Acessibilidade / Reportar erro

Growth of soybean plants cultivated in soil and fertilized with silicon

Crescimento de plantas de soja cultivadas em solo fertilizado com silício

Abstract

Although silicon is not considered an essential element, in some crops such as soybeans, its supply can stimulate plant development and plant production. The growth of soybean cultivars in Cerrado soil subjected to the application of silicon doses was studied. The experiment was conducted in a greenhouse at the Instituto Federal do Amapá – IFAP/Campus Agrícola Porto Grande. The experimental design was completely randomized, arranged in a 5x2 factorial scheme, with four replications. The factors consisted of the control treatment (without Si) and four doses of Si (250, 500, 750 and 1000 mg pot-1 of SiO2), and two soybean cultivars (BRS Tracajá and FTS Paragominas). Growth variables were analyzed, such as: plant height, stem diameter; and dry matter of shoots and roots. Silicon influenced the increase in height when evaluating the cultivars and isolated doses, the same behavior was observed in the dry matter production of the aerial part and total. The element silicon helps in the improvement and gain in height and other evaluated agronomic characteristics, but studies with this element must be more applied, to obtain the answer for other variables and study conditions.

Keywords:
soil fertility; Glycine max; dry matter; silicate fertilization

Resumo

Apesar do silício não ser considerado um elemento essencial, em algumas culturas como a soja, seu fornecimento pode estimular o desenvolvimento vegetativo e a produção vegetal. Foi estudado o crescimento de cultivares de soja em solo de Cerrado submetido à aplicação de doses de silício. O experimento foi conduzido em casa de vegetação do Instituto Federal do Amapá – IFAP/Campus Agrícola Porto Grande. O delineamento experimental foi o inteiramente casualizado arranjado em esquema fatorial 5x2, com quatro repetições. Os fatores foram constituídos do tratamento controle (sem Si) e quatro doses de Si (250, 500, 750 e 1000 mg vaso-1 de SiO2), e duas cultivares de soja (BRS Tracajá e FTS Paragominas). Foram analisadas as variáveis de crescimento, como: altura da planta, diâmetro do colmo; e matéria seca da parte área e das raízes. O silício influenciou no aumento da altura quando avaliada as cultivares e doses isoladas, o mesmo comportamento foi observado na produção de matéria seca da parte aérea e total. O elemento silício auxilia na melhoria e no ganho de altura e outras características agronômicas avaliadas, mas os estudos com este elemento devem ser mais aplicados, para obter a resposta para outras variáveis e condições de estudo.

Palavras-chave:
fertilidade do solo; Glycine max; produção de matéria seca; adubação silicatada

1. Introduction

Soybean (Glycine max (L.) Merrill) is a crop widely cultivated throughout the world, with Brazil being the largest producer of this grain. Due to its global importance for animal feed, soybean cultivation drives new agricultural frontiers and increases the country's economic interest in the crop (Teixeira, 2017TEIXEIRA, C.H.S., 2017. Avaliação do procedimento de licenciamento ambiental do cultivo de soja no Amapá a partir da percepção dos principais atores envolvidos. Macapá: Universidade Federal do Amapá, 68 p. Monografia em Ciências Ambientais.), a fact that results in a production of approximately 242.1 million tons in the 2018/2019 harvest of soy (Brasil, 2019BRASIL. Ministério da Agricultura e Pecuária – MAPA, 2019 [viewed 20 May 2020]. Brasil fecha safra 2018/2019 com recorde de 242,1 milhões de toneladas de grãos [online]. Brasília. Available from: https://www.gov.br/agricultura/pt-br/assuntos/noticias/brasil-fecha-safra-2018-2019-com-recorde-de-242-1-milhoes-de-toneladas-de-graos#:~:text=Conab-,Brasil%20fecha%20safra%202018%2F2019%20com%20recorde%20de%20242%2C1,milh%C3%B5es%20de%20toneladas%20de%20gr%C3%A3os&text=A%20safra%20de%20gr%C3%A3os%202018,milh%C3%B5es%20de%20toneladas%20de%20gr%C3%A3os
https://www.gov.br/agricultura/pt-br/ass...
).

In Amapá, soybean production was estimated at 59.5 thousand tons of grains in the 2018/19 harvest (Brasil, 2019BRASIL. Ministério da Agricultura e Pecuária – MAPA, 2019 [viewed 20 May 2020]. Brasil fecha safra 2018/2019 com recorde de 242,1 milhões de toneladas de grãos [online]. Brasília. Available from: https://www.gov.br/agricultura/pt-br/assuntos/noticias/brasil-fecha-safra-2018-2019-com-recorde-de-242-1-milhoes-de-toneladas-de-graos#:~:text=Conab-,Brasil%20fecha%20safra%202018%2F2019%20com%20recorde%20de%20242%2C1,milh%C3%B5es%20de%20toneladas%20de%20gr%C3%A3os&text=A%20safra%20de%20gr%C3%A3os%202018,milh%C3%B5es%20de%20toneladas%20de%20gr%C3%A3os
https://www.gov.br/agricultura/pt-br/ass...
). As it is on the border of Brazil, the State of Amapá is seen as a strategic location for soybean production, due to the ease of transporting the product and reduced production costs, in addition to land with low acquisition value, which attracts producers from other regions of Brazil (Teixeira, 2017TEIXEIRA, C.H.S., 2017. Avaliação do procedimento de licenciamento ambiental do cultivo de soja no Amapá a partir da percepção dos principais atores envolvidos. Macapá: Universidade Federal do Amapá, 68 p. Monografia em Ciências Ambientais.).

Low soil fertility and inadequate fertilizer management are factors that limit crop production. Therefore, soil analysis and the correct recommendation of essential nutrients for plants are of fundamental importance for obtaining quality materials with good productivity.

Although silicon is not considered an essential element for plants as it does not meet the essentiality criteria (Malavolta, 2006MALAVOLTA, E., 2006. Manual de nutrição mineral de plantas. São Paulo: Agronômica Ceres, 637 p.), its supply can result in beneficial effects for crops such as, for example, efficiency or low transpiration coefficient with better water yield. during the crop cycle, chlorophyll levels increase, in addition to an increase in photosynthetic area and, consequently, gains in plant dry matter (Harter and Barros, 2011HARTER, F.S. and BARROS, A.C.S.A., 2011. Cálcio e silício na produção e qualidade de sementes de soja. Revista Brasileira de Sementes, vol. 33, no. 1, pp. 54-60. http://doi.org/10.1590/S0101-31222011000100006.
http://doi.org/10.1590/S0101-31222011000...
). Therefore, studies are needed on the effect of silicon on soybean cultivation in order to benefit its production (Pereira Júnior et al., 2010PEREIRA JÚNIOR, P., REZENDE, P.M., MALFITANO, S.C., LIMA, R.K., CORRÊA, L.V.T. and CARVALHO, E.R., 2010. Efeito de doses de silício sobre a produtividade e características agronômicas da soja [Glycine max (l.) Merrill]. Ciência e Agrotecnologia, vol. 34, no. 4, pp. 908-913. http://doi.org/10.1590/S1413-70542010000400016.
http://doi.org/10.1590/S1413-70542010000...
), particularly in crops on soils with great representation in Brazil such as Oxisols, widely distributed in the state of Amapá.

In this context, it is important to study silicon fertilization and its influence on soybean growth, as in some studies it was found that this nutrient is an important management strategy for increasing agricultural production. Thus, the objective was to evaluate the growth of soybean cultivars in Cerrado soil subjected to the application of doses of silicon.

2. Material and Methods

The experiment was carried out in a greenhouse at the Instituto Federal do Amapá – IFAP/Campus Agrícola Porto Grande, from April of 2019 to January of 2020. The experimental design was completely randomized in a 5x2 factorial scheme, with four replications, totaling 40 experimental units. The factors consisted of the control treatment (without Si) and four doses of Si (250, 500, 750 and 1000 mg pot-1 of SiO2), and two soybean cultivars (BRS Tracajá and FTS Paragominas).

The experimental units were composed of plastic pots with 7 dm3 of soil, collected in the arable layer 0.00-0.20 m deep, from a typical Dystrophic Yellow Oxisol (Santos et al., 2013SANTOS, H.G., JACOMINE, P.K.T., ANJOS, L.H.C., OLIVEIRA, V.A. and LUMBRERAS, J.F., 2013. Sistema Brasileiro de Classificação de Solos. 3ª ed. Brasília: EMBRAPA, 353 p.), in the cerrado area of municipality of Porto Grande/AP. After collection, the soil was air-dried, crushed, homogenized and passed through a 2 mm stainless steel sieve.

For the chemical and granulometric characterization of the soil, a composite soil sample was taken, formed from six simple samples. The sampled soil presented the following chemical analysis: pH 4.0; 12.07 g kg-1 of organic matter; 6 mg dm3 of P; K, Ca + Mg, H+Al, SB and CTC equal to 0.02; 0.2; 3.1; 0.2 and 3.3 cmolc dm-3, respectively, and V = 6%. The granulometry results were: 229, 610 and 161 g/kg of clay, sand and silt, respectively. Chemical analysis was carried out according to the methodology described by Raij et al. (2001)RAIJ, B.V., ANDRADE, J.C., CANTARELLA, H. and QUAGGIO, J.A., 2001. Análise química para avaliação da fertilidade de solos tropicais. Campinas: Instituto Agronômico. and the granulometric analysis according to Claessen (1997)CLAESSEN, M.E.C., 1997. Manual de métodos de análise de solo. Rio de Janeiro: Centro Nacional de Pesquisa de Solos, 212 p..

Soil acidity correction was carried out 30 days before soybean sowing, using the equivalent of 2.1 t ha-1 of dolomitic limestone, with 32% CaO, 15% MgO and PRNT of 92.38%, to increase base saturation to 70% (Raij et al., 1997RAIJ, B. V., CANTARELLA, H., QUAGGIO, J.A. and FURLANI, A.M.C., 1997. Recomendação de adubação e calagem para o estado de São Paulo. Campinas: Instituto Agronômico. Boletim Técnico IAC, no. 100.), placing 8.0 g pot-1 of limestone in plastic bags for incubation and reaction of the corrector.

After the limestone incubation period and before applying the Si doses, a base fertilization was carried out, using irrigation water in all pots, with macro and micronutrients, in a total of 0.31 g of N; 1.94 g of P; 0.53 g of K; per dm-3 of soil, in the form of urea, simple superphosphate and potassium chloride, respectively; and 0.30 g of FTE BR 12 per dm-3 of soil, according to the fertilization recommendation proposed by Brasil et al. (2020)BRASIL, E.C., CRAVO, M. S. and VIÉGAS, I., 2020. Recomendações de calagem e adubação para o estado do Pará. Brasília: Embrapa..

Soybean sowing was carried out using six seeds per pot and two plants per pot remained after thinning, carried out ten days after emergence (DAE). During the experiment, soil moisture was maintained at 60% of the total pore volume, field capacity condition, topping up, when necessary, with distilled water.

Before harvesting the soybeans, plant height (measured with a tape measure from the plant neck to the end of the apical bud) and stem diameter (using a digital caliper) were determined. The soybeans were harvested 160 days after sowing, when the pods were mature, with fully formed and hardened grains. The soil in the pots was turned over and the root system of the plants was removed and washed carefully to remove soil residue. The plant material from the aerial part and roots of soybeans was washed in running distilled water, packed in paper bags, weighed and then dried in an oven with forced air circulation at 65-70 °C for 72 h, until the weight constant.

The results were subjected to analysis of variance, when significant by the F test, the means of soybean cultivars were compared by the Tukey test (p<0.05) and the effect of Si doses analyzed by regression, adjusting to the equations for express the behavior of variables.

3. Results and Discussion

Significant effects were observed for the studied variables (height, diameter, shoot dry mass, root dry mass and total dry mass) only in the isolated factors, silicon doses and compared with the studied cultivars (Table 1).

Table 1
Analysis of variance for plant height, stem diameter, shoot dry matter (SDM), root dry matter (RDM) and total dry matter (TDM) of soybean cultivars as a function of Si doses.

The plant height had a quadratic adjustment, showing significant gains in height reaching its maximum point at 69.08 cm with increasing doses up to 800 mg pot-1, the highest dose in this study. Silicon, even though it is not an essential element, is beneficial because it provides biometric gains (Figure 1a). The effects of gaining height enable the plant to seek more light and have a greater active photosynthetic area, increasing its growth and development. In studies by Ribeiro (2023)RIBEIRO, M. C., 2023. Efeito residual da aplicação de pó de rocha silicática como fonte de silício e remineralizador de solos. Ilha Solteira: Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, 86 p. Trabalho de Conclusão de Curso em Engenharia Agrônoma., with soybean cultivation in a greenhouse, using Dystrophic Red Oxisol, the average height of soybean plants was 110.10 cm, thus demonstrating the effect of silicon in improving plants and gaining in height with the application.

Figure 1
Height (a) and stalk diameter (b) of soybean plants as a function of Si doses. Vertical bars at each point represent the standard errors of the means. * and ** = significant p<0.05 and p<0.01, respectively, using the Tukey test.

The height variable was significant in a study with soybean plants, conducted in dystrophic Red-Yellow Argisol with a sandy texture and with Si application (Teodoro et al., 2015TEODORO, P.E., RIBEIRO, L.P., OLIVEIRA, E.P., CORRÊA, C.C.G. and TORRES, F.E., 2015. Acúmulo de massa seca na soja em resposta a aplicação foliar com silício sob condições de déficit hídrico. Bioscience Journal, vol. 31, no. 1, pp. 161-170. http://doi.org/10.14393/BJ-v31n1a2015-22283.). Also in this study, greater effective plant growth was observed, provided by the application of silicate fertilizer, with an improvement in architecture, reduced shading and improved agronomic characteristics. Similarly, the application of 350 kg ha-1 of silicon in the planting furrow provided greater height for soybean plants (Pereira Júnior et al., 2010). Oliveira et al. (2015b)OLIVEIRA, S., LEMES, E.S., MENEGHELLO, G.E., TAVARES, L.C. and BARROS, A.C.A., 2015b. Aplicação de silício via solo no rendimento e na qualidade fisiológica de sementes de soja. Semina: Ciências Agrárias, vol. 36, no. 5, pp. 3029-3042. http://doi.org/10.5433/1679-0359.2015v36n5p3029. observed gains in height in soybean plants in a study of the quality of soybean seeds subjected to Si application via soil.

Plant diameter showed a quadratic adjustment to Si doses and a significant increase (p<0.05) with increasing Si doses up to the highest dose studied. Si, in addition to promoting height gain, also helps in the structuring and enlargement of cells, also by avoiding excess water loss, it provides a greater photosynthesis yield, better use of water and a higher rate of chlorophyll in tissues and thus growth in stem diameter (Harter, 2007HARTER, F.S., 2007. Aplicação de cálcio e silício na produção e qualidade de sementes de soja. Pelotas: Universidade Federal de Pelotas, 32 p. Dissertação de Mestrado em Ciências.) (Figure 1b).

In a field study evaluating the physiological responses of soybean seeds to the application of silicon, Oliveira et al. (2015a)OLIVEIRA, S., LEMES, E.S., MENDONÇA, A.O., DIAS, L.W., BRUNES, A.P., LEITZKE, I.D. and MENEGHELLO, G.E., 2015a. Tratamento de semente de soja com silício: efeitos na qualidade fisiológica e nas características agronômicas. Revista Cultivando o Saber, vol. 8, no. 2, pp. 89-103. did not obtain a significant difference in terms of the diameter of the soybean plant, not agreeing with the present study. The results presented in this study differ from Oliveira (2013)OLIVEIRA, S., 2013. Silício oriundo da cinza de casca de arroz carbonizada como promotor do rendimento e da qualidade fisiológica de sementes de soja. Pelotas: Universidade Federal de Pelotas, 66 p. Dissertação de Mestrado em Ciências., who, in a field study, did not prove a significant difference in plant diameter, using carbonized rice husk ash for the physiological quality of soybean seeds.

In growth responses, the BRS Tracajá variety was the one with the highest height, with 72.96 cm (p<0.05), compared to FTS Paragominas (Figure 2). This effect can be described as the function of silicon in assisting in cell elongation and as described by Deren (2001)DEREN, C., 2001. Plant genotypes, silicon concentration and silicon related responses. In: L.E. DATNOFF, G.H. SNYDER and G.H. KORNDÖRFER. Silicon in agriculture. Netherlands: Elsevier Science, cap. 8, pp. 149-158. http://doi.org/10.1016/S0928-3420(01)80012-4.
http://doi.org/10.1016/S0928-3420(01)800...
, the accumulation of silicon or silica in plant tissues reduces the effects of transpiration and increases efficiency. Furthermore, the cultivar has greater adaptability to the Amapaense cerrado environment, as confirmed by studies by Yokomizo et al. (2018)YOKOMIZO, G.K.I., SILVA NETO, S.P. and ARIAS, C.A.A., 2018. Estabilidade e adaptabilidade de cultivares comerciais de soja no cerrado amapaense. Revista Scientia Rural, vol. 1, pp. 1-13.. The plant with less water loss is able to develop well without presenting stress, thus the cultivar has reached its greatest growth. Studies carried out in a greenhouse, Rufino (2010)RUFINO, C. A., 2010. Aplicação de cálcio/magnésio e silício nas sementes de soja. Pelotas: Universidade Federal de Pelotas, 56 p. Dissertação de Mestrado em Ciências. found that height was not influenced by varieties or doses in isolation, only the interaction was significant.

Figure 2
Height of soybean cultivars. Vertical bars represent standard errors of the means. Different letters indicate significant difference using the Tukey test (p< 0.01).

The production of shoot dry matter (SDM) showed a significant quadratic adjustment (p<0.01), where it obtained the highest accumulation of production, totaling 18.72 g plant-1 at a dose of 450 mg pot-1 (Figure 3). The accumulation of SDM evaluated by Teodoro et al. (2015)TEODORO, P.E., RIBEIRO, L.P., OLIVEIRA, E.P., CORRÊA, C.C.G. and TORRES, F.E., 2015. Acúmulo de massa seca na soja em resposta a aplicação foliar com silício sob condições de déficit hídrico. Bioscience Journal, vol. 31, no. 1, pp. 161-170. http://doi.org/10.14393/BJ-v31n1a2015-22283. in soybeans, grown in the field and under water deficit, it was significant (p<0.01) for the application of foliar silicon, this effect is possible since the silicon element is beneficial to the crop, providing several improvements in physiology, biochemistry and consequently in the morphology, increasing the productive yield and accumulation of dry mass of this crop (Coelho et al., 2019COELHO, P.H.M., BENETT, K.S.S., ARRUDA, N., BENETT, C.G.S. and NASCIMENTO, M.V., 2019. Crescimento e produtividade de dois cultivares de soja em função de doses de silício. Revista de Agricultura Neotropical, vol. 6, no. 3, pp. 60-65. http://doi.org/10.32404/rean.v6i3.2602.
http://doi.org/10.32404/rean.v6i3.2602...
; Barbosa, 2021BARBOSA, R.L.P., 2021. Silício como agente indutor de resistência a pragas na cultura da soja. Uberlândia: Universidade Federal de Uberlândia, 26 p. Trabalho de Conclusão de Curso em Agronomia.).

Figure 3
Shoot dry matter (SDM) (a), root dry matter (RDM) (b) and total dry matter (TDM) (c) of soybean plants as a function of Si doses. Vertical bars at each point represent the standard errors of the means. **significant p<0.01, using the Tukey test.

Root dry mass (RDM) presented, as previously, a significant quadratic adjustment (p>0.01) to Si doses, with its maximum expression point at 7 g plant-1 in response to an applied dose of 500 mg-1 per vessel. (Figure 3). In this study, Si was shown to promote root elongation and greater accumulation of dry mass in the roots. In studies with soybeans, Cabral (2017)CABRAL, P.P., 2017. Silício no recobrimento de sementes e aplicação foliar no cultivo da soja. Chapadão do Sul: Universidade Federal de Mato Grosso do Sul, 38 p. Dissertação de Mestrado em Produção Vegetal. concluded that the application of silicon to the seeds did not result in a difference in the accumulation of RDM, but it harmed the length of the shoot and root of the seedlings. Still in that study, the application of Si via foliar promoted greater length of the shoot and root in the evaluated stages R2 + R5. Moreira et al. (2010)MOREIRA, A.R., FAGAN, E.B., MARTINS, K.V. and SOUZA, C.H.E., 2010. Resposta da cultura da soja a adubação de silício foliar. Bioscience Journal, vol. 26, no. 3, pp. 413-423. showed that the accumulation of dry biomass in the reproductive phase is one of the factors determining crop productivity. This accumulation tends to improve the conditions of reserve tissues, allowing greater security and efficiency in soybean production.

The total dry mass (TDM) had a polynomial behavior, adjusting to the regression graph in response to the Si doses, with its maximum point obtained at a dose of 550 mg pot-1 with a productivity of 27.04 g plant-1, evaluated as the greatest potential in response to the application (Figure 3). Teodoro et al. (2015)TEODORO, P.E., RIBEIRO, L.P., OLIVEIRA, E.P., CORRÊA, C.C.G. and TORRES, F.E., 2015. Acúmulo de massa seca na soja em resposta a aplicação foliar com silício sob condições de déficit hídrico. Bioscience Journal, vol. 31, no. 1, pp. 161-170. http://doi.org/10.14393/BJ-v31n1a2015-22283., in an experiment with soybeans in a cerrado environment and under conditions of water deficit, in an experimental field, observed that the application of Si promoted the accumulation of TDM with positive impacts on crop production.

The effects of greater accumulation were also observed by Lazarini et al. (2000)LAZARINI, E., SÁ, M.E. and FERREIRA, R.C., 2000. Acúmulo de matéria seca em plantas de soja durante os estádios reprodutivos e qualidade fisiológica de sementes colhidas em diferentes fases do desenvolvimento. Revista Brasileira de Sementes, vol. 22, no. 1, pp. 153-162. http://doi.org/10.17801/0101-3122/rbs.v22n1p153-162.
http://doi.org/10.17801/0101-3122/rbs.v2...
, evaluating the effect of foliar application of silicon on soybean plants in the field and subjected to water deficit, they were tolerant and presented higher values than the control treatment (without silicon).

The variables evaluated SDM and TDM, for the cultivars studied, obtained significant responses (p<0.01) (Figure 4). The fact of greater accumulation of the studied varieties is explained by the point that the agronomic characteristics of the varieties are different, with one greater (BRS Tracajá, with 23.99 g plant-1 in SDM and 32.7 g plant-1 for TDM) and another lower (FTS Paragominas with 11.98 g plant-1 for SDM and 17.77 g plant-1 for TDM), the same was demonstrated by Yokomizo et al. (2018)YOKOMIZO, G.K.I., SILVA NETO, S.P. and ARIAS, C.A.A., 2018. Estabilidade e adaptabilidade de cultivares comerciais de soja no cerrado amapaense. Revista Scientia Rural, vol. 1, pp. 1-13., where he demonstrated the adaptability of the BRS Tracajá cultivar as generally high, during the years of evaluations, with the materials maintaining their productivity in all conditions found in the cerrado of the state of Amapá.

Figure 4
Shoot dry matter (SDM) and total dry matter (TDM) of soybean cultivars as a function of Si doses. Different letters indicate significant difference using the Tukey test (p< 0.01).

Another factor is that silicon, even though it is not essential, acts beneficially in controlling and improving the plant's metabolism and acting on the growth and production of dry mass in the aerial part of soybean plants (Rocha, 2021ROCHA, I. L. O., 2021. Pulverização foliar de manganês com adição de silício aumenta composto fenólico, eficiência fotossintética e a produção de grãos da cultura da soja. São Paulo: Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, 57 p. Dissertação de Mestrado em Agronomia.). For Rufino (2010)RUFINO, C. A., 2010. Aplicação de cálcio/magnésio e silício nas sementes de soja. Pelotas: Universidade Federal de Pelotas, 56 p. Dissertação de Mestrado em Ciências., evaluating the quality of soybean seeds in a greenhouse, the effects of the variety were not significant, since the interaction of nutrient doses (silicon, calcium and magnesium) and the varieties studied, the effect was observed, with an interaction (p<0.05) at 10, 20 and 30 DAE.

4. Conclusion

Silicon has an effect on height and diameter gain in isolation for doses and varieties, as well as an increase in the accumulation of dry mass in the shoot, root and total.

Studies with silicon should be more widespread for other variables and in other growing conditions for soybean crops and others.

Acknowledgements

To the National Council for Scientific and Technological Development (CNPq) and the Federal Institute of Amapá (IFAP) for granting the Scientific Initiation scholarship. And to the Study Group on Soils and Cultivated Plants (GESP) for the learning and support in conducting the research.

References

  • BARBOSA, R.L.P., 2021. Silício como agente indutor de resistência a pragas na cultura da soja. Uberlândia: Universidade Federal de Uberlândia, 26 p. Trabalho de Conclusão de Curso em Agronomia.
  • BRASIL. Ministério da Agricultura e Pecuária – MAPA, 2019 [viewed 20 May 2020]. Brasil fecha safra 2018/2019 com recorde de 242,1 milhões de toneladas de grãos [online]. Brasília. Available from: https://www.gov.br/agricultura/pt-br/assuntos/noticias/brasil-fecha-safra-2018-2019-com-recorde-de-242-1-milhoes-de-toneladas-de-graos#:~:text=Conab-,Brasil%20fecha%20safra%202018%2F2019%20com%20recorde%20de%20242%2C1,milh%C3%B5es%20de%20toneladas%20de%20gr%C3%A3os&text=A%20safra%20de%20gr%C3%A3os%202018,milh%C3%B5es%20de%20toneladas%20de%20gr%C3%A3os
    » https://www.gov.br/agricultura/pt-br/assuntos/noticias/brasil-fecha-safra-2018-2019-com-recorde-de-242-1-milhoes-de-toneladas-de-graos#:~:text=Conab-,Brasil%20fecha%20safra%202018%2F2019%20com%20recorde%20de%20242%2C1,milh%C3%B5es%20de%20toneladas%20de%20gr%C3%A3os&text=A%20safra%20de%20gr%C3%A3os%202018,milh%C3%B5es%20de%20toneladas%20de%20gr%C3%A3os
  • BRASIL, E.C., CRAVO, M. S. and VIÉGAS, I., 2020. Recomendações de calagem e adubação para o estado do Pará Brasília: Embrapa.
  • CABRAL, P.P., 2017. Silício no recobrimento de sementes e aplicação foliar no cultivo da soja Chapadão do Sul: Universidade Federal de Mato Grosso do Sul, 38 p. Dissertação de Mestrado em Produção Vegetal.
  • CLAESSEN, M.E.C., 1997. Manual de métodos de análise de solo Rio de Janeiro: Centro Nacional de Pesquisa de Solos, 212 p.
  • COELHO, P.H.M., BENETT, K.S.S., ARRUDA, N., BENETT, C.G.S. and NASCIMENTO, M.V., 2019. Crescimento e produtividade de dois cultivares de soja em função de doses de silício. Revista de Agricultura Neotropical, vol. 6, no. 3, pp. 60-65. http://doi.org/10.32404/rean.v6i3.2602
    » http://doi.org/10.32404/rean.v6i3.2602
  • DEREN, C., 2001. Plant genotypes, silicon concentration and silicon related responses. In: L.E. DATNOFF, G.H. SNYDER and G.H. KORNDÖRFER. Silicon in agriculture. Netherlands: Elsevier Science, cap. 8, pp. 149-158. http://doi.org/10.1016/S0928-3420(01)80012-4
    » http://doi.org/10.1016/S0928-3420(01)80012-4
  • HARTER, F.S. and BARROS, A.C.S.A., 2011. Cálcio e silício na produção e qualidade de sementes de soja. Revista Brasileira de Sementes, vol. 33, no. 1, pp. 54-60. http://doi.org/10.1590/S0101-31222011000100006
    » http://doi.org/10.1590/S0101-31222011000100006
  • HARTER, F.S., 2007. Aplicação de cálcio e silício na produção e qualidade de sementes de soja Pelotas: Universidade Federal de Pelotas, 32 p. Dissertação de Mestrado em Ciências.
  • LAZARINI, E., SÁ, M.E. and FERREIRA, R.C., 2000. Acúmulo de matéria seca em plantas de soja durante os estádios reprodutivos e qualidade fisiológica de sementes colhidas em diferentes fases do desenvolvimento. Revista Brasileira de Sementes, vol. 22, no. 1, pp. 153-162. http://doi.org/10.17801/0101-3122/rbs.v22n1p153-162
    » http://doi.org/10.17801/0101-3122/rbs.v22n1p153-162
  • MALAVOLTA, E., 2006. Manual de nutrição mineral de plantas São Paulo: Agronômica Ceres, 637 p.
  • MOREIRA, A.R., FAGAN, E.B., MARTINS, K.V. and SOUZA, C.H.E., 2010. Resposta da cultura da soja a adubação de silício foliar. Bioscience Journal, vol. 26, no. 3, pp. 413-423.
  • OLIVEIRA, S., 2013. Silício oriundo da cinza de casca de arroz carbonizada como promotor do rendimento e da qualidade fisiológica de sementes de soja Pelotas: Universidade Federal de Pelotas, 66 p. Dissertação de Mestrado em Ciências.
  • OLIVEIRA, S., LEMES, E.S., MENDONÇA, A.O., DIAS, L.W., BRUNES, A.P., LEITZKE, I.D. and MENEGHELLO, G.E., 2015a. Tratamento de semente de soja com silício: efeitos na qualidade fisiológica e nas características agronômicas. Revista Cultivando o Saber, vol. 8, no. 2, pp. 89-103.
  • OLIVEIRA, S., LEMES, E.S., MENEGHELLO, G.E., TAVARES, L.C. and BARROS, A.C.A., 2015b. Aplicação de silício via solo no rendimento e na qualidade fisiológica de sementes de soja. Semina: Ciências Agrárias, vol. 36, no. 5, pp. 3029-3042. http://doi.org/10.5433/1679-0359.2015v36n5p3029.
  • PEREIRA JÚNIOR, P., REZENDE, P.M., MALFITANO, S.C., LIMA, R.K., CORRÊA, L.V.T. and CARVALHO, E.R., 2010. Efeito de doses de silício sobre a produtividade e características agronômicas da soja [Glycine max (l.) Merrill]. Ciência e Agrotecnologia, vol. 34, no. 4, pp. 908-913. http://doi.org/10.1590/S1413-70542010000400016
    » http://doi.org/10.1590/S1413-70542010000400016
  • RAIJ, B. V., CANTARELLA, H., QUAGGIO, J.A. and FURLANI, A.M.C., 1997. Recomendação de adubação e calagem para o estado de São Paulo Campinas: Instituto Agronômico. Boletim Técnico IAC, no. 100.
  • RAIJ, B.V., ANDRADE, J.C., CANTARELLA, H. and QUAGGIO, J.A., 2001. Análise química para avaliação da fertilidade de solos tropicais Campinas: Instituto Agronômico.
  • RIBEIRO, M. C., 2023. Efeito residual da aplicação de pó de rocha silicática como fonte de silício e remineralizador de solos. Ilha Solteira: Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, 86 p. Trabalho de Conclusão de Curso em Engenharia Agrônoma.
  • ROCHA, I. L. O., 2021. Pulverização foliar de manganês com adição de silício aumenta composto fenólico, eficiência fotossintética e a produção de grãos da cultura da soja São Paulo: Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, 57 p. Dissertação de Mestrado em Agronomia.
  • RUFINO, C. A., 2010. Aplicação de cálcio/magnésio e silício nas sementes de soja Pelotas: Universidade Federal de Pelotas, 56 p. Dissertação de Mestrado em Ciências.
  • SANTOS, H.G., JACOMINE, P.K.T., ANJOS, L.H.C., OLIVEIRA, V.A. and LUMBRERAS, J.F., 2013. Sistema Brasileiro de Classificação de Solos. 3ª ed. Brasília: EMBRAPA, 353 p.
  • TEIXEIRA, C.H.S., 2017. Avaliação do procedimento de licenciamento ambiental do cultivo de soja no Amapá a partir da percepção dos principais atores envolvidos Macapá: Universidade Federal do Amapá, 68 p. Monografia em Ciências Ambientais.
  • TEODORO, P.E., RIBEIRO, L.P., OLIVEIRA, E.P., CORRÊA, C.C.G. and TORRES, F.E., 2015. Acúmulo de massa seca na soja em resposta a aplicação foliar com silício sob condições de déficit hídrico. Bioscience Journal, vol. 31, no. 1, pp. 161-170. http://doi.org/10.14393/BJ-v31n1a2015-22283.
  • YOKOMIZO, G.K.I., SILVA NETO, S.P. and ARIAS, C.A.A., 2018. Estabilidade e adaptabilidade de cultivares comerciais de soja no cerrado amapaense. Revista Scientia Rural, vol. 1, pp. 1-13.

Publication Dates

  • Publication in this collection
    04 Nov 2024
  • Date of issue
    2024

History

  • Received
    18 Mar 2024
  • Accepted
    20 Aug 2024
Instituto Internacional de Ecologia R. Bento Carlos, 750, 13560-660 São Carlos SP - Brasil, Tel. e Fax: (55 16) 3362-5400 - São Carlos - SP - Brazil
E-mail: bjb@bjb.com.br