Current Opinion in Food Science, vol. 22, pp. 28-42. http://doi.org/10.1016/j.cofs.2018.01.004.
http://doi.org/10.1016/j.cofs.2018.01.00...
), and reduces the bioaccessibility of total lipids, cholesterol, and bile salts simultaneously (Tamargo et al., 2020TAMARGO, A., MARTIN, D., NAVARRO DEL HIERRO, J., MORENO-ARRIBAS, M.V. and MUÑOZ, L.A., 2020. Intake of soluble fiber from chia seed reduces bioaccessibility of lipids, cholesterol and glucose in the dynamic gastrointestinal model simgi®. Food Research International, vol. 137, pp. 109364. http://doi.org/10.1016/j.foodres.2020.109364. PMid:33233067.
http://doi.org/10.1016/j.foodres.2020.10...
). Furthermore, it inhibits β-amylase and reduces blood glucose (Liu et al., 2021LIU, H., ZENG, X., HUANG, J., YUAN, X., WANG, Q. and MA, L., 2021. Dietary fiber extracted from pomelo fruitlets promotes intestinal functions, both in vitro and in vivo. Carbohydrate Polymers, vol. 252, pp. 117186. http://doi.org/10.1016/j.carbpol.2020.117186. PMid:33183633.
http://doi.org/10.1016/j.carbpol.2020.11...
). Insoluble fiber promotes less body weight gain, decreases serum TC and LDL-c concentrations, improves glucose homeostasis, and is able to modulate the gut microbiota, preventing high-fat diet-induced obesity in rats (Chang et al., 2017CHANG, S., CUI, X., GUO, M., TIAN, Y., XU, W., HUANG, K. and ZHANG, Y., 2017. Insoluble dietary fiber from pear pomace can prevent high-fat diet-induced obesity in rats mainly by improving the structure of the gut microbiota. Journal of Microbiology and Biotechnology, vol. 27, no. 4, pp. 856-867. http://doi.org/10.4014/jmb.1610.10058. PMid:28173692.
http://doi.org/10.4014/jmb.1610.10058...
).

The fats in the diet can influence adipokine levels (Nasir et al., 2021NASIR, Y., FARZOLLAHPOUR, F., MIRZABABAEI, A., MAGHBOOLI, Z. and MIRZAEI, K., 2021. Associations of dietary fats intake and adipokines levels in obese women. Clinical Nutrition ESPEN, vol. 43, pp. 390-396. http://doi.org/10.1016/j.clnesp.2021.03.018. PMid:34024546.
http://doi.org/10.1016/j.clnesp.2021.03....
). Leptin, an adipokine produced by adipose tissue, regulates energy intake and metabolism. In individuals with obesity, excess circulating leptin leads to resistance (Mishra et al., 2017MISHRA, S., GUPTA, V., MISHRA, S., SACHAN, R. and ASTHANA, A., 2017. Serum level of orexin-A, leptin, adiponectin and insulin in north Indian obese women. Diabetes & Metabolic Syndrome, vol. 11, suppl. 2, pp. S1041-S1043. http://doi.org/10.1016/j.dsx.2017.07.037. PMid:28755843.
http://doi.org/10.1016/j.dsx.2017.07.037...
). In this case, leptin plays a role as a proinflammatory adipokine (Pérez-Pérez et al., 2017PÉREZ-PÉREZ, A., VILARIÑO-GARCÍA, T., FERNÁNDEZ-RIEJOS, P., MARTÍN-GONZÁLEZ, J., SEGURA-EGEA, J.J. and SÁNCHEZ-MARGALET, V., 2017. Role of leptin as a link between metabolism and the immune system. Cytokine & Growth Factor Reviews, vol. 35, pp. 71-84. http://doi.org/10.1016/j.cytogfr.2017.03.001. PMid:28285098.
http://doi.org/10.1016/j.cytogfr.2017.03...
). The intake of PUFAs, eicosapentaenoic acid, and docosahexaenoic acid (DHA) reduces circulating leptin levels (Paz et al., 2021PAZ, S.L., PÉREZ-PÉREZ, A., VILARIÑO-GARCÍA, T., JIMÉNEZ-CORTEGANA, C., MURIANA, F.J.G., MILLÁN-LINARES, M.C. and SÁNCHEZ-MARGALET, V., 2021. Nutritional modulation of leptin expression and leptin action in obesity and obesity-associated complications. The Journal of Nutritional Biochemistry, vol. 89, pp. 108561. http://doi.org/10.1016/j.jnutbio.2020.108561. PMid:33249183.
http://doi.org/10.1016/j.jnutbio.2020.10...
). Moreover, increased DHA intake by obese women was associated with low levels of retinol-binding protein 4 (Nasir et al., 2021NASIR, Y., FARZOLLAHPOUR, F., MIRZABABAEI, A., MAGHBOOLI, Z. and MIRZAEI, K., 2021. Associations of dietary fats intake and adipokines levels in obese women. Clinical Nutrition ESPEN, vol. 43, pp. 390-396. http://doi.org/10.1016/j.clnesp.2021.03.018. PMid:34024546.
http://doi.org/10.1016/j.clnesp.2021.03....
), an adipokine related to the development of inflammation and insulin resistance (Majerczyk et al., 2016MAJERCZYK, M., OLSZANECKA-GLINIANOWICZ, M., PUZIANOWSKA-KUŹNICKA, M. and CHUDEK, J., 2016. Retinol-binding protein 4 RBP4 as the causative factor and marker of vascular injury related to insulin resistance. Postepy Higieny i Medycyny Doswiadczalnej, vol. 70, pp. 1267-1275.).

Supplementation with polyphenol-rich pulp prevented inflammatory pathway activation, body weight gain, and liver damage in rats (Santamarina et al., 2019aSANTAMARINA, A.B., JAMAR, G., MENNITTI, L.V., CARDOSO, C.M., DE ROSSO, V.V., OYAMA, L.M. and PISANI, L.P., 2019a. Polyphenols-rich fruit Euterpe edulis mart. prevents peripheral inflammatory pathway activation by the short-term high-fat diet. Molecules, vol. 24, no. 9, pp. 1-14. http://doi.org/10.3390/molecules24091655. PMid:31035535.
http://doi.org/10.3390/molecules24091655...
). These anti-inflammatory effects were subsequently confirmed in a placebo-controlled, randomized, double-blind trial with obese adults (Santamarina et al., 2019bSANTAMARINA, A.B., JAMAR, G., MENNITTI, L.V., CESAR, H.C., VASCONCELOS, J.R., OYAMA, L.M., DE ROSSO, V.V. and PISANI, L.P., 2019b. Obesity-related inflammatory modulation by juçara berry Euterpe edulis Mart. supplementation in Brazilian adults: a double-blind randomized controlled trial. European Journal of Nutrition, vol. 59, no. 4, pp. 1693-1705. http://doi.org/10.1007/s00394-019-02024-2. PMid:31197507.
http://doi.org/10.1007/s00394-019-02024-...
).

Thus, we believe that the antioxidant and dyslipidaemic properties mediated by the nutritional and phytochemical composition of baru, especially almond, seem to favour obesity and glycaemic control by reducing the activation of inflammatory pathways.

3.11.7. Gastrointestinal regulation (GR)

The consumption of a dessert made with almond (14%) for two weeks reversed gastrointestinal effects caused by high milk consumption (>40% in the diet), promoting slowed gastric emptying and preventing the delay of intestinal transit time in healthy rats (Cruz et al., 2019CRUZ, P.N.D., GAMA, L.A., AMÉRICO, M.F. and PERTUZATTI, P.B., 2019. Baru (Dipteryx alata Vogel) almond and dairy desserts with baru regulates gastrointestinal transit in rats. Journal of Food Processing and Preservation, vol. 43, no. 11, pp. 1-8. http://doi.org/10.1111/jfpp.14167.
http://doi.org/10.1111/jfpp.14167...
). Bidô et al. (2023)BIDÔ, R.C.A., PEREIRA, D.E., ALVES, M.C., DUTRA, L.M.G., COSTA, A.C.S., VIERA, V.B., ARAÚJO, W.J., LEITE, E.L., OLIVEIRA, C.J.B., ALVES, A.F., FREITAS, J.C.R., MARTINS, A.C.S., CIRINO, J.A. and SOARES, J.K.B., 2023. Mix of almond baru (Dipteryx alata Vog.) and goat whey modulated intestinal microbiota, improved memory and induced anxiolytic like behavior in aged rats. Journal of Psychiatric Research, vol. 164, pp. 98-117. http://doi.org/10.1016/j.jpsychires.2023.05.046. PMid:37331263.
http://doi.org/10.1016/j.jpsychires.2023...
demonstrated beneficial modulation of the faecal microbiota with a reduction in the abundance of the pathogenic genus Clostridia_UFC-014. In another study, a supplementation diary of 5 g of oil for 12 weeks improved bowel habits and reduced the force required for evacuation in haemodialysis patients (Schincaglia et al., 2021SCHINCAGLIA, R.M., PIMENTEL, G.D., PEIXOTO, M.D.R.G., CUPPARI, L. and MOTA, J.F., 2021. The effect of baru (Dypterix alata Vog.) almond oil on markers of bowel habits in hemodialysis patients. Evidence-Based Complementary and Alternative Medicine, vol. 2021, pp. 3187305. http://doi.org/10.1155/2021/3187305. PMid:34135977.
http://doi.org/10.1155/2021/3187305...
). These data demonstrate that baru almond and oil seem to modulate the gastrointestinal system, preventing gastrointestinal disorders caused by dairy desserts (Cruz et al., 2019CRUZ, P.N.D., GAMA, L.A., AMÉRICO, M.F. and PERTUZATTI, P.B., 2019. Baru (Dipteryx alata Vogel) almond and dairy desserts with baru regulates gastrointestinal transit in rats. Journal of Food Processing and Preservation, vol. 43, no. 11, pp. 1-8. http://doi.org/10.1111/jfpp.14167.
http://doi.org/10.1111/jfpp.14167...
) and improving the quality of life of haemodialysis patients (Schincaglia et al., 2021SCHINCAGLIA, R.M., PIMENTEL, G.D., PEIXOTO, M.D.R.G., CUPPARI, L. and MOTA, J.F., 2021. The effect of baru (Dypterix alata Vog.) almond oil on markers of bowel habits in hemodialysis patients. Evidence-Based Complementary and Alternative Medicine, vol. 2021, pp. 3187305. http://doi.org/10.1155/2021/3187305. PMid:34135977.
http://doi.org/10.1155/2021/3187305...
). It is suggested that the high fiber content present in baru pulp can favour the modulation of the intestinal microbiota (Silva et al., 2021bSILVA, J.S., FERREIRA, N.B.S., ASQUIERI, E.R., DAMIANI, C. and ASQUIERI, E.M.A.R., 2021b. Chemical monitoring of baru (Dipteryx alata Vog.) pulp fermented beverage. Food Science and Technology, vol. 41, suppl. 1, pp. 155-162. http://doi.org/10.1590/fst.14420.
http://doi.org/10.1590/fst.14420...
). However, to date, no studies have investigated which compounds or compounds are responsible for this effect.

Recently, the prebiotic potential of the pulp was reported. The growth of the probiotic strains was observed. Furthermore, pulp increased the abundance of Lactobacillus-Enterococcus, Bifidobacterium, and Bacteroides-Prevotella and improved the production of lactate and metabolites derived from the fermentation of nondigestible carbohydrates, such as propionate, butyrate, and acetate, in the human colonic microbiota (Alves-Santos et al., 2023ALVES-SANTOS, A.M., SAMPAIO, K.B., LIMA, M.S., COELHO, A.S.G., SOUZA, E.L. and NAVES, M.M.V., 2023. Chemical composition and prebiotic activity of baru Dipteryx alata Vog. pulp on probiotic strains and human colonic microbiota. Food Research International, vol. 164, pp. 112366. http://doi.org/10.1016/j.foodres.2022.112366. PMid:36737953.
http://doi.org/10.1016/j.foodres.2022.11...
).

3.11.8. Anti-inflammatory activity (ANA) and memory and anxiolytic-like behaviour (MAB)

Rats fed an elaborate hyperlipidic diet supplemented with baru almond (30%) showed reduced levels of cyclooxygenase-2 in the brain, suggesting that this diet is an effective neuroprotector (Campidelli et al., 2022CAMPIDELLI, M.L.L., CARNEIRO, J.D.S., SOUZA, E.C., VILAS BOAS, E.V.B., BERTOLUCCI, S.K.V., AAZZA, S. and OLIVEIRA, R.R., 2022. Baru almonds Dipteryx alata Vog. and baru almond paste promote metabolic modulation associated with antioxidant, anti-inflammatory, and neuroprotective effects. Innovative Food Science & Emerging Technologies, vol. 80, pp. 103068. http://doi.org/10.1016/j.ifset.2022.103068.
http://doi.org/10.1016/j.ifset.2022.1030...
). In a randomized, double-blind, 12-week placebo-controlled clinical study, the intake of baru almond oil (5 g/day) decreased the level of ultrasensitive C-reactive protein in haemodialysis patients (Schincaglia et al., 2020SCHINCAGLIA, R.M., CUPPARI, L., NERI, H.F.S., CINTRA, D.E., SANT’ANA, M.R. and MOTA, J.F., 2020. Effects of baru almond oil (Dipteryx alata Vog.) supplementation on body composition, inflammation, oxidative stress, lipid profile, and plasma fatty acids of hemodialysis patients: a randomized, double-blind, placebo-controlled clinical trial. Complementary Therapies in Medicine, vol. 52, pp. 102479. http://doi.org/10.1016/j.ctim.2020.102479. PMid:32951729.
http://doi.org/10.1016/j.ctim.2020.10247...
). Recently, the consumption of baru almond (2 g) alone or in combination with goat milk whey (mix) increased the deposition of MUFAs, PUFAs, and oleic acid in the brains of elderly animals, improving memory and anxiolytic-like behaviour in rats during ageing (Bidô et al., 2023BIDÔ, R.C.A., PEREIRA, D.E., ALVES, M.C., DUTRA, L.M.G., COSTA, A.C.S., VIERA, V.B., ARAÚJO, W.J., LEITE, E.L., OLIVEIRA, C.J.B., ALVES, A.F., FREITAS, J.C.R., MARTINS, A.C.S., CIRINO, J.A. and SOARES, J.K.B., 2023. Mix of almond baru (Dipteryx alata Vog.) and goat whey modulated intestinal microbiota, improved memory and induced anxiolytic like behavior in aged rats. Journal of Psychiatric Research, vol. 164, pp. 98-117. http://doi.org/10.1016/j.jpsychires.2023.05.046. PMid:37331263.
http://doi.org/10.1016/j.jpsychires.2023...
). Considering that few studies have explored the anti-inflammatory and behaviour modulator potential of these compounds, additional studies need to be performed to confirm these effects.

4. Conclusion

In summary, almond and bark are the parts most commonly used in traditional medicine for various ailments. However, a large number of studies have focused on almond as a hypolipidaemic agent and bark for the treatment of snakebites (Figure 11). In this sense, we observed that several indications of popular use have not yet been investigated, leaving an important field to be explored in future studies, mainly regarding other parts of the plant, such as the pulp, flowers, and leaves.

Figure 11
Frequency of indication in popular use and main nutrients, chemical class, and biological activity reported for each part of the plant (number of articles). (A) almond; (B) pulp; (C) bark; (D) leaves.

Research and incentives for baru bioprospecting could favour the discovery and development of new products that benefit human nutrition and health.

Supplementary Material

Supplementary material accompanies this paper.

Table S1 Baru studies included in this review.

This material is available as part of the online article from https://doi.org/10.1590/1519-6984.278932

References

  • ALARCON, R.T., GAGLIERI, C., LAMB, K.J., NORTH, M. and BANNACH, G., 2020. Spectroscopic characterization and thermal behavior of baru nut and macaw palm vegetable oils and their epoxidized derivatives. Industrial Crops and Products, vol. 154, pp. 112585. http://doi.org/10.1016/j.indcrop.2020.112585
    » http://doi.org/10.1016/j.indcrop.2020.112585
  • ALMEIDA, A.B.D., SILVA, A.K.C., LODETE, A.R., EGEA, M.B., LIMA, M.C.P.M. and SILVA, F.G., 2019. Assessment of chemical and bioactive properties of native fruits from the Brazilian Cerrado. Nutrition & Food Science, vol. 49, no. 3, pp. 381-392. http://doi.org/10.1108/NFS-07-2018-0199
    » http://doi.org/10.1108/NFS-07-2018-0199
  • ALVES, A.M., MENDONÇA, A.L., CALIARI, M. and CARDOSO-SANTIAGO, R.A., 2010. Avaliação química e física de componentes do baru Dipteryx alata Vog. para estudo da vida de prateleira. Pesquisa Agropecuária Tropical, vol. 40, no. 3, pp. 266-273. http://doi.org/10.5216/pat.v40i3.6343
    » http://doi.org/10.5216/pat.v40i3.6343
  • ALVES, A.M., FERNANDES, D.C., BORGES, J.F., SOUSA, A.G.O. and NAVES, M.M.V., 2016. Oilseeds native to the Cerrado have fatty acid profile beneficial for cardiovascular health. Revista de Nutrição, vol. 29, no. 6, pp. 859-866. http://doi.org/10.1590/1678-98652016000600010
    » http://doi.org/10.1590/1678-98652016000600010
  • ALVES, N.M.C., SILVA, T.A.A., GALLE, N.B.C., SILVA, I.D.F. and SILVA, M.I.P., 2021a. Drying kinetics and thermodynamic properties of ‘baru’ almond flours. Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 25, no. 1, pp. 30-36. http://doi.org/10.1590/1807-1929/agriambi.v25n1p30-36
    » http://doi.org/10.1590/1807-1929/agriambi.v25n1p30-36
  • ALVES, N.M.C., SILVA, T.A.A., GALLE, N.B.C. and SAIKHONEM, I.D., 2021b. Moisture adsorption isotherms of baru almond flours. Agrária, vol. 16, no. 2, pp. 1-7. http://doi.org/10.5039/agraria.v16i3a8719
    » http://doi.org/10.5039/agraria.v16i3a8719
  • ALVES-SANTOS, A.M., SAMPAIO, K.B., LIMA, M.S., COELHO, A.S.G., SOUZA, E.L. and NAVES, M.M.V., 2023. Chemical composition and prebiotic activity of baru Dipteryx alata Vog. pulp on probiotic strains and human colonic microbiota. Food Research International, vol. 164, pp. 112366. http://doi.org/10.1016/j.foodres.2022.112366 PMid:36737953.
    » http://doi.org/10.1016/j.foodres.2022.112366
  • ARACAVA, K.K., CAPELLINI, M.C., GONÇALVES, D., MORE, I.D.S., MARGOTO, C.M. and RODRIGUES, C.E.C., 2022. Valorization of the baru Dipteryx alata Vog. processing chain: technological properties of defatted nut flour and oil solubility in ethanol and isopropanol. Food Chemistry, vol. 383, pp. 132587. http://doi.org/10.1016/j.foodchem.2022.132587 PMid:35247726.
    » http://doi.org/10.1016/j.foodchem.2022.132587
  • ARAÚJO, A.C.F., ROCHA, J.C., PARAISO, A.F., FERREIRA, A.V.M., SANTOS, S.H.S. and PINHO, L., 2017. Consumption of baru nuts Dipteryx alata in the treatment of obese mice. Ciência Rural, vol. 47, no. 2, pp. 1-4. http://doi.org/10.1590/0103-8478cr20151337
    » http://doi.org/10.1590/0103-8478cr20151337
  • ARAUJO, W.O., SANTOS, D.M. and ASCHERI, D.P.R., 2013. Otimização do processo de extração de açúcares redutores da polpa do baru. Revista Agrotecnologia, vol. 4, no. 2, pp. 118-133. http://doi.org/10.12971/2179-5959/agrotecnologia.v4n2p118-133
    » http://doi.org/10.12971/2179-5959/agrotecnologia.v4n2p118-133
  • ARELHANO, L.E., CANDIDO, C.J., GUIMARÃES, R.C.A. and PRATES, M.F.O., 2019. Nutritive, bioactive and sensory characterization of frozen yogurt with added baru nuts. Interações, vol. 20, no. 1, pp. 257-265. http://doi.org/10.20435/inter.v0i0.1648
    » http://doi.org/10.20435/inter.v0i0.1648
  • ARRUDA-SILVA, T.A., ALVES, N.M.C., GALLE, N.B.C., SANTOS, S.B. and ANDREATTA, E., 2022. Thermodynamic properties of the water adsorption process in baru flours. Engenharia Agrícola, vol. 42, no. 2, e20200141. http://doi.org/10.1590/1809-4430-eng.agric.v42n2e20200141/2022
    » http://doi.org/10.1590/1809-4430-eng.agric.v42n2e20200141/2022
  • AŞKIN, Ö., UZUNÇAKMAK, T.K.Ü., ALTUNKALEM, N. and TÜZÜN, Y., 2021. Vitamin deficiencies/hypervitaminosis and the skin. Clinics in Dermatology, vol. 39, no. 5, pp. 847-857. http://doi.org/10.1016/j.clindermatol.2021.05.010 PMid:34785012.
    » http://doi.org/10.1016/j.clindermatol.2021.05.010
  • BAI, G., MA, C. and CHEN, X., 2021. Phytosterols in edible oil: Distribution, analysis and variation during processing. Grain & Oil Science and Technology, vol. 4, no. 1, pp. 33-44. http://doi.org/10.1016/j.gaost.2020.12.003
    » http://doi.org/10.1016/j.gaost.2020.12.003
  • BARIZÃO, E.O., BOEING, J.S., ROTTA, E.M., VOLPATO, H., NAKAMURA, C.V., MALDANER, L. and VISENTAINER, J.V., 2021. Phenolic composition of Dipteryx alata Vogel pulp + peel and its antioxidant and cytotoxic properties. Journal of the Brazilian Chemical Society, vol. 32, no. 12, pp. 2206-2214. http://doi.org/10.21577/0103-5053.20210112
    » http://doi.org/10.21577/0103-5053.20210112
  • BARROS, H.E.A.D., ALEXANDRE, A.C.S., CAMPOLINA, G.A., ALVARENGA, G.F., SILVA, L.M.S.F., NATARELLI, C.V.L., CARVALHO, E.E.N. and VILAS BOAS, E.V.B., 2021. Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysis. Lebensmittel-Wissenschaft + Technologie, vol. 152, pp. 112372. http://doi.org/10.1016/j.lwt.2021.112372
    » http://doi.org/10.1016/j.lwt.2021.112372
  • BENTO, A.P.N., COMINETTI, C., SIMÕES FILHO, A. and NAVES, M.M.V., 2014. Baru almond improves lipid profile in mildly hypercholesterolemic subjects: a randomized, controlled, crossover study. Nutrition, Metabolism, and Cardiovascular Diseases, vol. 24, no. 12, pp. 1330-1336. http://doi.org/10.1016/j.numecd.2014.07.002 PMid:25149894.
    » http://doi.org/10.1016/j.numecd.2014.07.002
  • BESSA, N.G.F., BORGES, J.C.M., BESERRA, F.P., CARVALHO, R.H.A., PEREIRA, M.A.B., FAGUNDES, R., CAMPOS, S.L., RIBEIRO, L.U., QUIRINO, M.S., CHAGAS JUNIOR, A.F. and ALVES, A., 2013. Prospecção fitoquímica preliminar de plantas nativas do cerrado de uso popular medicinal pela comunidade rural do assentamento Vale Verde - Tocantins. Revista Brasileira de Plantas Medicinais, vol. 15, no. 4, pp. 692-707. http://doi.org/10.1590/S1516-05722013000500010
    » http://doi.org/10.1590/S1516-05722013000500010
  • BIDÔ, R.C.A., PEREIRA, D.E., ALVES, M.C., DUTRA, L.M.G., COSTA, A.C.S., VIERA, V.B., ARAÚJO, W.J., LEITE, E.L., OLIVEIRA, C.J.B., ALVES, A.F., FREITAS, J.C.R., MARTINS, A.C.S., CIRINO, J.A. and SOARES, J.K.B., 2023. Mix of almond baru (Dipteryx alata Vog.) and goat whey modulated intestinal microbiota, improved memory and induced anxiolytic like behavior in aged rats. Journal of Psychiatric Research, vol. 164, pp. 98-117. http://doi.org/10.1016/j.jpsychires.2023.05.046 PMid:37331263.
    » http://doi.org/10.1016/j.jpsychires.2023.05.046
  • BIESKI, I.G.C., SANTOS, F.R., OLIVEIRA, R.M., ESPINOSA, M.M., MACEDO, M., ALBUQUERQUE, U.P. and MARTINS, D.T.O., 2012. Ethnopharmacology of medicinal plants of the Pantanal region Mato Grosso, Brazil. Evidence-Based Complementary and Alternative Medicine, vol. 2012, pp. 272749. http://doi.org/10.1155/2012/272749 PMid:22474496.
    » http://doi.org/10.1155/2012/272749
  • BISPO, T.W. and BRAGA, C.L., 2021. A cadeia produtiva do baru. In: G.S. MEDINA and J.E. CRUZ, eds. Estudos em agronegócio: participação brasileira nas cadeias produtivas Goiânia: Kelps, pp. 337-339.
  • BONAVIDES, K.B., PELEGRINI, P.B., LAUMANN, R.A., GROSSI-DE-SÁ, M.F., BLOCH JUNIOR, C., MELO, J.A.T., QUIRINO, B.F., NORONHA, E.F. and FRANCO, O.L., 2007. Molecular identification of four different alpha-amylase inhibitors from baru Dipteryx alata seeds with activity toward insect enzymes. Journal of Biochemistry and Molecular Biology, vol. 40, no. 4, pp. 494-500. http://doi.org/10.5483/BMBRep.2007.40.4.494 PMid:17669264.
    » http://doi.org/10.5483/BMBRep.2007.40.4.494
  • BORGES, T.H.P., RODRIGUES, N., SOUZA, A.M.D. and PEREIRA, J.A., 2014. Effect of different extraction conditions on the antioxidant potential of baru almonds Dipteryx alata Vog.: comparison to common nuts from Brazil. Journal of Food and Nutrition Research, vol. 53, no. 2, pp. 180-188.
  • BORGES, T.H.P., MALHEIRO, R., SOUZA, A.M.D., CASAL, S. and PEREIRA, J.A., 2015. Microwave heating induces changes in the physicochemical properties of baru Dipteryx alata Vog. and soybean crude oils. European Journal of Lipid Science and Technology, vol. 117, no. 4, pp. 503-513. http://doi.org/10.1002/ejlt.201400351
    » http://doi.org/10.1002/ejlt.201400351
  • BOUDOU, F., BENDAHMANE-SALMI, M., BENABDERRAHMANE, M., BELAKREDAR, A., BERROUKCHE, A. and ZAOUI, O., 2019. Assessment of a new approach of metal ions chelation by Gallic acid. Journal of Desalination and Water Purification, vol. 15, pp. 3-6.
  • BRASIL, 2020 [viewed 2 February 2024]. Instrução Normativa - IN nº 475, de 8 de outubro de 2020 [online]. Diário Oficial da República Federativa do Brasil, Brasilia, 23 nov. Available from: https://antigo.anvisa.gov.br/documents/10181/3882585/%283%29IN_75_2020_COMP.pdf/e5a331f2-86db-4bc8-9f39-afb6c1d7e19f
    » https://antigo.anvisa.gov.br/documents/10181/3882585/%283%29IN_75_2020_COMP.pdf/e5a331f2-86db-4bc8-9f39-afb6c1d7e19f
  • BRASIL, 2021a [viewed 25 February 2023]. Portaria Interministerial nº 10, de 21 de julho de 2021 [online]. Diário Oficial da República Federativa do Brasil, Brasilia, 22 jul. Available from: https://in.gov.br/en/web/dou/-/portaria-interministerial-mapa/mma-n-10-de-21-de-julho-de-2021-333502918/
    » https://in.gov.br/en/web/dou/-/portaria-interministerial-mapa/mma-n-10-de-21-de-julho-de-2021-333502918/
  • BRASIL, 2021b [viewed 2 February 2024]. Resolução da Diretoria Colegiada - RDC nº 466, de 10 de fevereiro de 2021 [online]. Diário Oficial da República Federativa do Brasil, Brasilia, 17 fev. Available from: https://antigo.anvisa.gov.br/documents/10181/5918056/RDC_466_2021_COMP.pdf/9b6e0905-5198-4d53-8ecb-09fd14237bd8
    » https://antigo.anvisa.gov.br/documents/10181/5918056/RDC_466_2021_COMP.pdf/9b6e0905-5198-4d53-8ecb-09fd14237bd8
  • BRASIL, 2023 [viewed 25 February 2023]. Portaria Interministerial nº 7.228, de 22 de janeiro de 2023 [online]. Diário Oficial da República Federativa do Brasil, Brasilia, 13 jul. Available from: https://www.sinj.df.gov.br/sinj/Norma/a9f2e0352919444292fa2ff8de262029/Lei_7228_2023.html/
    » https://www.sinj.df.gov.br/sinj/Norma/a9f2e0352919444292fa2ff8de262029/Lei_7228_2023.html/
  • BRASIL, 2024a [viewed 15 February 2024]. Biodiversidade do Cerrado [online]. Available from: https://www.icmbio.gov.br/cbc/conservacao-da-biodiversidade/biodiversidade.html
    » https://www.icmbio.gov.br/cbc/conservacao-da-biodiversidade/biodiversidade.html
  • BRASIL, 2024b [viewed 15 February 2024]. O bioma Cerrado [online]. Available from: https://antigo.mma.gov.br/biomas/cerrado.html/
    » https://antigo.mma.gov.br/biomas/cerrado.html/
  • BUENO, N.R., MARTINS, L.A., SILVA, M.S. and CAMPOS, E.P., 2020. Plantas medicinais utilizadas para problemas do sistema circulatório em Rondonópolis MT. Biodiversidade, vol. 19, no. 4, pp. 23-31.
  • CAETANO, K.A., CEOTTO, J.M., RIBEIRO, A.P.B., MORAIS, F.P.R., FERRARI, R.A., PACHECO, M.T.B. and CAPITANI, C.D., 2017. Effect of baru Dipteryx alata Vog. addition on the composition and nutritional quality of cookies. Food Science and Technology, vol. 37, no. 2, pp. 239-245. http://doi.org/10.1590/1678-457x.19616
    » http://doi.org/10.1590/1678-457x.19616
  • CAMPIDELLI, M.L.L., CARNEIRO, J., SOUZA, E.C., MAGALHÃES, M., KONIG, I., BRAGA, M., ORLANDO, T., SIMÃO, S.D., LIMA, L.I. and VILAS BOAS, E.V.B., 2019. Impact of the drying process on the quality and physicochemical and mineral composition of baru almonds Dipteryx Alata Vog. Journal of Culinary Science & Technology, vol. 18, no. 3, pp. 231-243. http://doi.org/10.1080/15428052.2019.1573710
    » http://doi.org/10.1080/15428052.2019.1573710
  • CAMPIDELLI, M.L.L., CARNEIRO, J.D.S., SOUZA, E.C., MAGALHÃES, M.F., NUNES, E.E.C., FARIA, P.B., FRANCO, M. and VILAS BOAS, E.V.B., 2020a. Effects of the drying process on the fatty acid content, phenolic profile, tocopherols and antioxidant activity of baru almonds (Dipteryx alata Vog.). Grasas y Aceites, vol. 71, no. 1, e343. http://doi.org/10.3989/gya.1170182
    » http://doi.org/10.3989/gya.1170182
  • CAMPIDELLI, M.L.L., CARNEIRO, J.D.S., SOUZA, E.C., MAGALHÃES, M.F., REIS, G.L. and VILAS BOAS, E.V.B., 2020b. Fatty acid profile, mineral content and bioactive compounds of cocoa spreads supplemented with baru almonds Dipteryx alata Vog. Grasas y Aceites, vol. 71, no. 4, e382. http://doi.org/10.3989/gya.0809192
    » http://doi.org/10.3989/gya.0809192
  • CAMPIDELLI, M.L.L., CARNEIRO, J.D.S., SOUZA, E.C., VILAS BOAS, E.V.B., BERTOLUCCI, S.K.V., AAZZA, S. and OLIVEIRA, R.R., 2022. Baru almonds Dipteryx alata Vog. and baru almond paste promote metabolic modulation associated with antioxidant, anti-inflammatory, and neuroprotective effects. Innovative Food Science & Emerging Technologies, vol. 80, pp. 103068. http://doi.org/10.1016/j.ifset.2022.103068
    » http://doi.org/10.1016/j.ifset.2022.103068
  • CARDOSO, B.R., APOLINÁRIO, D., BANDEIRA, V.S., BUSSE, A.L., MAGALDI, M.R., JACOB-FILHO, W. and COZZOLINO, S.M.F., 2016. Effects of Brazil nut consumption on selenium status and cognitive performance in older adults with mild cognitive impairment: a randomized controlled pilot trial. European Journal of Nutrition, vol. 55, no. 1, pp. 107-116. http://doi.org/10.1007/s00394-014-0829-2 PMid:25567069.
    » http://doi.org/10.1007/s00394-014-0829-2
  • CARVALHO, A.P.A. and CONTE-JUNIOR, C.A., 2021. Health benefits of phytochemicals from Brazilian native foods and plants: antioxidant, antimicrobial, anti-cancer, and risk factors of metabolic/endocrine disorders control. Trends in Food Science & Technology, vol. 111, pp. 534-548. http://doi.org/10.1016/j.tifs.2021.03.006
    » http://doi.org/10.1016/j.tifs.2021.03.006
  • CARVALHO, C.S., LIMA, H.C. and CARDOSO, D.B.O.S., 2022 [viewed 20 February 2023]. Dipteryx [online]. Available from: https://floradobrasil.jbrj.gov.br/FB29628/
    » https://floradobrasil.jbrj.gov.br/FB29628/
  • CHANG, S., CUI, X., GUO, M., TIAN, Y., XU, W., HUANG, K. and ZHANG, Y., 2017. Insoluble dietary fiber from pear pomace can prevent high-fat diet-induced obesity in rats mainly by improving the structure of the gut microbiota. Journal of Microbiology and Biotechnology, vol. 27, no. 4, pp. 856-867. http://doi.org/10.4014/jmb.1610.10058 PMid:28173692.
    » http://doi.org/10.4014/jmb.1610.10058
  • CHAÑI-PAUCAR, L.O., JOHNER, J.C.F., HATAMI, T. and MEIRELES, M.A.A., 2022. Simultaneous integration of supercritical fluid extraction and mechanical cold pressing for the extraction from baru seed. The Journal of Supercritical Fluids, vol. 183, no. 1, pp. 105553. http://doi.org/10.1016/j.supflu.2022.105553
    » http://doi.org/10.1016/j.supflu.2022.105553
  • CHAÑI-PAUCAR, L.O., OSORIO-TOBÓN, J.F., JOHNER, J.C.F. and MEIRELES, M.A.A., 2021. A comparative and economic study of the extraction of oil from baru Dipteryx alata seeds by supercritical CO2 with and without mechanical pressing. Heliyon, vol. 7, no. 1, e05971. http://doi.org/10.1016/j.heliyon.2021.e05971 PMid:33537470.
    » http://doi.org/10.1016/j.heliyon.2021.e05971
  • CILLA, A., BOSCH, L., BARBERÁ, R. and ALEGRÍA, A., 2018. Effect of processing on the bioaccessibility of bioactive compounds - A review focusing on carotenoids, minerals, ascorbic acid, tocopherols and polyphenols. Journal of Food Composition and Analysis, vol. 68, pp. 3-15. http://doi.org/10.1016/j.jfca.2017.01.009
    » http://doi.org/10.1016/j.jfca.2017.01.009
  • COCO, J.C., ATAIDE, J.A., SAKE, J.A., TAMBOURGI, E.B., EHRHARDT, C. and MAZZOLA, P.V., 2021. In vitro antioxidant and wound healing properties of baru nut extract Dipteryx alata Vog. in pulmonary epithelial cells for therapeutic application in chronic pulmonary obstructive disease. COPD. Natural Product Research, vol. 7, no. 17, pp. 4475-4481. http://doi.org/10.1080/14786419.2021.1984909 PMid:34618614.
    » http://doi.org/10.1080/14786419.2021.1984909
  • COUTINHO, G.S.M., RIBEIRO, A.E.C., PRADO, P.M.C., OLIVEIRA, E.R., CARELI-GONDIM, I., OLIVEIRA, A.R., SOARES JÚNIOR, M.S., CALIARI, M. and VILAS BOAS, E.V.B., 2021. Green banana starch enhances physicochemical and sensory quality of baru almond-based fermented product with probiotic bacteria. International Journal of Food Science & Technology, vol. 56, no. 10, pp. 5097-5106. http://doi.org/10.1111/ijfs.15260
    » http://doi.org/10.1111/ijfs.15260
  • CZEDER, L.P., FERNANDES, D.C., FREITAS, J.B. and NAVES, M.M., 2012. Baru almonds from different regions of the Brazilian Savanna: implications on physical and nutritional characteristics. Agricultural Sciences, vol. 3, no. 5, pp. 745-754. http://doi.org/10.4236/as.2012.35090
    » http://doi.org/10.4236/as.2012.35090
  • CRUZ, K.S.D., SILVA, M.A.D., FREITAS, O.D.D. and NEVES, V.A., 2011. Partial characterization of proteins from baru (Dipteryx alata Vog) seeds. Journal of the Science of Food and Agriculture, vol. 91, no. 11, pp. 2006-2012. http://doi.org/10.1002/jsfa.4410 PMid:21484809.
    » http://doi.org/10.1002/jsfa.4410
  • CRUZ, P.N.D., GAMA, L.A., AMÉRICO, M.F. and PERTUZATTI, P.B., 2019. Baru (Dipteryx alata Vogel) almond and dairy desserts with baru regulates gastrointestinal transit in rats. Journal of Food Processing and Preservation, vol. 43, no. 11, pp. 1-8. http://doi.org/10.1111/jfpp.14167
    » http://doi.org/10.1111/jfpp.14167
  • DAS, G., SHARMA, A. and SARKAR, P.K., 2022. Conventional and emerging processing techniques for the post-harvest reduction of antinutrients in edible legumes. Applied Food Research, vol. 2, no. 1, pp. 100112. http://doi.org/10.1016/j.afres.2022.100112
    » http://doi.org/10.1016/j.afres.2022.100112
  • DOLEY, J., 2017. Vitamins and minerals in older adults: causes, diagnosis, and treatment of deficiency, nutrition and functional foods for healthy aging. In: R.R. WATSON, ed. Nutrition and functional foods for healthy aging London: Academic Press, pp. 125-137. http://doi.org/10.1016/B978-0-12-805376-8.00014-9
    » http://doi.org/10.1016/B978-0-12-805376-8.00014-9
  • DZOYEM, J.P., MELONG, R., TSAMO, A.T., TCHINDA, A.T., KAPCHE, D.G.W.F., NGADJUI, B.T., MCGAW, L.J. and ELOFF, J.N., 2017. Cytotoxicity, antimicrobial and antioxidant activity of eight compounds isolated from Entada abyssinica (Fabaceae). BMC Research Notes, vol. 10, no. 1, pp. 118. http://doi.org/10.1186/s13104-017-2441-z PMid:28264698.
    » http://doi.org/10.1186/s13104-017-2441-z
  • EGEA, M.B. and TAKEUCHI, K.P., 2020. Bioactive compounds in baru almond (Dipteryx alata Vogel): nutritional composition and health effects. In: H. MURTHY and V. BAPAT, eds. Bioactive compounds in underutilized fruits and nuts. Cham: Springer, pp. 289-302. Reference Series in Phytochemistry. http://doi.org/10.1007/978-3-030-30182-8_17
    » http://doi.org/10.1007/978-3-030-30182-8_17
  • EL-MEGHARBEL, S.M. and HAMZA, R.Z., 2022. Synthesis, spectroscopic characterizations, conductometric titration and investigation of potent antioxidant activities of gallic acid complexes with Ca (II), Cu (II), Zn(III), Cr(III) and Se (IV) metal ions. Journal of Molecular Liquids, vol. 358, pp. 119196. http://doi.org/10.1016/j.molliq.2022.119196
    » http://doi.org/10.1016/j.molliq.2022.119196
  • ERUKAINURE, O.L., IJOMONE, O.M., CHUKWUMA, C.I., XIAO, X., SALAU, V.F. and ISLAM, M.S., 2020. Dacryodes edulis G. Don H.J. Lam modulates glucose metabolism, cholinergic activities and NRF2 expression, while suppressing oxidative stress and dyslipidemia in diabetic rats. Journal of Ethnopharmacology, vol. 255, pp. 112744. http://doi.org/10.1016/j.jep.2020.112744 PMid:32165174.
    » http://doi.org/10.1016/j.jep.2020.112744
  • ESTEVES-PEDRO, N.M., BORIM, T., NAZATO, V.S., SILVA, M.G., LOPES, P.S., SANTOS, M.G., DAL BELO, C.A., PRIMILA CARDOSO, C.R., VARANDA, E.A., GROPPO, F.C., GERENUTTI, M. and OSHIMA-FRANCO, Y., 2012. In vitro and in vivo safety evaluation of Dipteryx alata Vogel extract. BMC Complementary and Alternative Medicine, vol. 12, no. 9, pp. 9. http://doi.org/10.1186/1472-6882-12-9 PMid:22305153.
    » http://doi.org/10.1186/1472-6882-12-9
  • ESTEVES-PEDRO, N.M., RODAS, A.C.D., DAL BELO, C.A., OSHIMA-FRANCO, Y., DOS SANTOS, M.G. and LOPES, P.S., 2011. Implementation of the three Rs in the human hazard assessment of Brazilian medicinal plants: an evaluation of the cytotoxic and genotoxic potentials of Dipteryx alata Vogel. Alternatives to Laboratory Animals, vol. 39, no. 2, pp. 189-196. http://doi.org/10.1177/026119291103900207 PMid:21639681.
    » http://doi.org/10.1177/026119291103900207
  • FEIZOLLAHI, E., MIRMAHDI, R.S., ZOGHI, A., ZIJLSTRA, R.T., ROOPESH, M.S. and VASANTHAN, T., 2021. Review of the beneficial and anti-nutritional qualities of phytic acid, and procedures for removing it from food products. Food Research International, vol. 143, pp. 110284. http://doi.org/10.1016/j.foodres.2021.110284 PMid:33992384.
    » http://doi.org/10.1016/j.foodres.2021.110284
  • FERNANDES, D.C., FREITAS, J.B., CZEDER, L.P. and NAVES, M.M.V., 2010. Nutritional composition and protein value of the baru (Dipteryx alata Vog.) almond from the Brazilian Savanna. Journal of the Science of Food and Agriculture, vol. 90, no. 10, pp. 1650-1655. http://doi.org/10.1002/jsfa.3997 PMid:20564449.
    » http://doi.org/10.1002/jsfa.3997
  • FERNANDES, D.C., ALVES, A.M., CASTRO, G.S.F., JORDÃO JUNIOR, A.A. and NAVES, M.M.V., 2015. Effects of baru almond and Brazil nut against hyperlipidemia and oxidative stress in vivo. Journal of Food Research, vol. 4, no. 4, pp. 38-46. http://doi.org/10.5539/jfr.v4n4p38
    » http://doi.org/10.5539/jfr.v4n4p38
  • FERNANDES, D.S., DONADON, J.R., RANGEL, T.F., GUIMARÃES, R.C.A., CAMPOS, R.P., LIMA, L.B. and HIANE, P.A., 2020. Quality of roasted baru almonds stored in different packages. Food Science and Technology, vol. 41, no. 4, pp. 953-960. http://doi.org/10.1590/fst.10720
    » http://doi.org/10.1590/fst.10720
  • FERNANDES, A.B., MARCOLINO, V.A., SILVA, C., BARÃO, C.E. and PIMENTEL, T.C., 2021. Potentially synbiotic fermented beverages processed with water-soluble extract of baru almond. Food Bioscience, vol. 42, pp. 101200. http://doi.org/10.1016/j.fbio.2021.101200
    » http://doi.org/10.1016/j.fbio.2021.101200
  • FERRAZ, M.C., PARRILHA, A.C., MORAES, M., AMARAL FILHO, J., CARLOS COGO, J., SANTOS, M.G., FRANCO, L.M., GROPPO, F.C., PUEBLA, P., SAN FELICIANO, A. and OSHIMA-FRANCO, Y., 2012. The effect of lupane triterpenoids (Dipteryx alata Vogel) in the in vitro neuromuscular blockade and myotoxicity of two snake venoms. Current Organic Chemistry, vol. 16, no. 22, pp. 2717-2723. http://doi.org/10.2174/138527212804004481
    » http://doi.org/10.2174/138527212804004481
  • FERRAZ, M.C., YOSHIDA, E.H., TAVARES, R.V.S., COGO, J.C., CINTRA, A.C.O., DAL BELO, C.A., FRANCO, L.M., SANTOS, M.G., RESENDE, F.A., VARANDA, E.A., HYSLOP, S., PUEBLA, P., FELICIANO, A.S. and OSHIMA-FRANCO, Y., 2014. An isoflavone from Dipteryx alata Vogel is active against the in vitro neuromuscular paralysis of Bothrops jararacussu snake venom and bothropstoxin I, and prevents venom-induced myonecrosis. Molecules, vol. 19, no. 5, pp. 5790-5805. http://doi.org/10.3390/molecules19055790 PMid:24806579.
    » http://doi.org/10.3390/molecules19055790
  • FERRAZ, M.C., OLIVEIRA, J.L., OLIVEIRA JUNIOR, J.R., COGO, J.C., SANTOS, M.G., FRANCO, L.M., PUEBLA, P., FERRAZ, H.O., FERRAZ, H.G., ROCHA, M.M.T., HYSLOP, S., SAN FELICIANO, A. and OSHIMA-FRANCO, Y., 2015. The triterpenoid betulin protects against the neuromuscular effects of Bothrops jararacussu snake venom in vivo. Evidence-Based Complementary and Alternative Medicine, vol. 2015, pp. 939523. http://doi.org/10.1155/2015/939523 PMid:26633987.
    » http://doi.org/10.1155/2015/939523
  • FERREIRA, T.H.B., FLORIZO, G.K.M. and ARGONDOÑA, E.J.S., 2020a. Shelf life of cookies made from baru Dipteryx alata Vog. pulp under different storage conditions. Journal of Food Processing and Preservation, vol. 44, no. 89, e14702. http://doi.org/10.1111/jfpp.14702
    » http://doi.org/10.1111/jfpp.14702
  • FERREIRA, T.H.B., DA SILVA, S.R., MUNHOZ, C.L. and ARGANDOÑA, E.J.S., 2020b. Elaboration of biscuits type cookies with pre-treated baru (Dipteryx alata Vog.) pulp flour. Journal of Food Measurement and Characterization, vol. 14, no. 1, pp. 3156-3162. http://doi.org/10.1007/s11694-020-00557-3
    » http://doi.org/10.1007/s11694-020-00557-3
  • FETZER, D.L., CRUZ, P.N., HAMERSKI, F. and CORAZZA, M.L., 2018. Extraction of baru (Dipteryx alata Vogel) seed oil using compressed solvents technology. The Journal of Supercritical Fluids, vol. 137, pp. 23-33. http://doi.org/10.1016/j.supflu.2018.03.004
    » http://doi.org/10.1016/j.supflu.2018.03.004
  • FIORAVANTE, M.B., HIANE, P.A. and BRAGA NETO, J.A., 2017. Elaboration, sensorial acceptance and characterization of fermented flavored drink based on water-soluble extract of baru almond. Ciência Rural, vol. 47, no. 9, pp. 5-10. http://doi.org/10.1590/0103-8478cr20151646
    » http://doi.org/10.1590/0103-8478cr20151646
  • FIORINI, A.M., BARBALHO, S.M., GUIGUER, É.L., OSHIIWA, M., MENDES, C.G., VIEITES, R.L., CHIES, A.B. and OLIVEIRA, P.B., 2017. Dipteryx alata Vogel may improve lipid profile and atherogenic indices in wistar rats dipteryx alata and atherogenic indices. Journal of Medicinal Food, vol. 20, no. 11, pp. 1121-1126. http://doi.org/10.1089/jmf.2017.0052 PMid:29072970.
    » http://doi.org/10.1089/jmf.2017.0052
  • FREITAS, C.D.J., VALENTE, D.R. and CRUZ, S.P., 2014. Caracterização física, química e sensorial de biscoitos confeccionados com farinha de semente de abóbora (FSA) e farinha de semente de baru (FSB) para celíacos. DEMETRA: Alimentação Nutrição & Saúde, vol. 9, no. 4, pp. 1003-1018. http://doi.org/10.12957/demetra.2014.13301
    » http://doi.org/10.12957/demetra.2014.13301
  • FREITAS, J.B., FERNANDES, D.C., CZEDER, L.P., LIMA, J.C.R., SOUSA, A.G.O. and NAVES, M.M.V., 2012. Edible seeds and nuts grown in brazil as sources of protein for human nutrition. Food and Nutrition Sciences, vol. 3, no. 6, pp. 857-862. http://doi.org/10.4236/fns.2012.36114
    » http://doi.org/10.4236/fns.2012.36114
  • GARCIA, A.R., OLIVEIRA, D.M.P., AMARAL, A.C.F., JESUS, J.B., RENNÓ SODERO, A.C., SOUZA, A.M.T., SUPURAN, C.T., VERMELHO, A.B., RODRIGUES, I.A. and PINHEIRO, A.S., 2019. Leishmania infantum arginase: biochemical characterization and inhibition by naturally occurring phenolic substances. Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 34, no. 1, pp. 1100-1109. http://doi.org/10.1080/14756366.2019.1616182 PMid:31124384.
    » http://doi.org/10.1080/14756366.2019.1616182
  • GERVAZONI, L.F.O., BARCELLOS, G.B.B., FERREIRA-PAES, T. and ALMEIDA-AMARAL, E.E., 2020. Use of natural products in leishmaniasis chemotherapy: an overview. Frontiers in Chemistry, vol. 8, pp. 579891. http://doi.org/10.3389/fchem.2020.579891 PMid:33330368.
    » http://doi.org/10.3389/fchem.2020.579891
  • GONÇALVES, T., FILBIDO, G.S., PINHEIRO, A.P.O., PINTO PIERETI, P.D., DALLA VILLA, R., OLIVEIRA, A.P., 2020. In vitro bioaccessibility of the Cu, Fe, Mn and Zn in the baru almond and bocaiúva pulp and, macronutrients characterization. Journal of Food Composition and Analysis, vol. 86, pp. 103356. http://doi.org/10.1016/j.jfca.2019.103356
    » http://doi.org/10.1016/j.jfca.2019.103356
  • GOUVEIA, M.C.P., MINTO, B.W., SARGI, L.F., SOUZA, R.L., PAZZINI, J.M., COLODEL, E.M., SILVA, V.C.P., CASSINO, P.C. and DIAS, L.G.G.G., 2021. Evaluation of the alcoholic extract of Dipteryx alata Vogel almonds and bark in skin wound healing in C57BL6 mice. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, vol. 73, no. 6, pp. 1315-1322. http://doi.org/10.1590/1678-4162-12289
    » http://doi.org/10.1590/1678-4162-12289
  • GUIMARÃES, B.O., MORAIS, I.L. and OLIVEIRA, A.P., 2022. Medicinal plants and their popular use in Boa Esperança Settlement, Piracanjuba, Goiás, Brazil. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, vol. 21, no. 4, pp. 485-513. http://doi.org/10.37360/blacpma.22.21.4.30
    » http://doi.org/10.37360/blacpma.22.21.4.30
  • GUIMARÃES, R.C.A., FAVARO, S.P., SOUZA, A.D.V., SOARES, C.M., NUNES, A.A., OLIVEIRA, L.C.S. and HONER, M.R., 2012a. Thermal properties of defatted meal, concentrate, and protein isolate of baru nuts (Dipteryx alata Vog.). Food Science and Technology, vol. 32, no. 1, pp. 52-55. http://doi.org/10.1590/S0101-20612012005000031
    » http://doi.org/10.1590/S0101-20612012005000031
  • GUIMARÃES, R.C.A., FAVARO, S.P., VIANA, A.C.A., BRAGA NETO, J.A., NEVES, V.A. and HONER, M.R., 2012b. Study of the proteins in the defatted flour and protein concentrate of baru nuts (Dipteryx alata Vog). Food Science and Technology, vol. 32, no. 3, pp. 464-470. http://doi.org/10.1590/S0101-20612012005000065
    » http://doi.org/10.1590/S0101-20612012005000065
  • INSTITUTE OF MEDICINE – IOM, 2005 [viewed 25 October 2022]. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids [online]. Available from: https://www.nap.edu/read/10490/chapter/12/
    » https://www.nap.edu/read/10490/chapter/12/
  • INSTITUTE OF MEDICINE – IOM, 2011 [viewed 25 October 2022]. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids [online]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK56068/table/summarytables.t4/?report=objectonly/
    » https://www.ncbi.nlm.nih.gov/books/NBK56068/table/summarytables.t4/?report=objectonly/
  • ITIS CATALOGUE OF LIFE, 2019 [viewed 20 May 2023]. Species details: Dipteryx alata Vogel [online]. Available from: https://www.catalogueoflife.org/annual-checklist/2019/details/species/id/488948594f3c078c43829159d4dc06ff/
    » https://www.catalogueoflife.org/annual-checklist/2019/details/species/id/488948594f3c078c43829159d4dc06ff/
  • JESUS, E.P.J., DINIZ, L.G.T., ALVES, V., DA SILVA, Y.P., SCHMITZ, A.C., QUAST, L.B., FRANCISCO, C.T.P., TORMEN, L. and BERTAN, L.C., 2023. From nut to Dulce de leche: development of a vegan alternative: physicochemical characterization, microbiological evaluation and sensory analysis. Food and Human, vol. 1, pp. 581-588. http://doi.org/10.1016/j.foohum.2023.06.027
    » http://doi.org/10.1016/j.foohum.2023.06.027
  • KALUME, D.E., SOUSA, M.V. and MORHY, L., 1995. Purification, characterization, sequence determination, and mass spectrometric analysis of a trypsin inhibitor from seeds of the Brazilian tree Dipteryx alata Leguminosae. Journal of Protein Chemistry, vol. 14, no. 8, pp. 685-693. http://doi.org/10.1007/BF01886907 PMid:8747429.
    » http://doi.org/10.1007/BF01886907
  • LEE, D., YU, J.S., HUANG, P., QADER, M., MANAVALAN, A., WU, X., KIM, J., PANG, C., CAO, S., KANG, K.S. and KIM, K.H., 2020. Identification of anti-inflammatory compounds from Hawaiian Noni (Morinda citrifolia L.) fruit juice. Molecules, vol. 25, no. 21, pp. 1-12. http://doi.org/10.3390/molecules25214968 PMid:33121016.
    » http://doi.org/10.3390/molecules25214968
  • LEITE, N.R., ARAÚJO, L.C.A., ROCHA, P.D.S., AGARRAYUA, D.A., ÁVILA, D.S., CAROLLO, C.A., SILVA, D.B., ESTEVINHO, L.M., SOUZA, K.P. and SANTOS, E.L., 2020. Baru pulp (Dipteryx alata Vogel): fruit from the Brazilian savanna protects against oxidative stress and increases the life expectancy of Caenorhabditis elegans via SOD-3 and DAF-16. Biomolecules, vol. 10, no. 8, pp. 1-22. http://doi.org/10.3390/biom10081106
    » http://doi.org/10.3390/biom10081106
  • LEMOS, M.R.B., ZAMBIAZI, R.C., ALMEIDA, E.M.S.D. and ALENCAR, E.R., 2016. Tocopherols and fatty acid profile in baru nuts (Dipteryx alata Vog.), raw and roasted: important sources in nature that can prevent diseases. Food Science and Nutrition Technology, vol. 1, no. 2, pp. 000107. http://doi.org/10.23880/FSNT-16000107
    » http://doi.org/10.23880/FSNT-16000107
  • LEMOS, M.R.B., SIQUEIRA, E.M.A., ARRUDA, S.F. and ZAMBIAZI, R.C., 2012. The effect of roasting on the phenolic compounds and antioxidant potential of baru nuts [Dipteryx alata Vog.]. Food Research International, vol. 48, no. 2, pp. 592-597. http://doi.org/10.1016/j.foodres.2012.05.027
    » http://doi.org/10.1016/j.foodres.2012.05.027
  • LI, H., LIU, J., LIU, C.-F., LI, H., LUO, J., FANG, S., CHEN, Y., ZHONG, R., LIU, S., and LIN, S., 2021. Design, synthesis, and biological evaluation of membrane-active bakuchiol derivatives as effective broad-spectrum antibacterial agents. Journal of Medicinal Chemistry, vol. 64, pp. 5603–5619. https://doi.org/10.1021/acs.jmedchem.0c02059
    » https://doi.org/10.1021/acs.jmedchem.0c02059
  • LIMA, D.S., EGEA, M.B., CABASSA, I., ALMEIDA, A.B., SOUSA, T.L., LIMA, T.M., LOSS, R.A., VOLP, A.C.P., VASCONCELOS, L.G., DALL’OGLIO, E.L., HERNANDES, T. and TAKEUCHI, K.P., 2021a. Technological quality and sensory acceptability of nutritive bars produced with Brazil nut and baru almond coproducts. Lebensmittel-Wissenschaft + Technologie, vol. 137, pp. 110467. http://doi.org/10.1016/j.lwt.2020.110467
    » http://doi.org/10.1016/j.lwt.2020.110467
  • LIMA, J.C.R., FREITAS, J.B., CZEDER, L.P., FERNANDES, D.C. and NAVES, M.M.V., 2010. Qualidade microbiológica, aceitabilidade e valor nutricional de barras de cereais formuladas com polpa e amêndoa de baru. Boletim do Centro de Pesquisa e Processamento de Alimentos, vol. 28, no. 2, pp. 331-343. http://doi.org/10.5380/cep.v28i2.20450
    » http://doi.org/10.5380/cep.v28i2.20450
  • LINNÉ, J.A., JESUS, M.V., LIMA, V.T., REIS, L.C., SANTOS, C.C., SCALON, S.P.Q. and DRESCH, D.M., 2021. Do Dipteryx alata Volgel seedlings recover the quality and the photosynthetic and antioxidant responses in the post-flooding? Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 83, e246451. http://doi.org/10.1590/1519-6984.246451 PMid:34495152.
    » http://doi.org/10.1590/1519-6984.246451
  • LIU, H., ZENG, X., HUANG, J., YUAN, X., WANG, Q. and MA, L., 2021. Dietary fiber extracted from pomelo fruitlets promotes intestinal functions, both in vitro and in vivo. Carbohydrate Polymers, vol. 252, pp. 117186. http://doi.org/10.1016/j.carbpol.2020.117186 PMid:33183633.
    » http://doi.org/10.1016/j.carbpol.2020.117186
  • MAJERCZYK, M., OLSZANECKA-GLINIANOWICZ, M., PUZIANOWSKA-KUŹNICKA, M. and CHUDEK, J., 2016. Retinol-binding protein 4 RBP4 as the causative factor and marker of vascular injury related to insulin resistance. Postepy Higieny i Medycyny Doswiadczalnej, vol. 70, pp. 1267-1275.
  • MAKI, K.C., EREN, F., CASSENS, M.E., DICKLIN, M.R. and DAVIDSON, M.H., 2018. ω-6 polyunsaturated fatty acids and cardiometabolic health: current evidence, controversies, and research gaps. Advances in Nutrition, vol. 9, no. 6, pp. 688-700. http://doi.org/10.1093/advances/nmy038 PMid:30184091.
    » http://doi.org/10.1093/advances/nmy038
  • MARANGONI, F., AGOSTONI, C., BORGHI, C., CATAPANO, A.L., CENA, H., GHISELLI, A., LA VECCHIA, C., LERCKER, G., MANZATO, E., PIRILLO, A., RICCARDI, G., RISÉ, P., VISIOLI, F. and POLI, A., 2020. Dietary linoleic acid and human health: focus on cardiovascular and cardiometabolic effects. Atherosclerosis, vol. 292, no. 1, pp. 90-98. http://doi.org/10.1016/j.atherosclerosis.2019.11.018 PMid:31785494.
    » http://doi.org/10.1016/j.atherosclerosis.2019.11.018
  • MARCHI, R.C., CAMPOS, I.A.S., SANTANA, V.T. and CARLOS, R.M., 2022. Chemical implications and considerations on techniques used to assess the in vitro antioxidant activity of coordination compounds. Coordination Chemistry Reviews, vol. 451, pp. 214275. http://doi.org/10.1016/j.ccr.2021.214275
    » http://doi.org/10.1016/j.ccr.2021.214275
  • MARIN, A.M., SIQUEIRA, E.M. and ARRUDA, S.F., 2009. Minerals, phytic acid and tannin contents of 18 fruits from the Brazilian savanna. International Journal of Food Sciences and Nutrition, vol. 60, Suppl. 7, pp. 180-190. http://doi.org/10.1080/09637480902789342 PMid:19353365.
    » http://doi.org/10.1080/09637480902789342
  • MARQUES, F.G., OLIVEIRA NETO, J.R., CUNHA, L.C., PAULA, J.R. and BARA, M.T.F., 2015. Identification of terpenes and phytosterols in Dipteryx alata (baru) oil seeds obtained through pressing. Revista Brasileira de Farmacognosia, vol. 25, no. 5, pp. 522-525. http://doi.org/10.1016/j.bjp.2015.07.019
    » http://doi.org/10.1016/j.bjp.2015.07.019
  • MARTINS, F.S., BORGES, L.L., PAULA, J.R. and CONCEIÇÃO, E.C., 2013. Impact of different extraction methods on the quality of Dipteryx alata extracts. Revista Brasileira de Farmacognosia, vol. 23, no. 3, pp. 521-526. http://doi.org/10.1590/S0102-695X2013005000033
    » http://doi.org/10.1590/S0102-695X2013005000033
  • MATTHEWMAN, M.C. and COSTA-PINTO, R., 2022. Macronutrients, minerals, vitamins and energy. Anaesthesia and Intensive Care Medicine, vol. 24, no. 2, pp. 134-138. http://doi.org/10.1016/j.mpaic.2022.12.009
    » http://doi.org/10.1016/j.mpaic.2022.12.009
  • MATTIOLI, S., COLLODEL, G., SIGNORINI, C., COTOZZOLO, E., NOTO, D., CERRETANI, D., MICHELI, L., FIASCHI, A.I., BRECCHIA, G., MENCHETTI, L., MORETTI, E., OGER, C., DE FELICE, C. and CASTELLINI, C., 2021. Tissue antioxidant status and lipid peroxidation are related to dietary intake of n-3 polyunsaturated acids: a rabbit model. Antioxidants, vol. 10, no. 5, pp. 681-702. http://doi.org/10.3390/antiox10050681 PMid:33925444.
    » http://doi.org/10.3390/antiox10050681
  • MAURYA, P.K., NOTO, C., RIZZO, L.B., RIOS, A.C., NUNES, S.O.V., SABBATINI, D., SETHI, S., ZENI, M., MANSUR, R.B., MAES, M. and BRIETZKE, E., 2016. The role of oxidative and nitrosative stress in accelerated aging and major depressive disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry, vol. 65, pp. 134-144. http://doi.org/10.1016/j.pnpbp.2015.08.016 PMid:26348786.
    » http://doi.org/10.1016/j.pnpbp.2015.08.016
  • MENDES, N.S.R., GOMES-RUFFI, C.R., LAGE, M.E., BECKER, F.S., MELO, A.A.M., SILVA, F.A. and DAMIANI, C., 2013. Oxidative stability of cereal bars made with fruit peels and baru nuts packaged in different types of packaging. Food Science and Technology, vol. 33, no. 4, pp. 730-736. http://doi.org/10.1590/S0101-20612013000400019
    » http://doi.org/10.1590/S0101-20612013000400019
  • MISHRA, S., GUPTA, V., MISHRA, S., SACHAN, R. and ASTHANA, A., 2017. Serum level of orexin-A, leptin, adiponectin and insulin in north Indian obese women. Diabetes & Metabolic Syndrome, vol. 11, suppl. 2, pp. S1041-S1043. http://doi.org/10.1016/j.dsx.2017.07.037 PMid:28755843.
    » http://doi.org/10.1016/j.dsx.2017.07.037
  • MOHAMMADI, I., MAHDAVI, A.H., RABIEE, F., NASR ESFAHANI, M.H. and GHAEDI, K., 2020. Positive effects of conjugated linoleic acid (CLA) on the PGC1-α expression under the inflammatory conditions induced by TNF-α in the C2C12 cell line. Gene, vol. 735, pp. 144394. http://doi.org/10.1016/j.gene.2020.144394 PMid:31987906.
    » http://doi.org/10.1016/j.gene.2020.144394
  • MORAES, C., ANJOS, L.V., MARUNO, M., ALONSO, A. and ROCHA-FILHO, P., 2018. Development of lamellar gel phase emulsion containing baru oil (Dipteryx alata Vog.) as a prospective delivery system for cutaneous application. Asian Journal of Pharmaceutical Sciences, vol. 13, no. 2, pp. 183-190. http://doi.org/10.1016/j.ajps.2017.09.003 PMid:32104391.
    » http://doi.org/10.1016/j.ajps.2017.09.003
  • NASCIMENTO, T.A., LOPES, T.I.B., NAZARIO, C.E.D., OLIVEIRA, S.L. and ALCANTARA, G.B., 2021. Vegetable oils: are they true? A point of view from ATR-FTIR, 1H NMR, and regiospecific analysis by 13C NMR. Food Research International, vol. 144, pp. 110362. http://doi.org/10.1016/j.foodres.2021.110362 PMid:34053555.
    » http://doi.org/10.1016/j.foodres.2021.110362
  • NASIR, Y., FARZOLLAHPOUR, F., MIRZABABAEI, A., MAGHBOOLI, Z. and MIRZAEI, K., 2021. Associations of dietary fats intake and adipokines levels in obese women. Clinical Nutrition ESPEN, vol. 43, pp. 390-396. http://doi.org/10.1016/j.clnesp.2021.03.018 PMid:34024546.
    » http://doi.org/10.1016/j.clnesp.2021.03.018
  • NATH, H., SAMTIYA, M. and DHEWA, T., 2022. Beneficial attributes and adverse effects of major plant-based foods. Human Nutrition & Metabolism, vol. 28, pp. 200147. http://doi.org/10.1016/j.hnm.2022.200147
    » http://doi.org/10.1016/j.hnm.2022.200147
  • NATIONAL INSTITUTES OF HEALTH – NIH, 2022 [viewed 4 February 2023]. Dietary supplement fact sheets [online]. Available from: https://ods.od.nih.gov/factsheets/list-all/
    » https://ods.od.nih.gov/factsheets/list-all/
  • NAZATO, V.S., RUBEM-MAURO, L., VIEIRA, N.A.G., ROCHA-JUNIOR, D.S., SILVA, M.G., LOPES, P.S., DAL-BELO, C.A., COGO, J.C., SANTOS, M.G., CRUZ-HÖFLING, M.A. and OSHIMA-FRANCO, Y., 2010. In vitro antiophidian properties of Dipteryx alata Vogel bark extracts. Molecules, vol. 15, no. 9, pp. 5956-5970. http://doi.org/10.3390/molecules15095956 PMid:20877202.
    » http://doi.org/10.3390/molecules15095956
  • NGUYEN, M.H.K., NGUYEN, H.X., NGUYEN, M.T.T. and NGUYEN, N.T., 2012. Phenolic constituents from the heartwood of Artocapus altilis and their tyrosinase inhibitory activity. Natural Product Communications, vol. 7, no. 2, pp. 185-186. http://doi.org/10.1177/1934578X1200700214 PMid:22474950.
    » http://doi.org/10.1177/1934578X1200700214
  • NUNES, Â.A., FAVARO, S.P., MIRANDA, C.H.B. and NEVES, V.A., 2017. Preparation and characterization of baru (Dipteryx alata Vog) nut protein isolate and comparison of its physico-chemical properties with commercial animal and plant protein isolates. Journal of the Science of Food and Agriculture, vol. 97, no. 1, pp. 151-157. http://doi.org/10.1002/jsfa.7702 PMid:26954302.
    » http://doi.org/10.1002/jsfa.7702
  • OLIVEIRA-ALVES, S.C., PEREIRA, R.S., PEREIRA, A.B., FERREIRA, A., MECHA, E., SILVA, A.B., SERRA, A.T. and BRONZE, M.R., 2020. Identification of functional compounds in baru (Dipteryx alata Vog.) nuts: nutritional value, volatile and phenolic composition, antioxidant activity and antiproliferative effect. Food Research International, vol. 131, pp. 109026. http://doi.org/10.1016/j.foodres.2020.109026 PMid:32247467.
    » http://doi.org/10.1016/j.foodres.2020.109026
  • OLIVEIRA, P.M.D., OLIVEIRA, D.E.C.D., RESENDE, O. and SILVA, D.V., 2018. Study of the drying of mesocarp of baru Dipteryx alata Vogel fruits. Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 22, no. 12, pp. 872-877. http://doi.org/10.1590/1807-1929/agriambi.v22n12p872-877
    » http://doi.org/10.1590/1807-1929/agriambi.v22n12p872-877
  • ORTOLAN, A.V., EING, K.K.C., SANTOS, M.M.R., CANDIDO, C.J., SANTOS, E.F. and NOVELLO, D., 2016. Adição de farinha de baru em cupcakes: caracterização físico-química e sensorial entre crianças. Mundo da Saúde, vol. 40, no. 2, pp. 213-220. http://doi.org/10.15343/0104-7809.20164002
    » http://doi.org/10.15343/0104-7809.20164002
  • PAGLARINI, C.S., QUEIRÓS, M.S., TUYAMA, S.S., MOREIRA, A.C.V., CHANG, Y.K. and STEEL, C.J., 2018. Characterization of baru nut (Dipteryx alata Vog) flour and its application in reduced-fat cupcakes. Journal of Food Science and Technology, vol. 55, no. 1, pp. 164-172. http://doi.org/10.1007/s13197-017-2876-1 PMid:29358807.
    » http://doi.org/10.1007/s13197-017-2876-1
  • PAIM, R., FERREIRA, P.L.G., SOARES, D.M., ROCHA, T.F.G., RIBEIRO, A.L., BARROS, N., SANTOS, F.C., FERREIRA, H.D., GOMES-KLEIN, V.L., SOTO-BLANCO, B., OLIVEIRA-FILHO, J.P., CUNHA, P.H.J., RIET-CORREA, F., PFISTER, J., COOK, D., FIORAVANTI, M.C.S. and BOTELHO, A.F.M., 2023. Toxic plants from the perspective of a “Quilombola” community in the Cerrado region of Brazil. Toxicon, vol. 224, pp. 107028. http://doi.org/10.1016/j.toxicon.2023.107028
    » http://doi.org/10.1016/j.toxicon.2023.107028
  • PARVEEN, S., RASOOL, F., AKRAM, M.N., KHAN, N., ULLAH, M., MAHMOOD, S., RABBANI, G. and MANZOORB, K., 2021. Effect of Moringa olifera leaves on growth and gut microbiota of Nile tilapia (Oreochromis niloticus). Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 84, e250916. http://doi.org/10.1590/1519-6984.250916 PMid:34705952.
    » http://doi.org/10.1590/1519-6984.250916
  • PAZ, S.L., PÉREZ-PÉREZ, A., VILARIÑO-GARCÍA, T., JIMÉNEZ-CORTEGANA, C., MURIANA, F.J.G., MILLÁN-LINARES, M.C. and SÁNCHEZ-MARGALET, V., 2021. Nutritional modulation of leptin expression and leptin action in obesity and obesity-associated complications. The Journal of Nutritional Biochemistry, vol. 89, pp. 108561. http://doi.org/10.1016/j.jnutbio.2020.108561 PMid:33249183.
    » http://doi.org/10.1016/j.jnutbio.2020.108561
  • PEGORARO, N.S., CAMPONOGARA, C., CRUZ, L. and OLIVEIRA, S.M., 2021. Oleic acid exhibits an expressive anti-inflammatory effect in croton oil-induced irritant contact dermatitis without the occurrence of toxicological effects in mice. Journal of Ethnopharmacology, vol. 267, pp. 113486. http://doi.org/10.1016/j.jep.2020.113486 PMid:33091495.
    » http://doi.org/10.1016/j.jep.2020.113486
  • PEIXOTO, V.O.D.S., SILVA, L., CASTELO-BRANCO, V.N. and TORRES, A.G., 2022. Baru (Dipteryx alata Vogel) oil extraction by supercritical-CO2: improved composition by using water as cosolvent. Journal of Oleo Science, vol. 71, no. 2, pp. 201-213. http://doi.org/10.5650/jos.ess21115 PMid:35034941.
    » http://doi.org/10.5650/jos.ess21115
  • PÉREZ-PÉREZ, A., VILARIÑO-GARCÍA, T., FERNÁNDEZ-RIEJOS, P., MARTÍN-GONZÁLEZ, J., SEGURA-EGEA, J.J. and SÁNCHEZ-MARGALET, V., 2017. Role of leptin as a link between metabolism and the immune system. Cytokine & Growth Factor Reviews, vol. 35, pp. 71-84. http://doi.org/10.1016/j.cytogfr.2017.03.001 PMid:28285098.
    » http://doi.org/10.1016/j.cytogfr.2017.03.001
  • PICCININ, E., CARIELLO, M., SANTIS, S., DUCHEIX, S., SABBÀ, C., NTAMBI, J.M. and MOSCHETTA, A., 2019. Role of oleic acid in the gut-liver axis: from diet to the regulation of its synthesis via Stearoyl-CoA desaturase 1 (SCD1). Nutrients, vol. 11, no. 10, pp. 1-22. http://doi.org/10.3390/nu11102283 PMid:31554181.
    » http://doi.org/10.3390/nu11102283
  • PINELI, L.L.O., CARVALHO, M.V., AGUIAR, L.A., OLIVEIRA, G.T., CELESTINO, S.M.C., BOTELHO, R.B.A. and CHIARELLO, M.D., 2015a. Use of baru Brazilian almond waste from physical extraction of oil to produce flour and cookies. Lebensmittel-Wissenschaft + Technologie, vol. 60, no. 1, pp. 50-55. http://doi.org/10.1016/j.lwt.2014.09.035
    » http://doi.org/10.1016/j.lwt.2014.09.035
  • PINELI, L.L.O., AGUIAR, L.A., OLIVEIRA, G.T., BOTELHO, R.B.A., IBIAPINA, M.F.P., LIMA, H.C. and COSTA, A.M., 2015b. Use of baru Brazilian almond waste from physical extraction of oil to produce gluten free cakes. Plant Foods for Human Nutrition, vol. 70, no. 1, pp. 50-55. http://doi.org/10.1007/s11130-014-0460-7
    » http://doi.org/10.1007/s11130-014-0460-7
  • PINELI, L., OLIVEIRA, G., MENDONÇA, M., BORGO, L., FREIRE, É., CELESTINO, S., CHIARELLO, M. and BOTELHO, R., 2015c. Tracing chemical and sensory characteristics of baru oil during storage under nitrogen. Lebensmittel-Wissenschaft + Technologie, vol. 62, no. 2, pp. 976-982. http://doi.org/10.1016/j.lwt.2015.02.015
    » http://doi.org/10.1016/j.lwt.2015.02.015
  • PINHO, L., SANDRELY, D., MESQUITA, R., SARMENTO, A.F. and FLÁVIO, E.F., 2015 [viewed 4 February 2023]. Enriquecimento de sorvete com castanha de baru (Dipteryx Alata Vogel) e aceitabilidade pelos consumidores. Revista Unimontes Científica [online], vol. 17, no. 1, pp. 39-49. Available from: https://www.periodicos.unimontes.br/index.php/unicientifica/article/view/1942
    » https://www.periodicos.unimontes.br/index.php/unicientifica/article/view/1942
  • PIZZI, A., 2021. Tannins medical/pharmacological and related applications: a critical review. Sustainable Chemistry and Pharmacy, vol. 22, pp. 100481. http://doi.org/10.1016/j.scp.2021.100481
    » http://doi.org/10.1016/j.scp.2021.100481
  • PRANDO, W.L.M., HOSHINO, T.T., RAISER, A.L., CAVALETTI, J.C.S., RIBEIRO, E.B., COTRIM, A.C.M. and VALLADÃO, D.M.S., 2023. The potential antioxidant activity of incorporating bacaba (Oenocarpus bacaba Mart.) extract into a nanoemulsion system with baru oil. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 83, e276545. http://doi.org/10.1590/1519-6984.276545
    » http://doi.org/10.1590/1519-6984.276545
  • PRESTES, R.A., COLNAGO, L.A., FORATO, L.A., VIZZOTTO, L., NOVOTNY, E.H. and CARRILHO, E., 2007. A rapid and automated low resolution NMR method to analyze oil quality in intact oilseeds. Analytica Chimica Acta, vol. 596, no. 2, pp. 325-329. http://doi.org/10.1016/j.aca.2007.06.022 PMid:17631114.
    » http://doi.org/10.1016/j.aca.2007.06.022
  • PUEBLA, P., OSHIMA-FRANCO, Y., FRANCO, L.M., SANTOS, M.G., SILVA, R.V., RUBEM-MAURO, L. and FELICIANO, A.S., 2010. Chemical constituents of the bark of Dipteryx alata Vogel, an active species against Bothrops jararacussu venom. Molecules, vol. 15, no. 11, pp. 8193-8204. http://doi.org/10.3390/molecules15118193 PMid:21076386.
    » http://doi.org/10.3390/molecules15118193
  • RAMBO, M.K.D., RAMBO, M.C.D., MELO, P.M. and OLIVEIRA, N.M.L., 2020. Sustainability of biorefinery processes based on baru biomass waste. Journal of the Brazilian Chemical Society, vol. 31, no. 2, pp. 273-279. http://doi.org/10.21577/0103-5053.20190169
    » http://doi.org/10.21577/0103-5053.20190169
  • REIS, D.R., BRUM, F.B., SOARES, E.J.O., MAGALHÃES, J.R., SILVA, F.S. and PORTO, A.G., 2018a. Drying kinetics of baru flours as function of temperature. Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 22, no. 10, pp. 713-719. http://doi.org/10.1590/1807-1929/agriambi.v22n10p713-719
    » http://doi.org/10.1590/1807-1929/agriambi.v22n10p713-719
  • REIS, M.Á., NOVAES, R.D., BAGGIO, S.R., VIANA, A.L.M., SALLES, B.C.C., DUARTE, S.M.D.S., RODRIGUES, M.R. and PAULA, F.B.D.A., 2018b. Hepatoprotective and antioxidant activities of oil from baru almonds (Dipteryx alata Vog.) in a preclinical model of lipotoxicity and dyslipidemia. Evidence-Based Complementary and Alternative Medicine, vol. 2018, pp. 8376081. http://doi.org/10.1155/2018/8376081 PMid:30369957.
    » http://doi.org/10.1155/2018/8376081
  • RESENDE, L.M. and FRANCA, A.S., 2019. Flours based on exotic fruits and their processing residues-features and potential applications to health and disease prevention. In: V.R. PREEDY and R.R. WATSON, eds. Flour breads and their fortification in health and disease 2nd ed. London: Academic Press, pp. 387-401. http://doi.org/10.1016/B978-0-12-814639-2.00030-7
    » http://doi.org/10.1016/B978-0-12-814639-2.00030-7
  • RESENDE, O., OLIVEIRA, D.E.C., COSTA, L.M. and FERREIRA-JÚNIOR, W.N., 2017. Thermodynamic properties of baru fruits (Dipteryx alata Vogel). Engenharia Agrícola, vol. 37, no. 4, pp. 739-749. http://doi.org/10.1590/1809-4430-eng.agric.v37n4p739-749/2017
    » http://doi.org/10.1590/1809-4430-eng.agric.v37n4p739-749/2017
  • RESENDE, O., OLIVEIRA, D.E.C., COSTA, L.M. and FERREIRA-JÚNIOR, W.N., 2018. Drying kinetics of baru fruits (Dipteryx alata Vogel). Engenharia Agrícola, vol. 38, no. 1, pp. 103-109. http://doi.org/10.1590/1809-4430-eng.agric.v38n1p103-109/2018
    » http://doi.org/10.1590/1809-4430-eng.agric.v38n1p103-109/2018
  • RIBEIRO, R.V., BIESKI, I.G.C., BALOGUN, S.O. and MARTINS, D.T., 2017. Ethnobotanical study of medicinal plants used by ribeirinhos in the North Araguaia microregion, Mato Grosso, Brazil. Journal of Ethnopharmacology, vol. 205, pp. 69-102. http://doi.org/10.1016/j.jep.2017.04.023 PMid:28476677.
    » http://doi.org/10.1016/j.jep.2017.04.023
  • RIBEIRO, T.G., CHÁVEZ-FUMAGALLI, M.A., VALADARES, D.G., FRANCA, J.R., LAGE, P.S., DUARTE, M.C., ANDRADE, P.H.R., MARTINS, V.T., COSTA, L.E., ARRUDA, A.L.A., FARACO, A.A.G., COELHO, E.A.F. and CASTILHO, R.O., 2014. Antileishmanial activity and cytotoxicity of Brazilian plants. Experimental Parasitology, vol. 143, pp. 60-68. http://doi.org/10.1016/j.exppara.2014.05.004 PMid:24846006.
    » http://doi.org/10.1016/j.exppara.2014.05.004
  • RINALDI, M.M., ROCHA, F.R., SANTOS, R.M.D., PEREIRA, M.S., DE QUEIROZ, D.B.V. and MORAIS, F.M., 2021 [viewed 22 December 2022]. Produção, caracterização física, química e funcional de frutos e sementes de baru (Dipteryx alata Vog., Fabaceae) oriundos da Embrapa Cerrados e Arinos, MG: safra 2019 [online]. Available from: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/227039/1/Producao-caracterizacao-fisica-quimica-e-funcional-de-frutos-e-semente-de-baru-BOL376.pdf/
    » https://ainfo.cnptia.embrapa.br/digital/bitstream/item/227039/1/Producao-caracterizacao-fisica-quimica-e-funcional-de-frutos-e-semente-de-baru-BOL376.pdf/
  • ROCHA, J.D., CARNEIRO, F.M., FERNANDES, A.S., MORAIS, J.M., BORGES, L.L., CHEN-CHEN, L., ALMEIDA, L.M.D. and BAILÃO, E.F.L.C., 2022. Toxic potential of cerrado plants on different organisms. International Journal of Molecular Sciences, vol. 23, no. 7, pp. 1-22. http://doi.org/10.3390/ijms23073413 PMid:35408775.
    » http://doi.org/10.3390/ijms23073413
  • ROCHA, L.S. and CARDOSO SANTIAGO, R.A.C., 2009. Implicações nutricionais e sensoriais da polpa e casca de baru (Dipteryx alata Vog.) na elaboração de pães. Food Science and Technology, vol. 29, no. 4, pp. 820-825. http://doi.org/10.1590/S0101-20612009000400019
    » http://doi.org/10.1590/S0101-20612009000400019
  • ROJAS, V.M., MARCONI, L.F.C.B., GUIMARÃES-INÁCIO, A., LEIMANN, F.V., TANAMATI, A., GOZZO, A.M., FUCHS, R.H.B., BARREIRO, M.F., BARROS, L., FERREIRA, I.C.F.R., TANAMATI, A.A.C. and GONÇALVES, O.H., 2019. Formulation of mayonnaises containing PUFAs by the addition of microencapsulated chia seeds, pumpkin seeds and baru oils. Food Chemistry, vol. 274, pp. 220-227. http://doi.org/10.1016/j.foodchem.2018.09.015
    » http://doi.org/10.1016/j.foodchem.2018.09.015
  • RUIZ-OJEDA, F.J., OLZA, J., GIL, Á. and AGUILERA, C.M., 2018. Oxidative stress and inflammation in obesity and metabolic syndrome. In: Del MORAL, A.M. and GARCÍA, C.M.A. eds. Obesity: oxidative stress and dietary antioxidants London: Academic Press, pp. 1-15. http://doi.org/10.1016/B978-0-12-812504-5.00001-5/.
    » http://doi.org/10.1016/B978-0-12-812504-5.00001-5
  • SAFAEI, M., SUNDARARAJAN, E.A., DRISS, M., BOULILA, W. and SHAPI’I, A., 2021. A systematic literature review on obesity: understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity. Computers in Biology and Medicine, vol. 136, pp. 104754. http://doi.org/10.1016/j.compbiomed.2021.104754 PMid:34426171.
    » http://doi.org/10.1016/j.compbiomed.2021.104754
  • SAINI, R.K., PRASAD, P., SHANG, X. and KEUM, Y.-S., 2021. Advances in lipid extraction methods: a review. International Journal of Molecular Sciences, vol. 22, no. 24, pp. 13643. http://doi.org/10.3390/ijms222413643 PMid:34948437.
    » http://doi.org/10.3390/ijms222413643
  • SALEHI, B., QUISPE, C., SHARIFI-RAD, J., CRUZ-MARTINS, N., NIGAM, M., MISHRA, A.P., KONOVALOV, D.A., OROBINSKAYA, V., ABU-REIDAH, I.M., ZAM, W., SHAROPOV, F., VENNERI, T., CAPASSO, R., KUKULA-KOCH, W., WAWRUSZAK, A. and KOCH, W., 2021. Phytosterols: from preclinical evidence to potential clinical applications. Frontiers in Pharmacology, vol. 11, pp. 599959. http://doi.org/10.3389/fphar.2020.599959 PMid:33519459.
    » http://doi.org/10.3389/fphar.2020.599959
  • SANO, S.M., BRITO, M.A. and RIBEIRO, J.F., 2016 [viewed 20 January 2023]. Dipteryx alata baru. In: R.F. VIEIRA, J. CAMILLO and L. CORADIN, eds. Espécies nativas da flora brasileira de valor econômico atual ou potencial: plantas para o futuro: região Centro-Oeste [online]. Brasília: Ministério do Meio Ambiente, pp. 203-210. Available from: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1073295/especies-nativas-da-flora-brasileira-de-valor-economico-atual-ou-potencial-plantas-para-o-futuro-regiao-centro-oeste/
    » https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1073295/especies-nativas-da-flora-brasileira-de-valor-economico-atual-ou-potencial-plantas-para-o-futuro-regiao-centro-oeste/
  • SANO, S.M., BRITO, M.A. and RIBEIRO, J.F., 2006 [viewed 20 January 2023]. Dipteryx alata baru. In: R.F. VIEIRA, T.S.A. COSTA, D.B. SILVA, F.R. FERREIRA and S.M. SANO, eds. Frutas nativas da região centro-oeste do Brasil [online]. Brasília: Embrapa, pp. 76-94. Available from: http://www.agabrasil.org.br/_Dinamicos/livro_frutas_nativas_Embrapa.pdf/
    » http://www.agabrasil.org.br/_Dinamicos/livro_frutas_nativas_Embrapa.pdf/
  • SANTAMARINA, A.B., JAMAR, G., MENNITTI, L.V., CARDOSO, C.M., DE ROSSO, V.V., OYAMA, L.M. and PISANI, L.P., 2019a. Polyphenols-rich fruit Euterpe edulis mart. prevents peripheral inflammatory pathway activation by the short-term high-fat diet. Molecules, vol. 24, no. 9, pp. 1-14. http://doi.org/10.3390/molecules24091655 PMid:31035535.
    » http://doi.org/10.3390/molecules24091655
  • SANTAMARINA, A.B., JAMAR, G., MENNITTI, L.V., CESAR, H.C., VASCONCELOS, J.R., OYAMA, L.M., DE ROSSO, V.V. and PISANI, L.P., 2019b. Obesity-related inflammatory modulation by juçara berry Euterpe edulis Mart. supplementation in Brazilian adults: a double-blind randomized controlled trial. European Journal of Nutrition, vol. 59, no. 4, pp. 1693-1705. http://doi.org/10.1007/s00394-019-02024-2 PMid:31197507.
    » http://doi.org/10.1007/s00394-019-02024-2
  • SANTIAGO, G.L., OLIVEIRA, I.G., HORST, M.A., NAVES, M.M.V. and SILVA, M.R., 2018. Peel and pulp of baru (Dipteryx alata Vog.) provide high fiber, phenolic content and antioxidant capacity. Food Science and Technology, vol. 38, no. 2, pp. 244-249. http://doi.org/10.1590/1678-457x.36416
    » http://doi.org/10.1590/1678-457x.36416
  • SANTOS, F.B., RAMOS, M.I.L. and MIYAGUSKU, L., 2017. Antimicrobial activity of hydroalcoholic extracts from genipap, baru and taruma. Ciência Rural, vol. 47, no. 8, pp. 6-11. http://doi.org/10.1590/0103-8478cr20160252
    » http://doi.org/10.1590/0103-8478cr20160252
  • SANTOS, P.D., AGUIAR, A.C., VIGANÓ, J., BOEING, J.S., VISENTAINER, J.V. and MARTÍNEZ, J., 2016. Supercritical CO2 extraction of cumbaru oil (Dipteryx alata Vogel) assisted by ultrasound: global yield, kinetics and fatty acid composition. The Journal of Supercritical Fluids, vol. 107, pp. 75-83. http://doi.org/10.1016/j.supflu.2015.08.018
    » http://doi.org/10.1016/j.supflu.2015.08.018
  • SANTOS, G.G., SILVA, M.R., LACERDA, D.B.C.L., MARTINS, D.M.O. and ALMEIDA, R.A., 2012. Aceitabilidade e qualidade físico-química de paçocas elaboradas com amêndoa de baru. Pesquisa Agropecuária Tropical, vol. 42, no. 2, pp. 159-165. http://doi.org/10.1590/S1983-40632012000200003
    » http://doi.org/10.1590/S1983-40632012000200003
  • SASAKI, A., YAMANO, Y., SUGIMOTO, S., OTSUKA, H., MATSUNAMI, K. and SHINZATO, T., 2018. Phenolic compounds from the leaves of Breynia officinalis and their tyrosinase and melanogenesis inhibitory activities. Journal of Natural Medicines, vol. 72, no. 2, pp. 381-389. http://doi.org/10.1007/s11418-017-1148-8 PMid:29264846.
    » http://doi.org/10.1007/s11418-017-1148-8
  • SCHIASSI, M.C.E.V., SOUZA, V.R., LAGO, A.M.T., CAMPOS, L.G. and QUEIROZ, F., 2018. Fruits from the Brazilian Cerrado region: physico-chemical characterization, bioactive compounds, antioxidant activities, and sensory evaluation. Food Chemistry, vol. 245, pp. 305-311. http://doi.org/10.1016/j.foodchem.2017.10.104 PMid:29287376.
    » http://doi.org/10.1016/j.foodchem.2017.10.104
  • SCHINCAGLIA, R.M., CUPPARI, L., NERI, H.F.S., CINTRA, D.E., SANT’ANA, M.R. and MOTA, J.F., 2020. Effects of baru almond oil (Dipteryx alata Vog.) supplementation on body composition, inflammation, oxidative stress, lipid profile, and plasma fatty acids of hemodialysis patients: a randomized, double-blind, placebo-controlled clinical trial. Complementary Therapies in Medicine, vol. 52, pp. 102479. http://doi.org/10.1016/j.ctim.2020.102479 PMid:32951729.
    » http://doi.org/10.1016/j.ctim.2020.102479
  • SCHINCAGLIA, R.M., PIMENTEL, G.D., PEIXOTO, M.D.R.G., CUPPARI, L. and MOTA, J.F., 2021. The effect of baru (Dypterix alata Vog.) almond oil on markers of bowel habits in hemodialysis patients. Evidence-Based Complementary and Alternative Medicine, vol. 2021, pp. 3187305. http://doi.org/10.1155/2021/3187305 PMid:34135977.
    » http://doi.org/10.1155/2021/3187305
  • SCHNEIDER, M.C., MIN, K.D., HAMRICK, P.N., MONTEBELLO, L.R., RANIERI, T.M., MARDINI, L., CAMARA, V.M., LUIZ, R.R., LIESE, B., VUCKOVIC, M., MORAES, M.O. and LIMA, N.T., 2021. Overview of snakebite in Brazil: possible drivers and a tool for risk mapping. PLoS Neglected Tropical Diseases, vol. 15, no. 1, e0009044. http://doi.org/10.1371/journal.pntd.0009044 PMid:33513145.
    » http://doi.org/10.1371/journal.pntd.0009044
  • SHILLING, A.J., WITOWSKI, C.G., MASCHEK, J.A., AZHARI, A., VESELY, B.A., KYLE, D.E., AMSLER, C.D., MCCLINTOCK, J.B. and BAKER, B.J., 2020. Spongian diterpenoids derived from the antarctic sponge Dendrilla antarctica are potent inhibitors of the Leishmania parasite. Journal of Natural Products, vol. 83, no. 5, pp. 1553-1562. http://doi.org/10.1021/acs.jnatprod.0c00025 PMid:32281798.
    » http://doi.org/10.1021/acs.jnatprod.0c00025
  • SHOKRY, A.A., EL-SHIEKH, R.A., KAMEL, G., BAKR, A.F., and RAMADAN, A., 2022. Bioactive phenolics fraction of Hedera helix L. (Common Ivy Leaf) standardized extract ameliorates LPS-induced acute lung injury in the mouse model through the inhibition of proinflammatory cytokines and oxidative stress. Heliyon, vol. 8, no. 5, pp. e09477. https://doi.org/10.1016/j.heliyon.2022.e09477
    » https://doi.org/10.1016/j.heliyon.2022.e09477
  • SHOTOP, Y.M. and AL-SUWITI, I.N., 2021. The possible role of vitamins E and C in reducing the toxicity of copper nanoparticles in the kidney and liver of the rats (Rattus norvegicus). Journal of King Saud University. Science, vol. 33, no. 2, pp. 101357. http://doi.org/10.1016/j.jksus.2021.101357
    » http://doi.org/10.1016/j.jksus.2021.101357
  • SILVA, D.V., OLIVEIRA, D.E.C., RESENDE, O., MARTINS, K.R.B., FONSECA, N.N., QUEQUETO, W.D., SILVA, L.C.D.M. and SOUZA, D.G., 2022. Nutritional properties of baru almond (Dipteryx alata Vogel) flours produced from fruits subjected to drying. Australian Journal of Crop Science, vol. 16, no. 2, pp. 171-176. http://doi.org/10.21475/ajcs.22.16.02.3246
    » http://doi.org/10.21475/ajcs.22.16.02.3246
  • SILVA, S.R.D., FERREIRA, T.H.B., GIUNCO, A.J. and ARGANDOÑA, E.J.S., 2021a. Nutritional potential and effect of the solvent on the extraction of secondary metabolites from pulp and bark of baru (Dipteryx alata). Journal of Food Measurement and Characterization, vol. 15, no. 4, pp. 3453-3460. http://doi.org/10.1007/s11694-021-00926-6
    » http://doi.org/10.1007/s11694-021-00926-6
  • SILVA, J.S., FERREIRA, N.B.S., ASQUIERI, E.R., DAMIANI, C. and ASQUIERI, E.M.A.R., 2021b. Chemical monitoring of baru (Dipteryx alata Vog.) pulp fermented beverage. Food Science and Technology, vol. 41, suppl. 1, pp. 155-162. http://doi.org/10.1590/fst.14420
    » http://doi.org/10.1590/fst.14420
  • SILVA, S.R., FERREIRA, T.H.B., SOUZA, C.J.F. and SANJINEZ-ARGANDOÑA, E.J., 2021c. Dipteryx alata Vog. In: F.F. LIMA, C.H. LESCANO and I.P. OLIVEIRA, eds. Fruits of the Brazilian Cerrado: composition and functional benefits 1st ed. Cham: Springer, pp. 99-113. http://doi.org/10.1007/978-3-030-62949-6_6
    » http://doi.org/10.1007/978-3-030-62949-6_6
  • SILVA, D.V., OLIVEIRA, D.E.C., RESENDE, O., SILVA, M.A.P. and BARCELOS, K.R., 2019. Nutritional quality of the epicarp and mesocarp flours of baru fruits submitted to drying. Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 23, no. 1, pp. 65-70. http://doi.org/10.1590/1807-1929/agriambi.v23n1p65-70
    » http://doi.org/10.1590/1807-1929/agriambi.v23n1p65-70
  • SILVA, C.C.F.D., SILVA, G.L.P., SOARES JÚNIOR, M.S., BELÉIA, A.P. and CALIARI, M., 2018. Addition of toasted baru nut (Dypteryx alata Vog.) and extruded rice bran to sugar cane candy (“rapadura”). Food Science and Technology, vol. 38, no. 4, pp. 584-590. http://doi.org/10.1590/fst.37016
    » http://doi.org/10.1590/fst.37016
  • SILVA, L.M.S.F., MENDES, J.F., SILVA, C.L.M., FRANÇA, W.F.L., ARAÚJO, C.I.A. and VIEIRA, C.R., 2015 [viewed 22 December 2022]. Bolo sem glúten a base de farinha de arroz e farinha de baru. Caderno de Ciências Agrárias [online], vol. 7, no. 2, pp. 23-28. Available from: https://periodicos.ufmg.br/index.php/ccaufmg/article/view/2838
    » https://periodicos.ufmg.br/index.php/ccaufmg/article/view/2838
  • SILVA-LUIS, C.C., BRITO ALVES, J.L., OLIVEIRA, J.C.P.L., SOUSA LUIS, J.A., ARAÚJO, I.G.A., TAVARES, J.F., NASCIMENTO, Y.M., BEZERRA, L.S., ARAÚJO DE AZEVEDO, F.L.A., SOBRAL, M.V., MANGUEIRA, V.M., MEDEIROS, I.A. and VERAS, R.C., 2022. Effects of baru almond oil (Dipteryx alata Vog.) treatment on thrombotic processes, platelet aggregation, and vascular function in aorta arteries. Nutrients, vol. 14, no. 10, pp. 2098. http://doi.org/10.3390/nu14102098
    » http://doi.org/10.3390/nu14102098
  • SILVA, P.N., DIAS, T., BORGES, L.L., ALVES-SANTOS, A.M., HORST, M.A., SILVA, M.R. and NAVES, M.M.V., 2020. Total phenolic compounds and antioxidant capacity of baru almond and by-products evaluated under optimizing extraction conditions. Agrária, vol. 15, no. 4, pp. 1-7. http://doi.org/10.5039/agraria.v15i4a8530
    » http://doi.org/10.5039/agraria.v15i4a8530
  • SILVÉRIO, M.D.O., CASTRO, C.F.S. and MIRANDA, A.R., 2013. Avaliação da atividade antioxidante e inibitória da tirosinase das folhas de Dipteryx alata Vogel (baru). Revista Brasileira de Plantas Medicinais, vol. 15, no. 1, pp. 59-65. http://doi.org/10.1590/S1516-05722013000100008
    » http://doi.org/10.1590/S1516-05722013000100008
  • SIQUEIRA, A.P.S., CASTRO, C.F.S., SILVEIRA, E.V. and LOURENÇO, M.F.C., 2016. Chemical quality of baru almond (Dipteryx alata oil). Ciência Rural, vol. 46, no. 10, pp. 1865-1867. http://doi.org/10.1590/0103-8478cr20150468
    » http://doi.org/10.1590/0103-8478cr20150468
  • SIQUEIRA, A.P.S., PACHECO, M.T.B. and NAVES, M.M.V., 2015. Nutritional quality and bioactive compounds of partially defatted baru almond flour. Food Science and Technology, vol. 35, no. 1, pp. 127-132. http://doi.org/10.1590/1678-457X.6532
    » http://doi.org/10.1590/1678-457X.6532
  • SIQUEIRA, E.M.A., ROSA, F.R., FUSTINONI, A.M., DE SANT’ANA, L.P. and ARRUDA, S.F., 2013. Brazilian savanna fruits contain higher bioactive compounds content and higher antioxidant activity relative to the conventional red delicious apple. PLoS One, vol. 8, no. 8, e72826. http://doi.org/10.1371/journal.pone.0072826 PMid:23991156.
    » http://doi.org/10.1371/journal.pone.0072826
  • SIQUEIRA, E.M.A., MARIN, A.M.F., CUNHA, M.S.B., FUSTINONI, A.M., SANTANA, L.P. and ARRUDA, S.F., 2012. Consumption of baru seeds [Dipteryx alata Vog.], a Brazilian savanna nut, prevents iron-induced oxidative stress in rats. Food Research International, vol. 45, no. 1, pp. 427-433. http://doi.org/10.1016/j.foodres.2011.11.005
    » http://doi.org/10.1016/j.foodres.2011.11.005
  • SORRENTINO, E., SUCCI, M., TIPALDI, L., PANNELLA, G., MAIURO, L., STURCHIO, M., COPPOLA, R. and TREMONTE, P., 2018. Antimicrobial activity of gallic acid against food-related Pseudomonas strains and its use as biocontrol tool to improve the shelf life of fresh black truffles. International Journal of Food Microbiology, vol. 266, pp. 183-189. http://doi.org/10.1016/j.ijfoodmicro.2017.11.026 PMid:29227905.
    » http://doi.org/10.1016/j.ijfoodmicro.2017.11.026
  • SOUKOULIS, C., GAIANI, C. and HOFFMANN, L., 2018. Plant seed mucilage as emerging biopolymer in food industry applications. Current Opinion in Food Science, vol. 22, pp. 28-42. http://doi.org/10.1016/j.cofs.2018.01.004
    » http://doi.org/10.1016/j.cofs.2018.01.004
  • SOUSA, A.G.O., FERNANDES, D.C., ALVES, A.M., DE FREITAS, J.B. and NAVES, M.M.V., 2011. Nutritional quality and protein value of exotic almonds and nut from the Brazilian savanna compared to peanut. Food Research International, vol. 44, no. 7, pp. 2319-2325. http://doi.org/10.1016/j.foodres.2011.02.013
    » http://doi.org/10.1016/j.foodres.2011.02.013
  • SOUZA, C.D. and FELFILI, J.M., 2006. Uso de plantas medicinais na região de Alto Paraíso de Goiás, GO, Brasil. Acta Botanica Brasílica, vol. 20, no. 1, pp. 135-142. http://doi.org/10.1590/S0102-33062006000100013
    » http://doi.org/10.1590/S0102-33062006000100013
  • SOUZA, L.F., DIAS, R.F., GUILHERME, F.A.G. and COELHO, C.P., 2016. Plantas medicinais referenciadas por raizeiros no município de Jataí, estado de Goiás. Revista Brasileira de Plantas Medicinais, vol. 18, no. 2, pp. 451-461. http://doi.org/10.1590/1983-084X/15_173
    » http://doi.org/10.1590/1983-084X/15_173
  • SOUZA, P.L.C. and SILVA, M.R., 2015. Quality of granola prepared with dried caju-do-cerrado (Anacardium othonianum Rizz) and baru almonds (Dipteryx alata Vog). Journal of Food Science and Technology, vol. 52, no. 3, pp. 1712-1717. http://doi.org/10.1007/s13197-013-1134-4 PMid:25745245.
    » http://doi.org/10.1007/s13197-013-1134-4
  • SOUZA, R.G.M.D., GOMES, A.C., NAVARRO, A.M., CUNHA, L.C., SILVA, M.A.C., BARBOSA JÚNIOR, F. and MOTA, J.F., 2019. Baru almonds increase the activity of glutathione peroxidase in overweight and obese women: a randomized, placebo-controlled trial. Nutrients, vol. 11, no. 8, pp. 1750. http://doi.org/10.3390/nu11081750 PMid:31366053.
    » http://doi.org/10.3390/nu11081750
  • SOUZA, R.G.M.D., GOMES, A.C., NAVARRO, A.M., SILVA, M.A.C., BARBOSA JÚNIOR, F. and MOTA, J.F., 2018. A baru almond-enriched diet reduces abdominal adiposity and improves high-density lipoprotein concentrations: a randomized, placebo-controlled trial. Nutrition, vol. 55-56, pp. 154-160. http://doi.org/10.1016/j.nut.2018.06.001 PMid:30086484.
    » http://doi.org/10.1016/j.nut.2018.06.001
  • SOUZA, G.G., SANTOS, S.C., SANTOS, C.C., DIAS, A.S., SILVERIO, J.M., TROVATO, V.W. and FLAUZINO, D.S., 2023. Arbuscular mycorrhizal fungi promote the growth of Dipteryx alata Vogel. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 83, e275172. http://doi.org/10.1590/1519-6984.275172 PMid:37909590.
    » http://doi.org/10.1590/1519-6984.275172
  • SULIBURSKA, J. and KREJPCIO, Z., 2014. Evaluation of the content and bioaccessibility of iron, zinc, calcium and magnesium from groats, rice, leguminous grains and nuts. J. Journal of Food Science and Technology, vol. 51, no. 3, pp. 589-594. http://doi.org/10.1007/s13197-011-0535-5 PMid:24587537.
    » http://doi.org/10.1007/s13197-011-0535-5
  • TAKEMOTO, E., OKADA, I.A., GARBELOTTI, M.L., TAVARES, M. and AUED-PIMENTEL, S., 2001. Composição química da semente e do óleo de baru (Dipteryx alata Vog) nativo do Município de Pirenópolis, Estado de Goiás Brazil. Revista do Instituto Adolfo Lutz, vol. 60, no. 2, pp. 113-117. http://doi.org/10.53393/rial.2001.60.35540
    » http://doi.org/10.53393/rial.2001.60.35540
  • TAMARGO, A., MARTIN, D., NAVARRO DEL HIERRO, J., MORENO-ARRIBAS, M.V. and MUÑOZ, L.A., 2020. Intake of soluble fiber from chia seed reduces bioaccessibility of lipids, cholesterol and glucose in the dynamic gastrointestinal model simgi®. Food Research International, vol. 137, pp. 109364. http://doi.org/10.1016/j.foodres.2020.109364 PMid:33233067.
    » http://doi.org/10.1016/j.foodres.2020.109364
  • THE PLANT LIST, 2013 [viewed 13 March 2023]. Dipteryx alata Vogel [online]. Available from: http://www.theplantlist.org/tpl1.1/record/ild-33413/
    » http://www.theplantlist.org/tpl1.1/record/ild-33413/
  • TIOZON, R.J.N., FERNIE, A.R. and SREENIVASULU, N., 2021. Meeting human dietary vitamin requirements in the staple rice via strategies of biofortification and post-harvest fortification. Trends in Food Science & Technology, vol. 109, pp. 65-82. http://doi.org/10.1016/j.tifs.2021.01.023
    » http://doi.org/10.1016/j.tifs.2021.01.023
  • TRENTO, M.V.C., CARAPIÁ, M.S., CESAR, P.H.S., BRAGA, M.A., SOARES, A.M. and MARCUSSI, S., 2021. In vivo and in vitro prospection of the anti-ophidic properties exercised by the extracts of Jacaranda decurrens L. Acta Scientiarum. Biological Sciences, vol. 43, e57016. http://doi.org/10.4025/actascibiolsci.v43i1.57016
    » http://doi.org/10.4025/actascibiolsci.v43i1.57016
  • TROPICOS, 2022 [viewed 22 December 2022]. Dipteryx alata Vogel [online]. Available from: https://www.tropicos.org/name/13000476/
    » https://www.tropicos.org/name/13000476/
  • VALLILO, M.I., TAVARES, M.T.A. and AUED, S., 1990. Composição química da polpa e da semente do fruto do cumbaru (Dipteryx alata Vog.) - caracterização do óleo da semente. Revista do Instituto Florestal, vol. 2, no. 2, pp. 115-125. http://doi.org/10.24278/2178-5031.199022137
    » http://doi.org/10.24278/2178-5031.199022137
  • VERA, R., SOARES JUNIOR, M.S., NAVES, R.V., SOUZA, E.R.B., FERNANDES, M., CALIARI, E.P. and LEANDRO, W.M., 2009. Características químicas de amêndoas de barueiros (Dipteryx alata Vog.) de ocorrência natural no Cerrado do estado de Goiás, Brasil. Revista Brasileira de Fruticultura, vol. 31, no. 1, pp. 112-118. http://doi.org/10.1590/S0100-29452009000100017
    » http://doi.org/10.1590/S0100-29452009000100017
  • VIANA, H.N.A.C., SGANZERLA, W.G., CASTRO, L.E.N. and VEECK, A.P.L., 2023. Characterization of baru (Dipteryx alata Vog.) and application of its agro-industrial by-product in the formulation of cookies. Journal of Agriculture and Food Research, vol. 12, pp. 100577. http://doi.org/10.1016/j.jafr.2023.100577
    » http://doi.org/10.1016/j.jafr.2023.100577
  • WORLD HEALTH ORGANIZATION – WHO, 2007 [viewed 18 January 2023]. Joint FAO/WHO/UNU expert consultation on protein and amino acid requirements in human nutrition [online]. Geneva: WHO. Technical Reports Series, no. 935. Available from: https://apps.who.int/iris/handle/10665/43411/
    » https://apps.who.int/iris/handle/10665/43411/
  • WORLD HEALTH ORGANIZATION – WHO, 2019 [viewed 21 July 2023]. Snakebite envenoming: a strategy for prevention and control: executive summary [online]. Geneva: WHO. Available from: https://apps.who.int/iris/handle/10665/312195/
    » https://apps.who.int/iris/handle/10665/312195/
  • WORLD HEALTH ORGANIZATION – WHO, 2021a [viewed 21 November 2022]. New WHO factsheet: how can we tell if plant-based products are healthy? [online]. Geneva: WHO. Available from: https://www.who.int/europe/news/item/22-12-2021-new-who-factsheet-how-can-we-tell-if-plant-based-products-are-healthy
    » https://www.who.int/europe/news/item/22-12-2021-new-who-factsheet-how-can-we-tell-if-plant-based-products-are-healthy
  • WORLD HEALTH ORGANIZATION – WHO, 2021b [viewed 21 November 2022]. Antimicrobial resistance [online]. Geneva: WHO. Available from:https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance#:~:text=What%20is%20antimicrobial%20resistance%3F,spread%2C%20severe%20illness%20and%20death/
    » https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance#:~:text=What%20is%20antimicrobial%20resistance%3F,spread%2C%20severe%20illness%20and%20death/
  • WORLD HEALTH ORGANIZATION – WHO, 2022 [viewed 21 April 2023]. Leishmaniasis [online]. Available from: https://www.paho.org/en/topics/leishmaniasis
    » https://www.paho.org/en/topics/leishmaniasis
  • WU, W., HU, J., GAO, H., CHEN, H., FANG, X., MU, H., HAN, Y. and LIU, R., 2020. The potential cholesterol-lowering and prebiotic effects of bamboo shoot dietary fibers and their structural characteristics. Food Chemistry, vol. 332, pp. 127372. http://doi.org/10.1016/j.foodchem.2020.127372 PMid:32615381.
    » http://doi.org/10.1016/j.foodchem.2020.127372
  • YANG, L. and LIAO, M., 2021. Influence of myrcene on inflammation, matrix accumulation in the kidney tissues of streptozotocin-induced diabetic rat. Saudi Journal of Biological Sciences, vol. 28, no. 10, pp. 5555-5560. http://doi.org/10.1016/j.sjbs.2020.11.090 PMid:34588865.
    » http://doi.org/10.1016/j.sjbs.2020.11.090
  • YOON, S.Y., AHN, D., HWANG, J.Y., KANG, M.J. and CHUNG, S.J., 2021. Linoleic acid exerts antidiabetic effects by inhibiting protein tyrosine phosphatases associated with insulin resistance. Journal of Functional Foods, vol. 83, pp. 104532. http://doi.org/10.1016/j.jff.2021.104532
    » http://doi.org/10.1016/j.jff.2021.104532
  • YU, M., GOUVINHAS, I., ROCHA, J. and BARROS, A.I.R.N.A., 2021. Phytochemical and antioxidant analysis of medicinal and food plants towards bioactive food and pharmaceutical resources. Scientific Reports, vol. 11, no. 1, pp. 10041. http://doi.org/10.1038/s41598-021-89437-4 PMid:33976317.
    » http://doi.org/10.1038/s41598-021-89437-4
  • ZOLGHADRI, S., BAHRAMI, A., KHAN, M.T.H., MUNOZ-MUNOZ, J., GARCIA-MOLINA, F., GARCIA-CANOVAS, F. and SABOURY, A.A., 2019. A comprehensive review on tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 34, no. 1, pp. 279-309. http://doi.org/10.1080/14756366.2018.1545767 PMid:30734608.
    » http://doi.org/10.1080/14756366.2018.1545767

Publication Dates

  • Publication in this collection
    05 Aug 2024
  • Date of issue
    2024

History

  • Received
    26 Sept 2023
  • Accepted
    13 Mar 2024
Instituto Internacional de Ecologia R. Bento Carlos, 750, 13560-660 São Carlos SP - Brasil, Tel. e Fax: (55 16) 3362-5400 - São Carlos - SP - Brazil
E-mail: bjb@bjb.com.br