Acessibilidade / Reportar erro

Arbuscular mycorrhizal fungi on the development and copper content in corn and sorghum plants

Fungos micorrízicos arbusculares no desenvolvimento e teor de cobre em plantas de milho e sorgo

Abstract

The concentration of copper in the soil increased with the intensification of agricultural activities, mainly in grape production areas and orchards as a result of the application of pesticides. Arbuscular mycorrhizal fungi make up the microbial biomass of the soil and appear as an alternative to be researched for the development of plants in an environment contaminated with copper. The purpose of this pot study was to analyze the influence of arbuscular mycorrhizal fungi on the development and content of copper in corn and sorghum plants. Soil treatments were: without inoculum (control) and two arbuscular mycorrhizal (Acaulospora scrobiculata and Rhizoglomus clarum) and five doses of copper (0, 100, 200, 300, and 400 mg Cu kg-1 soil); with seven repetitions. Plant height, stem diameter, number of tillers, root volume, shoot and root dry weight yields, shoot, root and grain Cu concentrations, pseudo-total soil Cu, percentage of mycorrhizal colonization and relative mycorrhizal efficiency index in reducing Cu concentration in root and shoot of corn and sorgum were evaluated. Morphological parameters of sorghum and corn were reduced with at high Cu doses in the soil, and the inoculation with Acaulospora scrobiculata and Rhizoglomus clarum resulted in greater development and lower Cu concentration in the dry mass of the shoot and root parts sorghum and corn plants.

Keywords:
Sorghum bicolor L.; phytostabilization; heavy metal; mycorrhiza; polluted soil; Zea mays L

Resumo

A concentração de cobre no solo aumentou com a intensificação das atividades agrícolas, principalmente em áreas de produção de uva e pomares, como resultado da aplicação de pesticidas. Fungos micorrízicos arbusculares compõem a biomassa microbiana do solo e aparecem como uma alternativa a ser pesquisada para o desenvolvimento de plantas em ambiente contaminado com cobre. O objetivo deste estudo em vasos foi analisar a influência dos fungos micorrízicos arbusculares no desenvolvimento e conteúdo de cobre em plantas de milho e sorgo. Os tratamentos do solo foram: sem inóculo (controle) e dois micorrízicos arbusculares (Acaulospora scrobiculata e Rhizoglomus clarum) e cinco doses de cobre (0, 100, 200, 300 e 400 mg Cu kg-1 solo); com sete repetições. Foram avaliados altura de planta, diâmetro do caule, número de perfilhos, volume de raiz, produtividade de matéria seca de parte aérea e raiz, concentrações de Cu em parte aérea, raiz e grão, Cu pseudo-total do solo, porcentagem de colonização micorrízica e índice de eficiência micorrízica relativa na redução da concentração de Cu em raiz e parte aérea de milho e sorgo. Os parâmetros morfológicos de sorgo e milho foram reduzidos com altas doses de Cu no solo, e a inoculação com Acaulospora scrobiculata e Rhizoglomus clarum resultou em maior desenvolvimento e menor concentração de Cu na massa seca das partes aérea e radicular de plantas de sorgo e milho.

Palavras-chave:
Sorghum bicolor L.; fitoestabilização; metal pesado; micorriza; solo poluído; Zea mays L

1. Introduction

Copper (Cu) makes up the structure of minerals and is naturally present in the soil (Santana, 2020SANTANA, N.A., 2020. Estratégias biológicas na fitorremediação do cobre. Porto Alegre: Simplíssimo, 50 p.), However, as a result of the application of pesticides, their levels in the soil have increased with the duration of agricultural activity (Neaman et al., 2024NEAMAN, A., SCHOFFER, J., NAVARRO-VILLARROEL, C., PELOSI, C., PEÑALOZA, P., DOVLETYAROVA, E. and SCHNEIDER, J., 2024. Copper contamination in agricultural soils: a review of the effects of climate, soil properties, and prolonged copper pesticide application in vineyards and orchards. Plant, Soil and Environment, vol. 70, no. 7, pp. 407-417. http://doi.org/10.17221/501/2023-PSE.
http://doi.org/10.17221/501/2023-PSE...
), mainly in vineyard and orchard soils (Brunetto et al., 2014BRUNETTO, G., SCHMITT, D.E., COMIN, J.J., MIOTTO, A., MORAES, M.P. and DE., 2014. Frações de cobre e zinco em solos de vinhedos no Meio Oeste de Santa Catarina. Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 18, no. 8, pp. 805-810. http://doi.org/10.1590/1807-1929/agriambi.v18n08p805-810.
http://doi.org/10.1590/1807-1929/agriamb...
; Schoffer et al., 2020SCHOFFER, J.T., SAUVÉ, S., NEAMAN, A. and GINOCCHIO, R., 2020. Role of leaf litter on the incorporation of copper-containing pesticides into soils under fruit production: a review. Journal of Soil Science and Plant Nutrition, vol. 20, no. 3, pp. 990-1000. http://doi.org/10.1007/s42729-020-00186-1.
http://doi.org/10.1007/s42729-020-00186-...
), which can cause physiological, biochemical, and morpho-anatomical disorders in plants, with inactivation of cytoplasmic enzymes, oxidative stress, reduction of photosynthesis processes, compromising the growth and development of plants (Marques et al., 2018MARQUES, D.M., SILVA, A.B., MANTOVANI, J.R., PEREIRA, D.S. and SOUZA, T.C., 2018. Growth and physiological responses of tree species (Hymenaea courbaril L., Peltophorum dubium (Spreng.) Taub. and Myroxylon peruiferum LF) exposed to different copper concentrations in the soil. Revista Árvore, vol. 42, no. 2, e420202. http://doi.org/10.1590/1806-90882018000200002.
http://doi.org/10.1590/1806-908820180002...
).

However, some plant species have the ability to extract or metabolize elements that are at levels considered toxic in the soil, avoiding translocation to their aerial part (Moogouei et al., 2011MOOGOUEI, R., BORGHEI, M. and ARJMANDI, R., 2011. Phytoremediation of stable Cs from solutions by Calendula alata, Amaranthus chlorostachys an Chenopodium album. Ecotoxicology and Environmental Safety, vol. 74, no. 7, pp. 2036-2039. http://doi.org/10.1016/j.ecoenv.2011.07.019. PMid:21839516.
http://doi.org/10.1016/j.ecoenv.2011.07....
) and may be an alternative for use in soils contaminated with copper. In this sense, the literature reports the possibility of using both forest species (De Marco et al., 2017DE MARCO, R., SILVA, R.F., SCHEID, D.L., DA ROS, C.O. and SILVA, V.R., 2017. Amenizante orgânico e Eucalyptus grandis para fitoestabilização de solo contaminado com cobre. Floresta e Ambiente, vol. 24, e00029315. http://doi.org/10.1590/2179-8087.029315.
http://doi.org/10.1590/2179-8087.029315...
; Bomfim, 2020BOMFIM, N.C.P., 2020. Crescimento, tolerância e potencial fitorremediador de Leucaena leucocephala em solo contaminado por cobre e ferro. Ilha Solteira: UNESP, 73 p. Dissertação de Mestrado em Agronomia.), cover crops (Vendrusculo 2013VENDRUSCULO, D., 2013. Seleção de plantas para fitorremediação de solo contaminado com cobre. Santa Maria: Universidade Federal de Santa Maria, 57 p. Dissertação de Mestrado em Ciência do Solo.), as well as agricultural crops such as corn (Jarausch-Wehrheim et al., 1996JARAUSCH-WEHRHEIM, B., MOCQUOT, B. and MENCH, M., 1996. Uptake and partitioning of sludge-borne copper in the different plant parts of field-grown maize (Zea mays L.). European Journal of Agronomy, vol. 5, pp. 259-271. http://doi.org/10.1016/S1161-0301(96)02017-5.
http://doi.org/10.1016/S1161-0301(96)020...
) and sorghum (Angelova et al., 2011ANGELOVA, V.R., IVANOVA, R.V., DELIBALTOVA, V.A. and IVANOV, K.I., 2011. Use of sorghum crops for in situ phytoremediation of polluted soils. Journal of Agricultural Science and Technology A, vol. 1, pp. 693-702.). However, the use of corn and sorghum is conditioned by the concentration of copper in the grain or in the aerial biomass, which must not exceed the limits established by legislation, which are 10 mg kg-1 for the grain (Brasil, 1998BRASIL, 1998. Portaria nº 685, de 27 de agosto de 1998. Aprova o Regulamento Técnico: “Princípios Gerais para o Estabelecimento de Níveis Máximos de Contaminantes Químicos em Alimentos” e seu Anexo: “Limites máximos de tolerância para contaminantes inorgânicos”. Diário Oficial da República Federativa do Brasil, Brasilia, 27 agosto.) and 30 mg kg-1 for aerial biomass for animal feed purposes in Brazil (Brasil, 1965BRASIL. Agência Nacional de Vigilância Sanitária – ANVISA, 1965 [viewed 10 February 2022]. Decreto nº 56.793, de 27 de agosto de 1965. Consolida a matéria contida nos Decretos números 55.738, de 4 de fevereiro de 1965, e 55.955, de 20 de abril de 1965, estabelece o processo de vendas dos imóveis de que trata o artigo 65 e parágrafos da Lei nº 4.380, de 21 de agosto de 1964, e dá outras providências. [online]. Diário Oficial da República Federativa do Brasil, Brasilia, 15 setembro. Available from: http://www.anvisa.gov.br/legis/decretos/55871_65.htm
http://www.anvisa.gov.br/legis/decretos/...
).

Corn (Zea mays L.) is a culture of great importance for the various products generated from its raw material, such as fuels, beverages, and polymers, in addition to being used in human and animal food (Contini et al., 2019CONTINI, E., MOTA, M.M., MARRA, R., BORGHI, E., MIRANDA, R.A., SILVA, A.F., SILVA, D.D., MACHADO, J.R.A., COTA, L.V., COSTA, R.V. and MENDES, S.M., 2019. Milho: caracterização e desafios tecnológicos. Brasília: Embrapa. Desafios do Agronegócio Brasileiro, no. 2.). It is very demanding in nutrients, including copper, but in high concentrations it becomes phytotoxic, causing a reduction in height, leaf area, yield, and root dry mass (Barbosa et al., 2013BARBOSA, R.H., TABALDI, L.A., MIYAZAKI, F.R., PILECCO, M., KASSAB, S.O. and BIGATON, D., 2013. Absorção foliar de cobre por plantas de milho: efeitos no crescimento e rendimento. Ciência Rural, vol. 43, no. 9, pp. 1561-1568. http://doi.org/10.1590/S0103-84782013000900005.
http://doi.org/10.1590/S0103-84782013000...
). Sorghum (Sorghum bicolor L.) is considered the fifth most important cereal in the world, with cultivation intended primarily for human and animal consumption and ethanol production (Guedes et al., 2019GUEDES, F.L., POMPEU, R.C.F.F., BUENO, L.G. and MENEZES, C.B., 2019. Utilização de sorgo para produção de grãos no Semiárido cearense. Sobral: Embrapa Caprinos e Ovinos. (Comunicado Técnico).) and in Brazil and other western countries it is used for animal feed (Taleon et al., 2012TALEON, V., DYKES, L., ROONEY, W.L. and ROONEY, L.W., 2012. Effect of genotype and environment on flavonoid concentration and profile of black sorghum grains. Journal of Cereal Science, vol. 56, no. 2, pp. 470-475. http://doi.org/10.1016/j.jcs.2012.05.001.
http://doi.org/10.1016/j.jcs.2012.05.001...
). It stands out for its rusticity and the possibility of cultivation outside the agroclimatic zoning of corn and for having greater tolerance to water deficit (Duarte 2010DUARTE, J.O., 2010. Mercado e comercialização: a produção do sorgo granífero no Brasil. In: J.A.S. RODRIGUES, ed. Cultivo do sorgo. 6. ed. Sete Lagoas: Embrapa Milho e Sorgo. Sistema de Produção, no. 2.). It is sensitive to copper when the available levels are in high concentration in the soil, which can cause negative effects, such as reduction of stem diameter, plant height, and number of tillers (Silva 2019SILVA, J.C., 2019. Desenvolvimento e capacidade fitoextratora de plantas agrícolas cultivadas em solo com diferentes texturas e teores de cobre. Frederico Westphalen: Universidade Federal de Santa Maria, 86 p. Dissertação de Mestrado em Agronomia.).

Regarding microorganisms, Arbuscular Mycorrhizal Fungi (AMF) are important components of soil microbial biomass and are involved in several processes of the soil-plant system (Rodrigues et al., 2018RODRIGUES, L.A., BARROSO, D.G. and FIQUEIREDO, F.A.M.M.A., 2018. Fungos micorrízicos arbusculares no crescimento e na nutrição mineral de mudas de Tectona grandis LF. Ciência Florestal, vol. 28, no. 1, pp. 25-34. http://doi.org/10.5902/1980509831572.
http://doi.org/10.5902/1980509831572...
). These organisms have structures known as hyphae which, when associated with plants, function as an extension of the root system, allowing greater absorption of water and nutrients, providing a greater increase in their biomass and quality, in addition to promoting tolerance to abiotic stresses and chemical elements at levels considered toxic in the soil (Valadares et al., 2016VALADARES, R.B.S., MESCOLOTTI, D.L.C. and CARDOSO, E.J.B.N., 2016. Micorrizas. In: E.F.B.N. CARDOSO and F.D. ANDREOTE, eds. Microbiologia do solo. 2. ed. Piracicaba: ESALQ, pp. 179-196.; Souza et al., 2023SOUZA, G.G., SANTOS, S.C., SANTOS, C.C., DIAS, A.S., SILVERIO, J.M., TROVATO, V.W. and FLAUZINO, D.S., 2023. Fungos micorrízicos arbusculares promovem o crescimento de Dipteryx alata Vogel. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 83, e275172. http://doi.org/10.1590/1519-6984.275172. PMid:37909590.
http://doi.org/10.1590/1519-6984.275172...
). They are keyplayers in protecting plants against high concentrations of Cu in the soil, and can act through the accumulation of metal in non-vital organs, retention in fungal mycelium and cell walls (Ruscitti et al., 2017RUSCITTI, M., ARANGO, M. and BELTRANO, J., 2017. Improvement of copper stress tolerance in pepper plants (Capsicum annuum L.) by inoculation with arbuscular mycorrhizal fungi. Theoretical and Experimental Plant Physiology, vol. 29, no. 1, pp. 37-49. http://doi.org/10.1007/s40626-016-0081-7.
http://doi.org/10.1007/s40626-016-0081-7...
). Although AMF have the potential to be used in contaminated soil, this work questions whether their association with corn and sorghum plants will result in development and lower copper levels in the aerial part of the plants when grown in soil contaminated with copper. The objective of this study was to analyze the influence of arbuscular mycorrhizal fungi on the development and copper content in corn and sorghum plants.

2. Materials and Methods

The study was carried out in a greenhouse belonging to the Department of Forestry of the Universidade Federal de Santa Maria, campus Frederico Westphalen, RS, with two experiments being simultaneously performed, for sorghum and corn. The soil used to develop the experiment was a soil constructed (substrate) from a 0-20 cm sample of soil characterized as Red Latosol (Santos 2018SANTOS, H.G., 2018. Sistema Brasileiro de classificação de solos. 5. ed. Brasília: Embrapa, 356 p.) cultivated under native fields. After collection, the soil was sieved in a 2 mm mesh and, to facilitate the root analysis, it was mixed with medium sand in a 50% proportion (v/v), aiming at an approximate 46% texture. A sample was taken and sent for analysis of physical and chemical attributes (Table 1) and then subjected to sterilization in an autoclave at 121 °C in 3 cycles of 30 min.

Table 1
Clay content of the substrate (soil + sand) and chemical analysis of the original soil collected in a native field used for sorghum and corn cultivation.

After interpretation of the analysis, the pH was adjusted to 6.5 with the use of dolomitic limestone and the fertilization was carried out with the use of mineral fertilizer, formula NPK 10-20-10, according to the recommendation of the Liming and Fertilization Manual for the States of RS and SC (CQFS, 2016COMISSÃO DE QUÍMICA E FERTILIDADE DO SOLO – CQFS, 2016. Manual de adubação e calagem para os estados do Rio Grande do Sul e Santa Catarina. Florianópolis: SBCS-NRS, 376 p.), for sorghum and corn cultures. Soil contamination with Cu doses occurred 30 days before sowing, with the use of Cu sulfate (CuSO4.5H2O), which was homogenized by stirring in a plastic bag along with the soil.

The isolates of arbuscular mycorrhizal fungi (Acaulospora scrobiculata and Rhizoglomus clarum) were obtained from Embrapa Agrobiologia located in Seropédica-RJ. The corn cultivar used was MORGAN 20A78 and the sorghum cultivar was AGROCERES 2501.

The seeds were previously disinfected with 2% sodium hypochlorite for 15 min and then washed in running water. At the time of sowing, 30 spores of each mycorrhizal fungus isolate were inoculated in each pot, corresponding to the treatment. The pots used in the experiment had a capacity of 5 liters, which were filled with 5 kg of soil. Sowing took place in the first fortnight of October 2021, with 4 seeds being sown per pot; the thinning of the seedlings occurred 10 days after sowing, leaving only one plant per pot. The plants were irrigated daily, with water from the public supply system, using a drip irrigation system, maintaining soil moisture at 80% of field capacity.

The design was completely randomized, with a factorial arrangement (3x5), with three inoculations of mycorrhizal fungi (Acaulospora scrobiculata, Rhizoglomus clarum and control without inoculation), five doses of copper (0, 100, 200, 300, and 400 mg Cu kg- 1 soil), with seven repetitions.

At the end of the crop cycle, after 120 days of cultivation, evaluations were performed: Plant height (PH), measured from the root crown to the flag leaf, using a tape measure; stem diameter (SD), with the aid of a digital caliper; number of tillers (sorghum); and root volume (RV), with the aid of a graduated cylinder. Each plant was divided into shoot (stem, leaves, cob, straw), roots, and grains (for corn), placed in paper bags and taken to an oven at 65°C until they had constant weight. Subsequently, shoot, roots and grains were ground in a Willey mill with a 10-mesh sieve for analysis of copper contents, by means of nitro-perchloric digestion (3:1) and determination in atomic absorption spectrophotometry according to Miyazawa et al. (2009)MIYAZAWA, M., PAVAN, M., TAKASHI, M., CARMO, C.A.F.S., MELO, W.J., 2009. Análise química de tecido vegetal. In: F.C. SILVA, ed. Manual de análises químicas de solos, plantas e fertilizantes. 2. ed. Brasília: Embrapa Informação Tecnológica, cap. 2, pp. 59-85.. The pseudo-total Cu contents in the soil were also determined using the 3050b methodology described by USEPA (1996)UNITED STATES ENVIRONMENTAL PROTECTION AGENCY – USEPA, 1996. Method 3050B: acid digestion of sediments, sludges, and soils. Washington: USEPA, 12 p. and available copper through the Melhlich-1 extracting solution (Sobral et al., 2013SOBRAL, L.F., SMYTH, J.T., FAGERIA, N.K. and STONE, L.F., 2013. Comparison of copper, manganese, and zinc extraction with Mehlich 1, Mehlich 3, and DTPA solutions for soils of the Brazilian Coastal Tablelands. Communications in Soil Science and Plant Analysis, vol. 44, no. 17, pp. 2507-2513. http://doi.org/10.1080/00103624.2013.812731.
http://doi.org/10.1080/00103624.2013.812...
).

Mycorrhizal colonization was performed using the technique of clarification and root staining with 0.05% Trypan Blue and the percentage of colonization estimated in three replicates per plant by the grid-line method (Giovannetti and Mosse, 1980GIOVANNETTI, M. and MOSSE, B., 1980. An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. The New Phytologist, vol. 84, no. 3, pp. 489-500. http://doi.org/10.1111/j.1469-8137.1980.tb04556.x.
http://doi.org/10.1111/j.1469-8137.1980....
).

The mycorrhizal efficiency index was used to compare the efficiency of inoculation of mycorrhizal fungi in reducing the Cu concentration in the roots and aboveground plant parts, being calculated according to Equation 1, using the treatment without inoculation as a control:

MEI % = Without mycorrhizal Inoculated x 100 (1)

The results were subjected to analysis of variance with the aid of the SISVAR statistical program (Ferreira 2011FERREIRA, D.F., 2011. SISVAR - Sistema de análise de variância. Versão 5.3. Lavras: UFLA.) and when there was significant interaction, the effects of doses in each inoculation treatment were unfolded through regression analysis and, when not significant, the qualitative factor (inoculum) was evaluated by comparing means by the Scott-Knott test at 5% error probability and the quantitative factor (copper doses) was evaluated by regression analysis.

3. Results and Discussion

The pseudo-total soil Cu increased with the doses applied to sorghum and corn, and from the dose 67 mg Cu kg-1 in the soil to sorghum and 80 mg Cu kg-1 to corn (Figure 1), the values were above the maximum limit allowed for agricultural areas in Brazil established by Conama (Brasil, 2009BRASIL. Conselho Nacional do Meio Ambiente - CONAMA, 2009 [viewed 29 September 2021]. Resolução nº 420, de 28 de dezembro de 2009. Dispõe sobre critérios e valores orientadores de qualidade do solo quanto à presença de substâncias químicas e estabelece diretrizes para o gerenciamento ambiental de áreas contaminadas por essas substâncias em decorrência de atividades antrópicas [online]. Diário Oficial da República Federativa do Brasil, Brasilia, 30 dezembro. Available from: http://sapotecsul.com.br/sapotec/DOWNLOADS/CONAMA420.pdf
http://sapotecsul.com.br/sapotec/DOWNLOA...
), which is 200 mg Cu kg-1 and 203 mg Cu kg-1 by Fepam-RS (Porto Alegre, 2014PORTO ALEGRE. Fundação Estadual de Meio Ambiente do Rio Grande do Sul – FEPAM, 2014 [viewed 15 March 2022]. Portaria nº 85/2014. Dispõe sobre o estabelecimento de Valores de Referência de Qualidade (VRQ) dos solos para nove elementos químicos naturalmente presentes nas diferentes províncias geomorfológicas/geológicas do estado do Rio Grande do Sul [online]. Diário Oficial do Rio Grande do Sul, Porto Alegre. Available from: https://fepam.rs.gov.br/upload/arquivos/202301/27114351-portaria085-2014.pdf). Copper may be available to plants when present in the soil solution in free form and also complexed with dissolved organic matter. The availability of this metal is controlled by chemical processes such as precipitation-dissolution, adsorption-desorption and complexation (Arend, 2010AREND, K., 2010. Qualidade da matéria orgânica e disponibilidade de cobre em solos de áreas de videira. Santa Maria: Universidade Federal de Santa Maria, 116 p. Tese de Doutorado em Ciência do Solo.).

Figure 1
Pseudo-total copper content in soil cultivated with sorghum and corn.

The results showed no significant interaction between the Cu doses incorporated into the soil and inoculum sources for the following plant parameters: plant height (PH), stem diameter (SD), root volume (RV) of sorghum and corn and number of sorghum tillers. For root volume and plant height of sorghum and corn, there was a simple effect for the two sources of variation, however, stem diameter and number of tillers only differed depending on the inoculum sources (Figure 2 and Table 2).

Figure 2
Plant height (PH) and root volume (RV) of sorghum and corn subjected to different doses of copper in the soil.
Table 2
Simple effect of inoculation plant height (PH), stem diameter (SD), and root volume (RV) of sorghum and corn and number of sorghum tillers.

Plant height decreased linearly with Cu doses for sorghum and corn (Figure 2A and 2B). Similar results were observed by Fruet (2018)FRUET, S.F.T., 2018. Comportamento de duas espécies florestais arbóreas cultivadas in vitro e in vivo em função do cobre. Santa Maria: Universidade Federal de Santa Maria, 51 p. Dissertação de Mestrado em Engenharia Agrícola. when evaluating the forest species Peltophorum dubium and by Panziera et al. (2018)PANZIERA, A.G., SWAROWSKY, A., ESTEFANEL, V. and GOMES, B.C.V., 2018. Potencial de fitoextração de cobre por aveia preta em área de vinhedos no sul do brasil. Revista Engenharia na Agricultura, vol. 26, no. 6, pp. 565-573. http://doi.org/10.13083/reveng.v26i6.780.
http://doi.org/10.13083/reveng.v26i6.780...
when analyzing black oat, in both cases, there was a reduction in plant height with Cu excess. High Cu concentrations interfere with the electron transport chain of photosystem I, reducing the production of photoassimilates and consequently decreasing apical growth (Taiz and Zeiger 2017TAIZ, L. and ZEIGER, E., 2017. Fisiologia vegetal. 6. ed. Porto Alegre: Artmed, 954 p.).

Sorghum root volume decreased linearly with increasing copper doses (Figure 2C), while corn showed a quadratic response with a maximum point at the 167.50 mg Cu kg-1 dose, corresponding to 93.36 cm3 of volume (Figure 2D). Silva (2019)SILVA, J.C., 2019. Desenvolvimento e capacidade fitoextratora de plantas agrícolas cultivadas em solo com diferentes texturas e teores de cobre. Frederico Westphalen: Universidade Federal de Santa Maria, 86 p. Dissertação de Mestrado em Agronomia. also showed a decrease in root volume for soybean and sorghum with increasing copper doses. Cu toxicity can cause oxidative stress in plants, due to the increase in the production of highly toxic oxygen free radicals that damage cell membrane lipids and proteins (Yruela, 2009YRUELA, I., 2009. Copper in plants: acquisition, transport and interactions. Functional Plant Biology, vol. 36, no. 5, pp. 409-430. http://doi.org/10.1071/FP08288. PMid:32688656.
http://doi.org/10.1071/FP08288...
), inducing reduction in the root system. However, in some situations, when exposure to Cu becomes excessive, there may be an increase in the number of lateral roots (Bochicchio et al., 2015BOCHICCHIO, R., SOFO, A., TERZANO, R., GATTULLO, C.E., AMATO, M. and SCOPA, A., 2015. Root architecture and morphometric analysis of Arabidopsis thaliana grown in Cd/Cu/Zn-gradient agar dishes: a new screening technique for studying plant response to metals. Plant Physiology and Biochemistry, vol. 91, pp. 20-27. http://doi.org/10.1016/j.plaphy.2015.03.010. PMid:25839424.
http://doi.org/10.1016/j.plaphy.2015.03....
) and the diameter of the roots in an attempt to store Cu in the vacuoles (Juang et al., 2012JUANG, K.W., LEE, Y.I., LAI, H.Y., WANG, C.H. and CHEN, B.C., 2012. Copper accumulation, translocation, and toxic effects in grapevine cuttings. Environmental Science and Pollution Research International, vol. 19, no. 4, pp. 1315-1322. https://doi.org/10.1007/s11356-011-0657-3.
https://doi.org/10.1007/s11356-011-0657-...
).

The mycorrhizal inoculum increased plant height, stem diameter, root volume, and number of tillers in sorghum, when compared with the control, however, with no difference between the studied species, while the R. clarum inoculum provided greater stem diameter and volume of roots in the corn (Table 2). When evaluating the effect of inoculating AMF with doses of phosphorus in corn, Gomes Junior et al. (2018GOMES JÚNIOR, C.C., MARQUES, D.M., MAGALHÃES, P.C., SOUZA, F.A., CARNEIRO, R.F.V., SOUZA, T.C. and VIANA, A.R.S., 2018. Inoculação com fungos micorrízicos arbusculares em duas doses de fósforo no solo altera a resposta de crescimento em genótipos de milho. In: Anais do Congresso Nacional de Milho e Sorgo, 2018, Lavras, MG. Sete Lagoas: Associação Brasileira de Milho e Sorgo, 100 p.) found an increase in root volume when inoculating mycorrhizal fungi. The increase in plant height and stem diameter are benefits provided by AMF and are related to the ability of these fungi to produce hyphae, which increase the volume of soil explored by the root system, favoring plant growth (Abreu et al., 2018ABREU, G.M., SCHIAVO, J.A., ABREU, P.M., BOBADILHA, G.S. and ROSSET, J.S., 2018. Crescimento inicial e absorção de fósforo e nitrogênio de Enterolobium contortisiliquum inoculada com fungos micorrízicos arbusculares. Revista de Ciências Agrárias (Belém), vol. 41, no. 1, pp. 156-164. http://doi.org/10.19084/RCA17138.
http://doi.org/10.19084/RCA17138...
). In addition, AMF are responsible for increasing the surface of the roots, allowing a greater capacity to absorb water and nutrients necessary for the growth and survival of plants (Cristino et al., 2019CRISTINO, E.M., DIOGO, N.V., SILVA, M.C.S., VELOSO, T.G.R., CARDOSO, W.S., KASUYA, M.C.M. and PEREIRA, L.L., 2019 [viewed 10 February 2022]. Fungos micorrízicos arbusculares em cafeeiro (Coffea arabica l) cultivados em diferentes altitudes e faces de exposição ao sol [online]. In: Anais do X Simpósio de Pesquisa dos Cafés do Brasil, 2019, Vitória. Brasília: Embrapa Café, pp. 1-5. Available from: http://www.sbicafe.ufv.br/handle/123456789/12637
http://www.sbicafe.ufv.br/handle/1234567...
).

Sorghum shoot dry mass quadratically increased up to the estimated dose of 165 mg Cu kg-1 soil (Figure 3A) and corn showed a linear reduction as a function of copper doses (Figure 3B). When the root and shoot dry mass yield decreased, can induce a higher Cu concentration in these plant parts because the dilution in the biomass is lower (Figure 3). High Cu doses reduced the dry mass of shoots, both in annual plants, such as sorghum and in tree species, such as Erythrina crista-galli (May et al., 2020MAY, A., SILVA, E.H.F.M., SANTOS, M.S., VIANA, R.S., SANTOS, F.C. and ALBUQUERQUE FILHO, M.R., 2020. Use of biomass sorghum for the bioremediation of heavy metal-contaminated environments. Research, Social Development, vol. 9, no. 9, e95996770. http://doi.org/10.33448/rsd-v9i9.6770.; De Marco et al., 2021DE MARCO, R., SILVA, R.F., DA ROS, C.O., MISSIO, E.L., VIEL, P. and GROLLI, A.L., 2021. Erythrina crista-galli L. e turfa na fitorremediação de cobre no solo. Ciência Florestal, vol. 31, no. 1, pp. 475-490. http://doi.org/10.5902/1980509818914.
http://doi.org/10.5902/1980509818914...
). Excess copper can cause a reduction in photosynthetic rate, decreasing the production of photoassimilates, and reducing plant growth (Kabata-Pendias, 2011KABATA-PENDIAS, A., 2011. Trace elements in soils and plants. Boca Raton: CRC Press.).

Figure 3
Shoot dry mass (SDM) of sorghum (A) and corn (B) and root dry mass (RDM) of sorghum (C) and corn (D) subjected to different doses of copper in the soil.

Dry mass of sorghum roots and corn root quadratically increased with the highest value in the doses of 192 mg Cu kg-1 soil for sorghum (Figure 3C) and 171 mg Cu kg-1 soil for corn (Figure 3D). This result corroborated those in the literature, which also showed a reduction in the dry mass of corn roots from a dose of 200 mg Cu kg-1 (Mantovani, 2009MANTOVANI, A., 2009. Composição química de solos contaminados por cobre: formas, sorção e efeito no desenvolvimento de espécies vegetais. Porto Alegre: Universidade Federal do Rio Grande do Sul, 178 p. Tese de Doutorado em Ciência do Solo.) and a reduction in the growth of corn plants with a dose of 120 mg Cu kg-1 (Tiecher et al., 2018TIECHER, T.L., SORIANI, H.H., TIECHER, T., CERETTA, C.A., NICOLOSO, F.T., TAROUCO, C.P., CLASEN, B.E., DE CONTI, L., TASSINARI, A., MELO, G.W.B. and BRUNETTO, G., 2018. The interaction of high copper and zinc doses in acid soil changes the physiological state and development of the root system in young grapevines (Vitis vinifera). Ecotoxicology and Environmental Safety, vol. 148, pp. 985-994. http://doi.org/10.1016/j.ecoenv.2017.11.074.
http://doi.org/10.1016/j.ecoenv.2017.11....
).

There was no significant interaction for the dry mass of shoots and roots of sorghum and corn, only significant simple effects of the variation factors (Table 3). Inoculations increased shoot dry mass of sorghum and corn in relation to the control treatment but did not differ between the studied species (Table 3). The dry mass of sorghum root increased with the inoculation of the species A. scrobiculata with an average of 0.049 kg.

Table 3
Simple effect of inoculation shoot dry mass (SDM) and root dry mass (RDM) of sorghum and corn.

In corn, there was no difference between treatments, with an average of 0.026 kg. A positive effect of AMF inoculation on shoot dry mass was also observed in forest species such as Genipa americana and Schizolobium amazonicum and in corn, cotton, beans, and soybeans (Soares et al., 2007SOARES, C.R.F.S., SIQUEIRA, J.O., CARVALHO, J.G. and GUILHERME, L.R.G., 2007. Nutrição fosfática e micorriza arbuscular na redução da toxicidade de cádmio em trema (Trema micranta (L.) Blum. Revista Árvore, vol. 31, no. 5, pp. 783-792. http://doi.org/10.1590/S0100-67622007000500002.
http://doi.org/10.1590/S0100-67622007000...
; Brito et al., 2017BRITO, V.N., TELLECHEA, F.R.F., HEITOR, L.C., FREITAS, M.S.M. and MARTINS, M.A., 2017. Fungos micorrízicos arbusculares e adubação fosfatada na produção de mudas de paricá. Ciência Florestal, vol. 27, no. 2, pp. 485-497. http://doi.org/10.5902/1980509827730.
http://doi.org/10.5902/1980509827730...
; Santos et al., 2018SANTOS, J.K.S., SANTANA, M.D.F. and LARA, T.S., 2018. Responsividade de plantas de milho à inoculação com fungos micorrízicos arbusculares da rizosfera de ipê amarelo. Revista Agroecossistemas, vol. 10, no. 1, pp. 253-264. http://doi.org/10.18542/ragros.v10i1.5072.
http://doi.org/10.18542/ragros.v10i1.507...
; Salgado, 2014SALGADO, F.H.M., 2014. Fungos micorrízicos arbusculares e estimulante da colonização micorrízica em culturas agrícolas em solo de cerrado. Goiânia: Universidade Federal de Goiás, 61 p. Tese de Doutorado em Agronomia.). In addition, Salgado (2014)SALGADO, F.H.M., 2014. Fungos micorrízicos arbusculares e estimulante da colonização micorrízica em culturas agrícolas em solo de cerrado. Goiânia: Universidade Federal de Goiás, 61 p. Tese de Doutorado em Agronomia. showed that the species A. scrobiculata and Claroideoglomus etunicatus provided higher dry mass of corn roots AMFs are also capable of increasing plant biomass and carbon fixation in the plants' shoot, due to greater absorption of nutrients (Braghirolli et al., 2012BRAGHIROLLI, F.L., SGROTT, A.F., PESCADOR, R., UHLMANN, A. and STÜRMER, S.L., 2012. Fungos micorrízicos arbusculares na recuperação de florestas ciliares e fixação de carbono no solo. Revista Brasileira de Ciência do Solo, vol. 36, no. 3, pp. 733-744. http://doi.org/10.1590/S0100-06832012000300005.
http://doi.org/10.1590/S0100-06832012000...
).

There was a significant interaction between inoculum sources and Cu doses for the percentage of mycorrhizal colonization in sorghum and corn (Figure 4). The mycorrhizal colonization of sorghum decreased linearly with increasing Cu doses in the soil, being more expressive with the inoculation of R. clarum, while A. scrobiculata showed greater root colonization at the highest Cu dose tested (Figure 4A). In corn, mycorrhizal colonization behaved quadratically for both species, and A. scrobiculata showed higher colonization (61.9%) with a maximum point at the dose of 22 mg Cu kg-1; however, they did not differ from each other from of the 300 mg Cu kg-1 dose (Figure 4B).

Figure 4
Percentage of mycorrhizal colonization of sorghum and maize grown at different doses of copper, inoculated with Acaulospora scrobiculata and Rhizoglomus clarum.

When evaluating the percentage of colonization of AMF species in agricultural crops, Salgado (2014)SALGADO, F.H.M., 2014. Fungos micorrízicos arbusculares e estimulante da colonização micorrízica em culturas agrícolas em solo de cerrado. Goiânia: Universidade Federal de Goiás, 61 p. Tese de Doutorado em Agronomia. found that A. scrobiculata colonized around 30 to 40% in corn and bean plants, being lower for cotton. However, Rosa (2019)ROSA, D.J., 2019. Eficiência e estabilização de fungos micorrízicos pré-inoculados em porta-enxertos de videira no cultivo em casa de vegetação e a campo, com e sem toxicidade por cobre. Florianópolis: Universidade Federal de Santa Catarina, 102 p. Tese de Doutorado em Recursos Genéticos Vegetais., working with vine seedlings, observed a 70% reduction in the mycorrhizal colonization rate with the addition of 150 mg Cu kg-1 soil, thus demonstrating that high Cu doses have a toxic effect on this association.

There was no significant interaction between Cu doses and inoculum sources for the Cu concentration in the roots (CuR) and in the shoot (CuPA) of sorghum and corn and Cu concentration in the grain (CuG) of corn, presenting only a single effect for the variation factors (Figure 5 and Table 4). Root Cu concentrations for sorghum and corn increased linearly with increasing Cu doses in the soil (Figure 5). In the roots, there was also the highest Cu concentration, in relation to the other plant parts, being higher in corn with an increase of 76% as a function of the applied Cu doses, presenting 710 mg Cu kg-1 in the root system in the treatment with 400 mg Cu kg-1 (Figure 5A and 5B). In studies carried out by Huerta et al. (2021)HUERTA, E.A.R., ARMIENTA-HERNÁNDEZ, A., DUBROVSKY, J.G. and GÓMEZ-BERNAL, J.M., 2021. Bioaccumulation of heavy metals and As in maize (Zea mays L) grown close to mine tailings strongly impacts plant development. Research Square, no. 31, pp. 447-467. https://doi.org/10.1007/s10646-022-02522-w. and May et al. (2020)MAY, A., SILVA, E.H.F.M., SANTOS, M.S., VIANA, R.S., SANTOS, F.C. and ALBUQUERQUE FILHO, M.R., 2020. Use of biomass sorghum for the bioremediation of heavy metal-contaminated environments. Research, Social Development, vol. 9, no. 9, e95996770. http://doi.org/10.33448/rsd-v9i9.6770. it was also found that the highest Cu concentration occurred in the root system of plants, as it was also found in this study.

Figure 5
Copper content in the roots (CuR), in the shoot (CuS) of sorghum and corn, and in the grain (CuG) of corn, grown in soil with different doses of copper.
Table 4
Simple effect of inoculation with mycorrhizal fungi on Root copper concentration (RCC) and shoot copper concentration (SCC) of sorghum and corn and grain copper concentration (GCC) of corn.

The shoot Cu concentration of both agricultural species increased linearly with the increase in the applied Cu doses (Figure 5C and 5D), but the levels are below 30 mg Cu kg-1, which is the maximum tolerable limit for food animal (dry matter) (Brasil, 1965BRASIL. Agência Nacional de Vigilância Sanitária – ANVISA, 1965 [viewed 10 February 2022]. Decreto nº 56.793, de 27 de agosto de 1965. Consolida a matéria contida nos Decretos números 55.738, de 4 de fevereiro de 1965, e 55.955, de 20 de abril de 1965, estabelece o processo de vendas dos imóveis de que trata o artigo 65 e parágrafos da Lei nº 4.380, de 21 de agosto de 1964, e dá outras providências. [online]. Diário Oficial da República Federativa do Brasil, Brasilia, 15 setembro. Available from: http://www.anvisa.gov.br/legis/decretos/55871_65.htm
http://www.anvisa.gov.br/legis/decretos/...
). The lower Cu concentration of the shoot compared to the root system was previously reported in other studies (Zancheta et al., 2011ZANCHETA, A.C.F., ABREU, C.A., ZAMBROSI, F.C.B., ERISMANN, N.M. and LAGÔA, A.M.A.M., 2011. Fitoextração de cobre por espécies de plantas em solução nutritiva. Bragantia, vol. 70, no. 1, pp. 737-744. http://doi.org/10.1590/S0006-87052011000400002.
http://doi.org/10.1590/S0006-87052011000...
; Seidel et al., 2009SEIDEL, E.P., COSTA, A.C.S. and LANA, M.C., 2009. Fitodisponibilidade de cobre e produção de matéria seca por plantas de milho em resposta à aplicação de dejetos de suínos. Revista Brasileira de Ciência do Solo, vol. 33, no. 6, pp. 1871-1878. http://doi.org/10.1590/S0100-06832009000600036.
http://doi.org/10.1590/S0100-06832009000...
; Marques et al., 2018MARQUES, D.M., SILVA, A.B., MANTOVANI, J.R., PEREIRA, D.S. and SOUZA, T.C., 2018. Growth and physiological responses of tree species (Hymenaea courbaril L., Peltophorum dubium (Spreng.) Taub. and Myroxylon peruiferum LF) exposed to different copper concentrations in the soil. Revista Árvore, vol. 42, no. 2, e420202. http://doi.org/10.1590/1806-90882018000200002.
http://doi.org/10.1590/1806-908820180002...
). This behavior is related to Cu having affinity for ligands in plant tissues, being retained mainly in the epidermal and cortical cells of the roots (Kopittke et al., 2014KOPITTKE, P.M., MENZIES, N.W., WANG, P., MCKENNA, B.A., WEHR, J.B., LOMBI, E., KINRAIDE, T.B. and BLAMEY, F.P., 2014. The rhizotoxicity of metal cations is related to their strength of binding to hard ligands. Environmental Toxicology and Chemistry, vol. 33, no. 2, pp. 268-277. http://doi.org/10.1002/etc.2435. PMid:24142597.
http://doi.org/10.1002/etc.2435...
), resulting in little mobility within the plant and therefore tends to concentrate in the roots. (Dalcorso et al., 2014DALCORSO, G., MANARA, A., PIASENTIN, S. and FURINI, A., 2014. Nutrient metal elements in plants. Metallomics, vol. 6, no. 10, pp. 1770-1788. http://doi.org/10.1039/C4MT00173G. PMid:25144607.
http://doi.org/10.1039/C4MT00173G...
).

The Cu concentration in the corn grain linearly increased with the Cu doses (Figure 5E); however, the levels found were below the maximum tolerance limit proposed by the Brazilian Association of Food Industries (ABIA), i.e. 30 mg Cu kg-1 in grains (ABIA, 1985ASSOCIAÇÃO BRASILEIRA DAS INDÚSTRIAS DA ALIMENTAÇÃO – ABIA. (1985). Compêndio da legislação dos alimentos. São Paulo: ABIA.). Thus, this result did not evidence risks for this product consumption.

Analyzing the simple effect of the mycorrhizal fungi, it was evident that the inoculation significantly reduced the Cu concentration in the roots and shoot of sorghum and corn compared to the control treatment; however, with no difference between inoculums, while for the Cu concentration in the corn grain there was no difference between treatments (Table 4). Under inoculation, the levels of Cu found are also below the maximum tolerance limit proposed by ABIA (1985)ASSOCIAÇÃO BRASILEIRA DAS INDÚSTRIAS DA ALIMENTAÇÃO – ABIA. (1985). Compêndio da legislação dos alimentos. São Paulo: ABIA. and Brasil (1965)BRASIL. Agência Nacional de Vigilância Sanitária – ANVISA, 1965 [viewed 10 February 2022]. Decreto nº 56.793, de 27 de agosto de 1965. Consolida a matéria contida nos Decretos números 55.738, de 4 de fevereiro de 1965, e 55.955, de 20 de abril de 1965, estabelece o processo de vendas dos imóveis de que trata o artigo 65 e parágrafos da Lei nº 4.380, de 21 de agosto de 1964, e dá outras providências. [online]. Diário Oficial da República Federativa do Brasil, Brasilia, 15 setembro. Available from: http://www.anvisa.gov.br/legis/decretos/55871_65.htm
http://www.anvisa.gov.br/legis/decretos/...
.

Analyzing the effect of AMF on Cu phytoremediation in sandy soil, Santana (2018)SANTANA, N.A., 2018. Fitorremediação do cobre em vinhedos: efeito do fungo micorrízico arbuscular, minhocas e vermicomposto. Santa Maria: Universidade Federal de Santa Maria, 123 p. Tese de Doutorado em Ciência do Solo. observed a reduction in Cu levels in the root system of Canavalia ensiformis plants when inoculated with R. clarum. This is because AMFs are able to accumulate metals in non-vital organs, maintaining the integrity of cell membranes, as these fungi can retain metals in fungal mycelia or cell walls, preventing them from being absorbed by plants (Ruscitti et al., 2017RUSCITTI, M., ARANGO, M. and BELTRANO, J., 2017. Improvement of copper stress tolerance in pepper plants (Capsicum annuum L.) by inoculation with arbuscular mycorrhizal fungi. Theoretical and Experimental Plant Physiology, vol. 29, no. 1, pp. 37-49. http://doi.org/10.1007/s40626-016-0081-7.
http://doi.org/10.1007/s40626-016-0081-7...
). In addition, due to the greater absorption of phosphorus by AMF (Trovato et al., 2024TROVATO, V.W., SOUZA, G.G., SANTOS, S.C., CARVALHO, L.G.V., MEDEIROS, E.S., BIAZATTI, R.M., SANTOS, C.C., TORALES, E.P., CARVALHO, R.L. and SANTOS, V.C., 2024. Arbuscular mycorrhizal fungi, phosphorus and organic residues in Peltophorum dubium (Spreng.) Taub. seedlings. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 84, e276160. http://doi.org/10.1590/1519-6984.276160. PMid:38511773.
http://doi.org/10.1590/1519-6984.276160...
), there is the formation of phosphate-metal complexes in the roots, allowing a reduction in the mobility and toxicity of this element in the plant (Santana, 2018SANTANA, N.A., 2018. Fitorremediação do cobre em vinhedos: efeito do fungo micorrízico arbuscular, minhocas e vermicomposto. Santa Maria: Universidade Federal de Santa Maria, 123 p. Tese de Doutorado em Ciência do Solo.).

This study evidenced that the mycorrhizal inoculum A. scrobiculata and R. clarum colonized corn and sorghum roots, being higher in maize and allowing a greater development of these mycorrhized plants compared to the control without inoculation. In addition, inoculation with AMF resulted in lower Cu concentration in shoot and root dry mass of sorghum and corn. AMF, in addition to being fundamental in the absorption of water and nutrients, are also capable of maintaining the growth and development of plants, even in unfavorable environments (Rodrigues et al., 2018RODRIGUES, L.A., BARROSO, D.G. and FIQUEIREDO, F.A.M.M.A., 2018. Fungos micorrízicos arbusculares no crescimento e na nutrição mineral de mudas de Tectona grandis LF. Ciência Florestal, vol. 28, no. 1, pp. 25-34. http://doi.org/10.5902/1980509831572.
http://doi.org/10.5902/1980509831572...
).

The relative mycorrhizal efficiency index indicated that both fungi tested were effective in reducing copper concentration in plants, with R. clarum showing a slightly higher tendency in root concentration effectiveness in sorghum and corn (Figure 6). Studies confirm that using AMFs can mitigate heavy metal toxicity in plants, an effect linked to antioxidant activation in corn leaves and increased metal retention in roots, in addition to enhancing phosphorus and sulfur uptake (Zhan et al., 2018ZHAN, F., LI, B., JIANG, M., YUE, X., HE, Y., XIA, Y. and WANG, Y., 2018. Arbuscular mycorrhizal fungi enhance antioxidant defense in the leaves and the retention of heavy metals in the roots of maize. Environmental Science and Pollution Research International, vol. 25, no. 24, pp. 24338-24347. http://doi.org/10.1007/s11356-018-2487-z. PMid:29948717.
http://doi.org/10.1007/s11356-018-2487-z...
).

Figure 6
Relative Mycorrhizal Efficiency Index (%) of Acalospora scrobiculata and Rhizoglomus clarum in reduction copper concentration in shoot and root of Zea mays and Sorghum bicolor.

These results demonstrate the importance of using beneficial microorganisms that promote plant growth, such as arbuscular mycorrhizae, which allows satisfactory cultivation and lower health risk in places contaminated with copper, due to the lower concentration of this element in the inoculated plant. However, it is recommended that studies be carried out without sterilizing the soil, avoiding the formation of soluble organic matter that could affect copper availability.

4. Conclusion

The fungal species A. scrobiculata allowed greater mycorrhizal colonization in sorghum in soil contaminated with copper.

Inoculation with A. scrobiculata and R. clarum resulted in greater development and lower Cu concentration in the dry mass of the shoot and root parts of sorghum and corn plants.

Acknowledgements

We thank the Graduate Agronomy – Agriculture and Environmental (PPGAAA/UFSM).

References

  • ABREU, G.M., SCHIAVO, J.A., ABREU, P.M., BOBADILHA, G.S. and ROSSET, J.S., 2018. Crescimento inicial e absorção de fósforo e nitrogênio de Enterolobium contortisiliquum inoculada com fungos micorrízicos arbusculares. Revista de Ciências Agrárias (Belém), vol. 41, no. 1, pp. 156-164. http://doi.org/10.19084/RCA17138
    » http://doi.org/10.19084/RCA17138
  • ANGELOVA, V.R., IVANOVA, R.V., DELIBALTOVA, V.A. and IVANOV, K.I., 2011. Use of sorghum crops for in situ phytoremediation of polluted soils. Journal of Agricultural Science and Technology A, vol. 1, pp. 693-702.
  • AREND, K., 2010. Qualidade da matéria orgânica e disponibilidade de cobre em solos de áreas de videira Santa Maria: Universidade Federal de Santa Maria, 116 p. Tese de Doutorado em Ciência do Solo.
  • ASSOCIAÇÃO BRASILEIRA DAS INDÚSTRIAS DA ALIMENTAÇÃO – ABIA. (1985). Compêndio da legislação dos alimentos São Paulo: ABIA.
  • BARBOSA, R.H., TABALDI, L.A., MIYAZAKI, F.R., PILECCO, M., KASSAB, S.O. and BIGATON, D., 2013. Absorção foliar de cobre por plantas de milho: efeitos no crescimento e rendimento. Ciência Rural, vol. 43, no. 9, pp. 1561-1568. http://doi.org/10.1590/S0103-84782013000900005
    » http://doi.org/10.1590/S0103-84782013000900005
  • BOCHICCHIO, R., SOFO, A., TERZANO, R., GATTULLO, C.E., AMATO, M. and SCOPA, A., 2015. Root architecture and morphometric analysis of Arabidopsis thaliana grown in Cd/Cu/Zn-gradient agar dishes: a new screening technique for studying plant response to metals. Plant Physiology and Biochemistry, vol. 91, pp. 20-27. http://doi.org/10.1016/j.plaphy.2015.03.010 PMid:25839424.
    » http://doi.org/10.1016/j.plaphy.2015.03.010
  • BOMFIM, N.C.P., 2020. Crescimento, tolerância e potencial fitorremediador de Leucaena leucocephala em solo contaminado por cobre e ferro. Ilha Solteira: UNESP, 73 p. Dissertação de Mestrado em Agronomia.
  • BRAGHIROLLI, F.L., SGROTT, A.F., PESCADOR, R., UHLMANN, A. and STÜRMER, S.L., 2012. Fungos micorrízicos arbusculares na recuperação de florestas ciliares e fixação de carbono no solo. Revista Brasileira de Ciência do Solo, vol. 36, no. 3, pp. 733-744. http://doi.org/10.1590/S0100-06832012000300005
    » http://doi.org/10.1590/S0100-06832012000300005
  • BRASIL. Agência Nacional de Vigilância Sanitária – ANVISA, 1965 [viewed 10 February 2022]. Decreto nº 56.793, de 27 de agosto de 1965. Consolida a matéria contida nos Decretos números 55.738, de 4 de fevereiro de 1965, e 55.955, de 20 de abril de 1965, estabelece o processo de vendas dos imóveis de que trata o artigo 65 e parágrafos da Lei nº 4.380, de 21 de agosto de 1964, e dá outras providências. [online]. Diário Oficial da República Federativa do Brasil, Brasilia, 15 setembro. Available from: http://www.anvisa.gov.br/legis/decretos/55871_65.htm
    » http://www.anvisa.gov.br/legis/decretos/55871_65.htm
  • BRASIL, 1998. Portaria nº 685, de 27 de agosto de 1998. Aprova o Regulamento Técnico: “Princípios Gerais para o Estabelecimento de Níveis Máximos de Contaminantes Químicos em Alimentos” e seu Anexo: “Limites máximos de tolerância para contaminantes inorgânicos” Diário Oficial da República Federativa do Brasil, Brasilia, 27 agosto.
  • BRASIL. Conselho Nacional do Meio Ambiente - CONAMA, 2009 [viewed 29 September 2021]. Resolução nº 420, de 28 de dezembro de 2009. Dispõe sobre critérios e valores orientadores de qualidade do solo quanto à presença de substâncias químicas e estabelece diretrizes para o gerenciamento ambiental de áreas contaminadas por essas substâncias em decorrência de atividades antrópicas [online]. Diário Oficial da República Federativa do Brasil, Brasilia, 30 dezembro. Available from: http://sapotecsul.com.br/sapotec/DOWNLOADS/CONAMA420.pdf
    » http://sapotecsul.com.br/sapotec/DOWNLOADS/CONAMA420.pdf
  • BRITO, V.N., TELLECHEA, F.R.F., HEITOR, L.C., FREITAS, M.S.M. and MARTINS, M.A., 2017. Fungos micorrízicos arbusculares e adubação fosfatada na produção de mudas de paricá. Ciência Florestal, vol. 27, no. 2, pp. 485-497. http://doi.org/10.5902/1980509827730
    » http://doi.org/10.5902/1980509827730
  • BRUNETTO, G., SCHMITT, D.E., COMIN, J.J., MIOTTO, A., MORAES, M.P. and DE., 2014. Frações de cobre e zinco em solos de vinhedos no Meio Oeste de Santa Catarina. Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 18, no. 8, pp. 805-810. http://doi.org/10.1590/1807-1929/agriambi.v18n08p805-810
    » http://doi.org/10.1590/1807-1929/agriambi.v18n08p805-810
  • COMISSÃO DE QUÍMICA E FERTILIDADE DO SOLO – CQFS, 2016. Manual de adubação e calagem para os estados do Rio Grande do Sul e Santa Catarina Florianópolis: SBCS-NRS, 376 p.
  • CONTINI, E., MOTA, M.M., MARRA, R., BORGHI, E., MIRANDA, R.A., SILVA, A.F., SILVA, D.D., MACHADO, J.R.A., COTA, L.V., COSTA, R.V. and MENDES, S.M., 2019. Milho: caracterização e desafios tecnológicos Brasília: Embrapa. Desafios do Agronegócio Brasileiro, no. 2.
  • CRISTINO, E.M., DIOGO, N.V., SILVA, M.C.S., VELOSO, T.G.R., CARDOSO, W.S., KASUYA, M.C.M. and PEREIRA, L.L., 2019 [viewed 10 February 2022]. Fungos micorrízicos arbusculares em cafeeiro (Coffea arabica l) cultivados em diferentes altitudes e faces de exposição ao sol [online]. In: Anais do X Simpósio de Pesquisa dos Cafés do Brasil, 2019, Vitória. Brasília: Embrapa Café, pp. 1-5. Available from: http://www.sbicafe.ufv.br/handle/123456789/12637
    » http://www.sbicafe.ufv.br/handle/123456789/12637
  • DALCORSO, G., MANARA, A., PIASENTIN, S. and FURINI, A., 2014. Nutrient metal elements in plants. Metallomics, vol. 6, no. 10, pp. 1770-1788. http://doi.org/10.1039/C4MT00173G PMid:25144607.
    » http://doi.org/10.1039/C4MT00173G
  • DE MARCO, R., SILVA, R.F., DA ROS, C.O., MISSIO, E.L., VIEL, P. and GROLLI, A.L., 2021. Erythrina crista-galli L. e turfa na fitorremediação de cobre no solo. Ciência Florestal, vol. 31, no. 1, pp. 475-490. http://doi.org/10.5902/1980509818914
    » http://doi.org/10.5902/1980509818914
  • DE MARCO, R., SILVA, R.F., SCHEID, D.L., DA ROS, C.O. and SILVA, V.R., 2017. Amenizante orgânico e Eucalyptus grandis para fitoestabilização de solo contaminado com cobre. Floresta e Ambiente, vol. 24, e00029315. http://doi.org/10.1590/2179-8087.029315
    » http://doi.org/10.1590/2179-8087.029315
  • DUARTE, J.O., 2010. Mercado e comercialização: a produção do sorgo granífero no Brasil. In: J.A.S. RODRIGUES, ed. Cultivo do sorgo 6. ed. Sete Lagoas: Embrapa Milho e Sorgo. Sistema de Produção, no. 2.
  • FERREIRA, D.F., 2011. SISVAR - Sistema de análise de variância. Versão 5.3 Lavras: UFLA.
  • FRUET, S.F.T., 2018. Comportamento de duas espécies florestais arbóreas cultivadas in vitro e in vivo em função do cobre. Santa Maria: Universidade Federal de Santa Maria, 51 p. Dissertação de Mestrado em Engenharia Agrícola.
  • GIOVANNETTI, M. and MOSSE, B., 1980. An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. The New Phytologist, vol. 84, no. 3, pp. 489-500. http://doi.org/10.1111/j.1469-8137.1980.tb04556.x
    » http://doi.org/10.1111/j.1469-8137.1980.tb04556.x
  • GOMES JÚNIOR, C.C., MARQUES, D.M., MAGALHÃES, P.C., SOUZA, F.A., CARNEIRO, R.F.V., SOUZA, T.C. and VIANA, A.R.S., 2018. Inoculação com fungos micorrízicos arbusculares em duas doses de fósforo no solo altera a resposta de crescimento em genótipos de milho. In: Anais do Congresso Nacional de Milho e Sorgo, 2018, Lavras, MG. Sete Lagoas: Associação Brasileira de Milho e Sorgo, 100 p.
  • GUEDES, F.L., POMPEU, R.C.F.F., BUENO, L.G. and MENEZES, C.B., 2019. Utilização de sorgo para produção de grãos no Semiárido cearense Sobral: Embrapa Caprinos e Ovinos. (Comunicado Técnico).
  • HUERTA, E.A.R., ARMIENTA-HERNÁNDEZ, A., DUBROVSKY, J.G. and GÓMEZ-BERNAL, J.M., 2021. Bioaccumulation of heavy metals and As in maize (Zea mays L) grown close to mine tailings strongly impacts plant development. Research Square, no. 31, pp. 447-467. https://doi.org/10.1007/s10646-022-02522-w.
  • JARAUSCH-WEHRHEIM, B., MOCQUOT, B. and MENCH, M., 1996. Uptake and partitioning of sludge-borne copper in the different plant parts of field-grown maize (Zea mays L.). European Journal of Agronomy, vol. 5, pp. 259-271. http://doi.org/10.1016/S1161-0301(96)02017-5
    » http://doi.org/10.1016/S1161-0301(96)02017-5
  • JUANG, K.W., LEE, Y.I., LAI, H.Y., WANG, C.H. and CHEN, B.C., 2012. Copper accumulation, translocation, and toxic effects in grapevine cuttings. Environmental Science and Pollution Research International, vol. 19, no. 4, pp. 1315-1322. https://doi.org/10.1007/s11356-011-0657-3
    » https://doi.org/10.1007/s11356-011-0657-3
  • KABATA-PENDIAS, A., 2011. Trace elements in soils and plants Boca Raton: CRC Press.
  • KOPITTKE, P.M., MENZIES, N.W., WANG, P., MCKENNA, B.A., WEHR, J.B., LOMBI, E., KINRAIDE, T.B. and BLAMEY, F.P., 2014. The rhizotoxicity of metal cations is related to their strength of binding to hard ligands. Environmental Toxicology and Chemistry, vol. 33, no. 2, pp. 268-277. http://doi.org/10.1002/etc.2435 PMid:24142597.
    » http://doi.org/10.1002/etc.2435
  • MANTOVANI, A., 2009. Composição química de solos contaminados por cobre: formas, sorção e efeito no desenvolvimento de espécies vegetais Porto Alegre: Universidade Federal do Rio Grande do Sul, 178 p. Tese de Doutorado em Ciência do Solo.
  • MARQUES, D.M., SILVA, A.B., MANTOVANI, J.R., PEREIRA, D.S. and SOUZA, T.C., 2018. Growth and physiological responses of tree species (Hymenaea courbaril L., Peltophorum dubium (Spreng.) Taub. and Myroxylon peruiferum LF) exposed to different copper concentrations in the soil. Revista Árvore, vol. 42, no. 2, e420202. http://doi.org/10.1590/1806-90882018000200002
    » http://doi.org/10.1590/1806-90882018000200002
  • MAY, A., SILVA, E.H.F.M., SANTOS, M.S., VIANA, R.S., SANTOS, F.C. and ALBUQUERQUE FILHO, M.R., 2020. Use of biomass sorghum for the bioremediation of heavy metal-contaminated environments. Research, Social Development, vol. 9, no. 9, e95996770. http://doi.org/10.33448/rsd-v9i9.6770.
  • MIYAZAWA, M., PAVAN, M., TAKASHI, M., CARMO, C.A.F.S., MELO, W.J., 2009. Análise química de tecido vegetal. In: F.C. SILVA, ed. Manual de análises químicas de solos, plantas e fertilizantes 2. ed. Brasília: Embrapa Informação Tecnológica, cap. 2, pp. 59-85.
  • MOOGOUEI, R., BORGHEI, M. and ARJMANDI, R., 2011. Phytoremediation of stable Cs from solutions by Calendula alata, Amaranthus chlorostachys an Chenopodium album Ecotoxicology and Environmental Safety, vol. 74, no. 7, pp. 2036-2039. http://doi.org/10.1016/j.ecoenv.2011.07.019 PMid:21839516.
    » http://doi.org/10.1016/j.ecoenv.2011.07.019
  • NEAMAN, A., SCHOFFER, J., NAVARRO-VILLARROEL, C., PELOSI, C., PEÑALOZA, P., DOVLETYAROVA, E. and SCHNEIDER, J., 2024. Copper contamination in agricultural soils: a review of the effects of climate, soil properties, and prolonged copper pesticide application in vineyards and orchards. Plant, Soil and Environment, vol. 70, no. 7, pp. 407-417. http://doi.org/10.17221/501/2023-PSE
    » http://doi.org/10.17221/501/2023-PSE
  • PANZIERA, A.G., SWAROWSKY, A., ESTEFANEL, V. and GOMES, B.C.V., 2018. Potencial de fitoextração de cobre por aveia preta em área de vinhedos no sul do brasil. Revista Engenharia na Agricultura, vol. 26, no. 6, pp. 565-573. http://doi.org/10.13083/reveng.v26i6.780
    » http://doi.org/10.13083/reveng.v26i6.780
  • PORTO ALEGRE. Fundação Estadual de Meio Ambiente do Rio Grande do Sul – FEPAM, 2014 [viewed 15 March 2022]. Portaria nº 85/2014. Dispõe sobre o estabelecimento de Valores de Referência de Qualidade (VRQ) dos solos para nove elementos químicos naturalmente presentes nas diferentes províncias geomorfológicas/geológicas do estado do Rio Grande do Sul [online]. Diário Oficial do Rio Grande do Sul, Porto Alegre. Available from: https://fepam.rs.gov.br/upload/arquivos/202301/27114351-portaria085-2014.pdf
  • RODRIGUES, L.A., BARROSO, D.G. and FIQUEIREDO, F.A.M.M.A., 2018. Fungos micorrízicos arbusculares no crescimento e na nutrição mineral de mudas de Tectona grandis LF. Ciência Florestal, vol. 28, no. 1, pp. 25-34. http://doi.org/10.5902/1980509831572
    » http://doi.org/10.5902/1980509831572
  • ROSA, D.J., 2019. Eficiência e estabilização de fungos micorrízicos pré-inoculados em porta-enxertos de videira no cultivo em casa de vegetação e a campo, com e sem toxicidade por cobre Florianópolis: Universidade Federal de Santa Catarina, 102 p. Tese de Doutorado em Recursos Genéticos Vegetais.
  • RUSCITTI, M., ARANGO, M. and BELTRANO, J., 2017. Improvement of copper stress tolerance in pepper plants (Capsicum annuum L.) by inoculation with arbuscular mycorrhizal fungi. Theoretical and Experimental Plant Physiology, vol. 29, no. 1, pp. 37-49. http://doi.org/10.1007/s40626-016-0081-7
    » http://doi.org/10.1007/s40626-016-0081-7
  • SALGADO, F.H.M., 2014. Fungos micorrízicos arbusculares e estimulante da colonização micorrízica em culturas agrícolas em solo de cerrado Goiânia: Universidade Federal de Goiás, 61 p. Tese de Doutorado em Agronomia.
  • SANTANA, N.A., 2018. Fitorremediação do cobre em vinhedos: efeito do fungo micorrízico arbuscular, minhocas e vermicomposto Santa Maria: Universidade Federal de Santa Maria, 123 p. Tese de Doutorado em Ciência do Solo.
  • SANTANA, N.A., 2020. Estratégias biológicas na fitorremediação do cobre Porto Alegre: Simplíssimo, 50 p.
  • SANTOS, H.G., 2018. Sistema Brasileiro de classificação de solos 5. ed. Brasília: Embrapa, 356 p.
  • SANTOS, J.K.S., SANTANA, M.D.F. and LARA, T.S., 2018. Responsividade de plantas de milho à inoculação com fungos micorrízicos arbusculares da rizosfera de ipê amarelo. Revista Agroecossistemas, vol. 10, no. 1, pp. 253-264. http://doi.org/10.18542/ragros.v10i1.5072
    » http://doi.org/10.18542/ragros.v10i1.5072
  • SCHOFFER, J.T., SAUVÉ, S., NEAMAN, A. and GINOCCHIO, R., 2020. Role of leaf litter on the incorporation of copper-containing pesticides into soils under fruit production: a review. Journal of Soil Science and Plant Nutrition, vol. 20, no. 3, pp. 990-1000. http://doi.org/10.1007/s42729-020-00186-1
    » http://doi.org/10.1007/s42729-020-00186-1
  • SEIDEL, E.P., COSTA, A.C.S. and LANA, M.C., 2009. Fitodisponibilidade de cobre e produção de matéria seca por plantas de milho em resposta à aplicação de dejetos de suínos. Revista Brasileira de Ciência do Solo, vol. 33, no. 6, pp. 1871-1878. http://doi.org/10.1590/S0100-06832009000600036
    » http://doi.org/10.1590/S0100-06832009000600036
  • SILVA, J.C., 2019. Desenvolvimento e capacidade fitoextratora de plantas agrícolas cultivadas em solo com diferentes texturas e teores de cobre. Frederico Westphalen: Universidade Federal de Santa Maria, 86 p. Dissertação de Mestrado em Agronomia.
  • SOARES, C.R.F.S., SIQUEIRA, J.O., CARVALHO, J.G. and GUILHERME, L.R.G., 2007. Nutrição fosfática e micorriza arbuscular na redução da toxicidade de cádmio em trema (Trema micranta (L.) Blum. Revista Árvore, vol. 31, no. 5, pp. 783-792. http://doi.org/10.1590/S0100-67622007000500002
    » http://doi.org/10.1590/S0100-67622007000500002
  • SOBRAL, L.F., SMYTH, J.T., FAGERIA, N.K. and STONE, L.F., 2013. Comparison of copper, manganese, and zinc extraction with Mehlich 1, Mehlich 3, and DTPA solutions for soils of the Brazilian Coastal Tablelands. Communications in Soil Science and Plant Analysis, vol. 44, no. 17, pp. 2507-2513. http://doi.org/10.1080/00103624.2013.812731
    » http://doi.org/10.1080/00103624.2013.812731
  • SOUZA, G.G., SANTOS, S.C., SANTOS, C.C., DIAS, A.S., SILVERIO, J.M., TROVATO, V.W. and FLAUZINO, D.S., 2023. Fungos micorrízicos arbusculares promovem o crescimento de Dipteryx alata Vogel. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 83, e275172. http://doi.org/10.1590/1519-6984.275172 PMid:37909590.
    » http://doi.org/10.1590/1519-6984.275172
  • TAIZ, L. and ZEIGER, E., 2017. Fisiologia vegetal 6. ed. Porto Alegre: Artmed, 954 p.
  • TALEON, V., DYKES, L., ROONEY, W.L. and ROONEY, L.W., 2012. Effect of genotype and environment on flavonoid concentration and profile of black sorghum grains. Journal of Cereal Science, vol. 56, no. 2, pp. 470-475. http://doi.org/10.1016/j.jcs.2012.05.001
    » http://doi.org/10.1016/j.jcs.2012.05.001
  • TIECHER, T.L., SORIANI, H.H., TIECHER, T., CERETTA, C.A., NICOLOSO, F.T., TAROUCO, C.P., CLASEN, B.E., DE CONTI, L., TASSINARI, A., MELO, G.W.B. and BRUNETTO, G., 2018. The interaction of high copper and zinc doses in acid soil changes the physiological state and development of the root system in young grapevines (Vitis vinifera). Ecotoxicology and Environmental Safety, vol. 148, pp. 985-994. http://doi.org/10.1016/j.ecoenv.2017.11.074
    » http://doi.org/10.1016/j.ecoenv.2017.11.074
  • TROVATO, V.W., SOUZA, G.G., SANTOS, S.C., CARVALHO, L.G.V., MEDEIROS, E.S., BIAZATTI, R.M., SANTOS, C.C., TORALES, E.P., CARVALHO, R.L. and SANTOS, V.C., 2024. Arbuscular mycorrhizal fungi, phosphorus and organic residues in Peltophorum dubium (Spreng.) Taub. seedlings. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 84, e276160. http://doi.org/10.1590/1519-6984.276160 PMid:38511773.
    » http://doi.org/10.1590/1519-6984.276160
  • UNITED STATES ENVIRONMENTAL PROTECTION AGENCY – USEPA, 1996. Method 3050B: acid digestion of sediments, sludges, and soils Washington: USEPA, 12 p.
  • VALADARES, R.B.S., MESCOLOTTI, D.L.C. and CARDOSO, E.J.B.N., 2016. Micorrizas. In: E.F.B.N. CARDOSO and F.D. ANDREOTE, eds. Microbiologia do solo 2. ed. Piracicaba: ESALQ, pp. 179-196.
  • VENDRUSCULO, D., 2013. Seleção de plantas para fitorremediação de solo contaminado com cobre Santa Maria: Universidade Federal de Santa Maria, 57 p. Dissertação de Mestrado em Ciência do Solo.
  • YRUELA, I., 2009. Copper in plants: acquisition, transport and interactions. Functional Plant Biology, vol. 36, no. 5, pp. 409-430. http://doi.org/10.1071/FP08288 PMid:32688656.
    » http://doi.org/10.1071/FP08288
  • ZANCHETA, A.C.F., ABREU, C.A., ZAMBROSI, F.C.B., ERISMANN, N.M. and LAGÔA, A.M.A.M., 2011. Fitoextração de cobre por espécies de plantas em solução nutritiva. Bragantia, vol. 70, no. 1, pp. 737-744. http://doi.org/10.1590/S0006-87052011000400002
    » http://doi.org/10.1590/S0006-87052011000400002
  • ZHAN, F., LI, B., JIANG, M., YUE, X., HE, Y., XIA, Y. and WANG, Y., 2018. Arbuscular mycorrhizal fungi enhance antioxidant defense in the leaves and the retention of heavy metals in the roots of maize. Environmental Science and Pollution Research International, vol. 25, no. 24, pp. 24338-24347. http://doi.org/10.1007/s11356-018-2487-z PMid:29948717.
    » http://doi.org/10.1007/s11356-018-2487-z

Publication Dates

  • Publication in this collection
    21 Oct 2024
  • Date of issue
    2024

History

  • Received
    13 Feb 2024
  • Accepted
    26 Aug 2024
Instituto Internacional de Ecologia R. Bento Carlos, 750, 13560-660 São Carlos SP - Brasil, Tel. e Fax: (55 16) 3362-5400 - São Carlos - SP - Brazil
E-mail: bjb@bjb.com.br