Acessibilidade / Reportar erro

Modeling the current and projected distribution of Brazilian peppertree Schinus terebinthifolia Raddi (Anacardiaceae) in the Americas

Modelando a distribuição atual e projetada da pimenta brasileira Schinus terebinthifolia Raddi (Anacardiaceae) nas Américas

Abstract

Global biodiversity is under substantial threat due to biological invasions, a problem exacerbated by climate change. Such invasions have detrimental effects on the environment, economy, and human health, resulting in significant financial burdens. Recently, understanding these challenges has become a highlighted priority within the scientific community. This study focuses on the evaluation of Schinus terebinthifolia, native to South America, and its invasive spread into North and Central America, which has resulted in wide distribution and considerable impact. The primary objectives of this study include analyzing the potential distribution of the species under current and future climate scenarios, identifying the areas where its climatic niche is changing. Data collection encompassed a vast dataset of over 30,000 occurrence records of this species, from the following databases: (1) The Global Biodiversity Information Facility provided 22,163 records (GBIF), (2) The virtual Herbarium Reflora contributed 1,438 records, and NeoTropTree made available 6,591 records. Following a rigorous filtering process, 992 occurrences were considered for modeling. In this process, we utilized climate data and climate projections, employing various algorithms, with an emphasis on the consensus model methodology. The research results reveal a clear trend of reduced habitat suitability for S. terebinthifolia, especially under scenarios of high global warming. This accentuates the urgency of implementing emission control measures and mitigation strategies. Additionally, the study underscores the crucial importance of continuous monitoring, as well as actions for controlling and restoring affected ecosystems. The significant role played by S. terebinthifolia in both its native and invaded areas highlights the need for comprehensive management approaches. In the face of climate change and biodiversity threats, this study provides insightful observations on the dynamics of biological invasions. Success in addressing these issues relies on close cooperation between the scientific community, policymakers, land managers, and local communities. This collaboration is essential for guiding and conducting conservation and biodiversity management efforts in an ever-evolving world.

Keywords:
biodiversity; biological invasions; climate change; conservation; invasive species

Resumo

A biodiversidade global encontra-se sob ameaça substancial devido às invasões biológicas, um problema agravado pelas mudanças climáticas. Tais invasões têm efeitos prejudiciais sobre o meio ambiente, economia e saúde humana, resultando em encargos financeiros significativos. Recentemente, a compreensão desses desafios se tornou prioridade destacada na comunidade científica. Este estudo se concentra na avaliação do Schinus terebinthifolia, nativa da América do Sul, e sua disseminação invasiva para a América do Norte e Central, o que resultou em ampla distribuição e impacto considerável. Os principais objetivos deste estudo consistem em analisar a distribuição potencial da espécie sob cenários climáticos atuais e futuros, identificando as áreas onde seu nicho climático está se alterando. A coleta abrangeu um vasto conjunto de mais de 30.000 registros de ocorrências da espécie, nas bases de bados (1) Global Biodiversity Information Facility com 22.163 registros (GBIF), (2) O Herbário virtual Reflora com 1.438 registros e o NeoTropTree com 6.591 registros e após um processo de filtragem, 992 ocorrências foram consideradas para modelagem. Nesse processo, empregamos dados climáticos e projeções climáticas, recorrendo a diversos algoritmos, com destaque para a metodologia do modelo de consenso. Os resultados da pesquisa revelam uma clara tendência de redução na adequação do habitat da S. terebinthifolia, especialmente sob cenários de elevado aquecimento global. Isso acentua a urgência da implementação de medidas de controle de emissões e estratégias de mitigação. Adicionalmente, o estudo ressalta a importância crucial da vigilância contínua, bem como das ações de controle e restauração de ecossistemas afetados. O papel relevante desempenhado por S. terebinthifolia em suas áreas nativas e invadidas chama a atenção para a necessidade de adotar abordagens de manejo abrangentes. Diante do cenário de mudanças climáticas e das ameaças à biodiversidade, este estudo contribui com perspicazes observações sobre a dinâmica das invasões biológicas. O sucesso na abordagem dessas questões depende de uma cooperação estreita entre a comunidade científica, legisladores, gestores de terras e as comunidades locais. Essa colaboração é essencial para orientar e conduzir os esforços de conservação e gestão da biodiversidade em um mundo em constante evolução.

Palavras-chave:
biodiversidade; invasão biológica; mudanças climáticas; conservação; espécies invasoras

1. Introduction

Global biodiversity faces threats from biological invasions exacerbated by climate change. These invasions harm the environment, economy, and human health (Early et al., 2016EARLY, R., BRADLEY, B.A., DUKES, J.S., LAWLER, J.J., OLDEN, J.D., BLUMENTHAL, D.M., GONZALEZ, P., GROSHOLZ, E.D., IBAÑEZ, I., MILLER, L.P., SORTE, C.J.B. and TATEM, A.J., 2016. Global threats from invasive alien species in the twenty-first century and national response capacities. Nature Communications, vol. 7, no. 1, pp. 12485. http://doi.org/10.1038/ncomms12485. PMid:27549569.
http://doi.org/10.1038/ncomms12485...
). Over the past five decades, 60% of global extinctions are attributed to invasive species, resulting in an estimated annual cost of $423 billion (Roy et al., 2023ROY, H.E., PAUCHARD, A., STOETT, P., RENARD TRUONG, T., BACHER, S., GALIL, B.S., HULME, P.E., IKEDA, T., SANKARAN, K.V., MCGEOCH, M.A., MEYERSON, L.A., NUÑEZ, M.A., ORDONEZ, A., RAHLAO, S.J., SCHWINDT, E., SEEBENS, H., SHEPPARD, A.W. and VANDVIK, V., 2023. IPBES invasive alien species assessment: summary for policymakers. Bonn: IPBES. http://doi.org/10.5281/zenodo.7430692.
http://doi.org/10.5281/zenodo.7430692...
). While the economic benefits of ecosystem services in the Americas total $24.3 billion, human activity and global climate change continue to drive the introduction and spread of non-native species (Andersen et al., 2004ANDERSEN, M.C., ADAMS, H., HOPE, B. and POWELL, M., 2004. Risk analysis for invasive species: general framework and research needs. Risk Analysis, vol. 24, no. 4, pp. 893-900. http://doi.org/10.1111/j.0272-4332.2004.00487.x. PMid:15357808.
http://doi.org/10.1111/j.0272-4332.2004....
), with potential synergistic effects resulting in different regional patterns (Bai et al., 2013BAI, F., CHISHOLM, R., SANG, W. and DONG, M., 2013. Spatial risk assessment of alien invasive plants in China. Environmental Science & Technology, vol. 47, no. 14, pp. 7624-7632. http://doi.org/10.1021/es400382c. PMid:23738912.
http://doi.org/10.1021/es400382c...
; Hulme, 2021HULME, P.E., 2021. Unwelcome exchange: international trade as a direct and indirect driver of biological invasions worldwide. One Earth, vol. 4, no. 5, pp. 666-679. http://doi.org/10.1016/j.oneear.2021.04.015.
http://doi.org/10.1016/j.oneear.2021.04....
).

In general, several studies have projected future trends in habitat suitability and range expansion of destructive invasive species under climate change (Wang et al., 2017WANG, C.J., WAN, J.Z., QU, H. and ZHANG, Z.X., 2017. Modelling plant invasion pathways in protected areas under climate change: implication for invasion management. Web Ecology, vol. 17, no. 2, pp. 69-77. http://doi.org/10.5194/we-17-69-2017.
http://doi.org/10.5194/we-17-69-2017...
; Ahmad et al., 2019AHMAD, R., KHUROO, A.A., CHARLES, B., HAMID, M., RASHID, I. and ARAVIND, N.A., 2019. Global distribution modelling, invasion risk assessment and niche dynamics of Leucanthemum vulgare (Ox-eye Daisy) under climate change. Scientific Reports, vol. 9, no. 1, pp. 11395. http://doi.org/10.1038/s41598-019-47859-1. PMid:31388050.
http://doi.org/10.1038/s41598-019-47859-...
; Cruz et al., 2023CRUZ, P.V., ALENCAR, J.B.R., CARDOSO, M.N. and BACCARO, F.B., 2023. Predicting the South American invasion pathways of the mayfly Cloeon dipterum Linnaeus 1761 (Ephemeroptera: Baetidae) using species distribution models. Insect Conservation and Diversity, vol. 16, no. 4, pp. 521. http://doi.org/10.1111/icad.12642.
http://doi.org/10.1111/icad.12642...
). By 2050, a 36% increase in the number of exotic invasive species across all taxa is expected (Seebens et al., 2021SEEBENS, H., BACHER, S., BLACKBURN, T.M., CAPINHA, C., DAWSON, W., DULLINGER, S., GENOVESI, P., HULME, P.E., KLEUNEN, M.V., KÜHN, I., JESCHKE, J.M., LENZNER, B., LIEBHOLD, A.M., PATTISON, Z., PERG, J., PYŠEK, P., WINTER, M. and ESSL, F., 2021. Projecting the continental accumulation of alien species through to 2050. Global Change Biology, vol. 27, no. 5, pp. 970-982. http://doi.org/10.1111/gcb.15333. PMid:33000893.
http://doi.org/10.1111/gcb.15333...
). However, international legislation aimed at preventing or controlling these invasions does not yet provide effective responses, creating a disparity between the threats posed by invasive exotic species and often poorly quantified response capabilities (Early et al., 2016EARLY, R., BRADLEY, B.A., DUKES, J.S., LAWLER, J.J., OLDEN, J.D., BLUMENTHAL, D.M., GONZALEZ, P., GROSHOLZ, E.D., IBAÑEZ, I., MILLER, L.P., SORTE, C.J.B. and TATEM, A.J., 2016. Global threats from invasive alien species in the twenty-first century and national response capacities. Nature Communications, vol. 7, no. 1, pp. 12485. http://doi.org/10.1038/ncomms12485. PMid:27549569.
http://doi.org/10.1038/ncomms12485...
).

The required period to control these invasions is largely determined by prior taxon understanding and the categorization assessment of these species as non-endemic or invasive (see Shackleton et al., 2019SHACKLETON, R.T., LARSON, B.M.H., NOVOA, A., RICHARDSON, D.M. and KULL, C.A., 2019. The human and social dimensions of invasion science and management. Journal of Environmental Management, vol. 229, pp. 1-9. http://doi.org/10.1016/j.jenvman.2018.08.041. PMid:30172420.
http://doi.org/10.1016/j.jenvman.2018.08...
). Moreover, it is crucial to have knowledge of areas with climatic potential for the occurrence of these species. This emphasize the importance of identifying areas that may be affected to avoid the exclusion of native species and mitigate the impact on the ecological dynamics of these environments.

Among the various species of exotic invasive plants worldwide, Schinus terebinthifolia Raddi is found in eight regions, including North America, the Middle East, Pacific islands, Australia, Africa, and the Neotropical region (Richardson and Rejmánek, 2011RICHARDSON, D.M. and REJMÁNEK, M., 2011. Trees and shrubs as invasive alien species: a global review. Diversity & Distributions, vol. 17, no. 5, pp. 788-809. http://doi.org/10.1111/j.1472-4642.2011.00782.x.
http://doi.org/10.1111/j.1472-4642.2011....
). Native from Argentina (east and northeast), Paraguay (east), Uruguay and Brazil (Carvalho, 2003CARVALHO, P.E.R.C., 2003. Espécies arbóreas brasileiras: aroeira-pimenteira: schinus terebinthifolius. Brasília: Embrapa, vol. 1, pp. 161-168. Available from: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/231664/1/Especies-Arboreas-Brasileiras-vol-1-Aroeira-Pimenteira.pdf
https://ainfo.cnptia.embrapa.br/digital/...
) this invasive tree stands out among the 191 plants related to food production in Brazil due to its use as a spice, wide distribution, and high annual flowering performance (Neves et al., 2016NEVES, E.J.M., SANTOS, A.M., GOMES, J.B.V., RUAS, F.G. and VENTURA, J.A., 2016. Cultivo da aroeira-vermelha (Schinus terebinthifolius Raddi) para produção de pimenta rosa. Colombo: Embrapa Florestas, 24 p. Documentos, no. 294.). When introduced into new regions, S. terebinthifolia colonizes disturbed environments such as pastures, open fields, road margins, and forest clearings, leading to reduced diversity of native plant species due to resource competition.

Although widely distributed in the Southeast and Northeast regions of Brazil, research on S. terebinthifolia has primarily focused on its floral biology, investigating the reproductive and vegetative phenology of the plant, which includes detailed analyses of seasonal patterns of flowering, fruiting, and vegetative growth (Césario and Gaglianone, 2008CESÁRIO, L.F. and GAGLIANONE, M.C., 2008. Biologia floral e fenologia reprodutiva de Schinus terebinthifolia Raddi (Anacardiaceae) em Restinga do Norte Fluminense. Acta Botanica Brasílica, vol. 22, no. 3, pp. 828-833. http://doi.org/10.1590/S0102-33062008000300018.
http://doi.org/10.1590/S0102-33062008000...
; Milani et al., 2013MILANI, J.E.F., RODERJAN, C.V., KERSTEN, R.A. and GALVÃO, F., 2013. Fenologia vegetativa e reprodutiva de Schinus terebinthifolius Raddi (Anacardiaceae) em um fragmento de Floresta Ombrófila Mista Aluvial – Araucária (PR). Estudos De Biologia, vol. 35, no. 85, pp. 135-142. http://doi.org/10.7213/estud.biol.35.085.AO04.
http://doi.org/10.7213/estud.biol.35.085...
). Additionally, ethnobotany has also been a target of investigation, given the importance of the plant’s traditional use for different purposes, including medicinal and culinary properties (Santos et al., 2009SANTOS, E.B., DANTAS, G.S., SANTOS, H.B., DINIZ, M.F.F.M. and SAMPAIO, F.C., 2009. Etnobotanical studies of medicinal plants for oral conditions in the municipality of João Pessoa, Brazil. Brazilian Journal of Pharmacognosy, vol. 19, no. 1B, pp. 321-324. http://doi.org/10.1590/S0102-695X2009000200024.
http://doi.org/10.1590/S0102-695X2009000...
; Nocchi et al., 2022NOCCHI, S.R., FERREIRA, L., CASTRO-HOSHINO, L.V., TRUITI, M.C.T., NATALI, M.R.M., MELLO, J.C.P., BAESSO, M.L., DIAS FILHO, B.P., NAKAMURA, C.V. and UEDA-NAKAMURA, T., 2022. Development and evaluation of topical formulations that contain hydroethanolic extract from Schinus terebinthifolia against HSV-1 infection. Brazilian Journal of Pharmaceutical Sciences, vol. 58, pp. e18637. https://doi.org/10.1590/s2175-97902020000318637.
https://doi.org/10.1590/s2175-9790202000...
). However, the ecology of the plant also sparks significant interest among researchers, who explore its interaction with the surrounding environment through secondary metabolites (Pilatti et al., 2019PILATTI, D.M., FORTES, A.M.T., JORGE, T.C.M. and BOIAGO, N.P., 2019. Comparison of the phytochemical profiles of five native plant species in two different forest formations. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 79, no. 2, pp. 233-242. http://doi.org/10.1590/1519-6984.179526. PMid:29924133.
http://doi.org/10.1590/1519-6984.179526...
), as well as its preference for specific types of soil and its adaptation to different water conditions (Santos et al., 2023SANTOS, C.C., TORRACA, D.S.M., SILVERIO, J.M. and SCALON, S., 2023. Does silicon and salicylic acid contribute in the morphophysiology of Schinus terebinthifolia seedlings under flooding? Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 83, e270935. http://doi.org/10.1590/1519-6984.270935. PMid:37075431.
http://doi.org/10.1590/1519-6984.270935...
). Furthermore, the commercialization of S. terebinthifolia is a relevant aspect to be considered, especially due to the growing interest in phytotherapy and the natural products industry, which has driven the demand for medicinal plants like this one (Nocchi et al., 2022NOCCHI, S.R., FERREIRA, L., CASTRO-HOSHINO, L.V., TRUITI, M.C.T., NATALI, M.R.M., MELLO, J.C.P., BAESSO, M.L., DIAS FILHO, B.P., NAKAMURA, C.V. and UEDA-NAKAMURA, T., 2022. Development and evaluation of topical formulations that contain hydroethanolic extract from Schinus terebinthifolia against HSV-1 infection. Brazilian Journal of Pharmaceutical Sciences, vol. 58, pp. e18637. https://doi.org/10.1590/s2175-97902020000318637.
https://doi.org/10.1590/s2175-9790202000...
), as well as in gastronomy (Camillo, 2018CAMILLO, J., 2018. Schinus terebinthifolia Aroeira-vermelha. In: L. CORADIN, J. CAMILLO and F.G.C. PAREYN, eds. Espécies nativas da flora brasileira de valor econômico atual ou potencial. Plantas para o futuro: região nordeste. 1ª ed. Brasilia: Ministério do Meio Ambiente, vol. 1, pp. 401-412. Available from: www.gov.br/mma/pt-br/assuntos/biodiversidade-e-ecossistemas/fauna-e-flora/copy_of_LivroNordeste21122018.pdf; Nocchi et al., 2022NOCCHI, S.R., FERREIRA, L., CASTRO-HOSHINO, L.V., TRUITI, M.C.T., NATALI, M.R.M., MELLO, J.C.P., BAESSO, M.L., DIAS FILHO, B.P., NAKAMURA, C.V. and UEDA-NAKAMURA, T., 2022. Development and evaluation of topical formulations that contain hydroethanolic extract from Schinus terebinthifolia against HSV-1 infection. Brazilian Journal of Pharmaceutical Sciences, vol. 58, pp. e18637. https://doi.org/10.1590/s2175-97902020000318637.
https://doi.org/10.1590/s2175-9790202000...
). However, the scarcity of studies on distribution modeling and the impacts of climate change on this species remain a limitation. Therefore, the aim of this study is to address the following research questions: (1) What is the potential distribution of S. terebinthifolia under current and future climate scenarios? and (2) In which areas of the Neotropical region is this species experiencing displacement in its climatic niche between native and introduced regions?

2. Material and Methods

2.1. Occurrence records and data cleaning

We obtained 30,192 occurrence records of S. terebinthifolia from three primary sources: (1) The Global Biodiversity Information Facility provided 22,163 records (GBIF, 2023GLOBAL CORE BIODATA RESOURCE – GBIF, 2023. GBIF occurrence download of Schinus terebinthifolia Raddi. Copenhagen. http://doi.org/10.15468/dl.6urwr2.
http://doi.org/10.15468/dl.6urwr2...
); (2) Herbário virtual Reflora contributed 1,438 records (JBRJ, 2023JARDIM BOTÂNICO DO RIO DE JANEIRO – JBRJ, 2023 [viewed 14 October 2023]. Consulta Pública do Herbário Virtual: Schinus terebinthifolia Raddi [online]. Rio de Janeiro. Available from: https://floradobrasil.jbrj.gov.br/reflora/herbarioVirtual/ConsultaPublicoHVUC/BemVindoConsultaPublicaHVConsultar.do?modoConsulta=LISTAGEM&quantidadeResultado=20&nomeCientifico=Schinus+terebinthifolia+Raddi
https://floradobrasil.jbrj.gov.br/reflor...
); (3) NeoTropTree provided 6,591 records (NeoTropTree, 2023NEOTROPTREE, 2023 [viewed 14 October 2023]. Search by taxonomy of Schinus terebinthifolia Raddi [online]. Available from: http://www.neotroptree.info/data/speciesearch
http://www.neotroptree.info/data/species...
). These records underwent rigorous manual verification. Duplicate records and those with questionable identification were removed. Only records within forest fragments and those with geographic coordinates compatible with the resolution used in our models (5 arc-minutes) were considered. After this manual filtering, 1,009 occurrences of S. terebinthifolia remained (Figure 1).

Figure 1
Compilation of known occurrences of Schinus terebinthifolia from America.

We employed the CELLSIZE occurrence thinning method, as described by Fourcade et al. (2014)FOURCADE, Y., ENGLER, J.O., RÖDDER, D. and SECONDI, J., 2014. Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS One, vol. 9, no. 5, e97122. http://doi.org/10.1371/journal.pone.0097122. PMid:24818607.
http://doi.org/10.1371/journal.pone.0097...
, to counteract sampling bias. From the last step filtering 1,009 occurrences, the number was further reduced to 992 filtered occurrences. This method operates by randomly selecting a single occurrence within each grid cell, which is sized at twice the resolution of the associated environmental variables. For our study, the resolution was set at 5 arc-minutes, equivalent to approximately 9.0 km at the equator (Fourcade et al., 2014FOURCADE, Y., ENGLER, J.O., RÖDDER, D. and SECONDI, J., 2014. Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS One, vol. 9, no. 5, e97122. http://doi.org/10.1371/journal.pone.0097122. PMid:24818607.
http://doi.org/10.1371/journal.pone.0097...
; Velazco et al., 2019VELAZCO, S.J.E., VILLALOBOS, F., GALVÃO, F. and DE MARCO JÚNIOR, P., 2019. A dark scenario for Cerrado plant species: effects of future climate, land use and protected areas ineffectiveness. Diversity & Distributions, vol. 25, no. 4, pp. 660-673. http://doi.org/10.1111/ddi.12886.
http://doi.org/10.1111/ddi.12886...
).

2.2. Environmental data

Climate factors are primary determinants of a species’ overall distribution (Guisan and Thuiller, 2005GUISAN, A. and THUILLER, W., 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters, vol. 8, no. 9, pp. 993-1009. http://doi.org/10.1111/j.1461-0248.2005.00792.x. PMid:34517687.
http://doi.org/10.1111/j.1461-0248.2005....
). We incorporated 19 bioclimatic macroscale variables from WorldClim 2.1 (WorldClim, 2023WORLDCLIM [online], 2023 [viewed 22 October 2023]. Available from: www.worldclim.org
www.worldclim.org...
) that reflect both current and projected future conditions. All spatial data were standardized to a 5 arc-min resolution (Fick and Hijmans, 2017FICK, S.E. and HIJMANS, R.J., 2017. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, vol. 37, no. 12, pp. 4302-4315. http://doi.org/10.1002/joc.5086.
http://doi.org/10.1002/joc.5086...
). At large scales, abiotic conditions are pivotal, dictating the size and shape of species distributions on continental or regional scales. Such scales also minimize the effects of biological interactions (Hortal et al., 2010HORTAL, J., ROURA-PASCUAL, N., SANDERS, N.J. and RAHBEK, C., 2010. Understanding (insect) species distributions across spatial scales. Ecography, vol. 33, no. 1, pp. 51-53. http://doi.org/10.1111/j.1600-0587.2009.06428.x.
http://doi.org/10.1111/j.1600-0587.2009....
). Additionally, this resolution diminishes the spatial autocorrelation inherent in the original variables (Pimenta et al., 2022PIMENTA, M., ANDRADE, A.F.A., FERNANDES, F.H.S., AMBONI, M.P.M., ALMEIDA, R.S., SOARES, A.H.S. B., FALCON, G.B., RAÍCES, D.S.L. and DE MARCO JÚNIOR, P., 2022. One size does not fit all: priority areas for real world problems. Ecological Modelling, vol. 470, pp. 110013. http://doi.org/10.1016/j.ecolmodel.2022.110013.
http://doi.org/10.1016/j.ecolmodel.2022....
).

Using the MIROC6 model from the General Circulation Models (CMIP6), we projected geographical distributions under two scenarios: (1) SSP2-4.5 (moderate, with temperature rise of ~2.1-4.3 °C and 26.84 CO2 gigatons by 2100) and (2) SSP5-8.5 (business-as-usual, with a temperature rise of ~3.8-7.4 °C and 129.85 CO2 gigatons by 2100). These scenarios cover four periods from 2021 to 2100, allowing for tracking niche shifts over time. To address concerns of multicollinearity and reduce the number of variables, we created a set of non-redundant variables, excluding predictors with strong correlations using the Variance Inflation Factor (VIF >10) (Table 1) (Marquaridt, 1970MARQUARIDT, D.W., 1970. Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics, vol. 12, no. 3, pp. 591-612.).

Table 1
Classification of bioclimatic predictors based on the Variance Inflation Factor (VIF) for niche characterization of S. terebinthifolia.

2.3. Ecological niche models

The “M area” (as defined by Soberón and Peterson, 2005SOBERÓN, J. and PETERSON, A.T., 2005. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics, vol. 2, no. 0, pp. 1-10. http://doi.org/10.17161/bi.v2i0.4.
http://doi.org/10.17161/bi.v2i0.4...
) was delineated using a BUFFER area designed for model fitting. This BUFFER was defined by a 300 km radius around the occurrence data (Barve et al., 2011BARVE, N., BARVE, V., JIMÉNEZ-VALVERDE, A., LIRA-NORIEGA, A., MAHER, S.P., PETERSON, A.T., SOBERÓN, J. and VILLALOBOS, F., 2011. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, vol. 222, no. 11, pp. 1810-1819. http://doi.org/10.1016/j.ecolmodel.2011.02.011.
http://doi.org/10.1016/j.ecolmodel.2011....
). This area is essential as it includes the spectrum of environmental conditions under which the species has been known or is anticipated to exist throughout its evolutionary history (Soberon and Peterson, 2005SOBERÓN, J. and PETERSON, A.T., 2005. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics, vol. 2, no. 0, pp. 1-10. http://doi.org/10.17161/bi.v2i0.4.
http://doi.org/10.17161/bi.v2i0.4...
). Pseudoabsences and background data were set at a 1:1 ratio to the presence data and were supplemented with 10,000 random points. These points were primarily focused on predicted low suitability zones as determined by the Bioclim model (Engler et al., 2004ENGLER, R., GUISAN, A. and RECHSTEINER, L., 2004. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. Journal of Applied Ecology, vol. 41, no. 2, pp. 263-274. http://doi.org/10.1111/j.0021-8901.2004.00881.x.
http://doi.org/10.1111/j.0021-8901.2004....
).

Multiple algorithms, such as maximum entropy, MXS, MXD, SVM, and GLM, were used for potential distribution area predictions. The consensus model averaged the top algorithms’ predictions, incorporating only those with above-average TSS (Allouche et al., 2006ALLOUCHE, O., TSOAR, A. and KADMON, R., 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, vol. 43, no. 6, pp. 1223-1232. http://doi.org/10.1111/j.1365-2664.2006.01214.x.
http://doi.org/10.1111/j.1365-2664.2006....
; Velazco et al., 2019VELAZCO, S.J.E., VILLALOBOS, F., GALVÃO, F. and DE MARCO JÚNIOR, P., 2019. A dark scenario for Cerrado plant species: effects of future climate, land use and protected areas ineffectiveness. Diversity & Distributions, vol. 25, no. 4, pp. 660-673. http://doi.org/10.1111/ddi.12886.
http://doi.org/10.1111/ddi.12886...
). This model, further refined by the Jaccard metric, provided a reliable species distribution estimate, benefiting from ensemble modeling’s enhanced accuracy (Araújo and New, 2007ARAÚJO, M. and NEW, M., 2007. Ensemble forecasting of species distributions. Trends in Ecology & Evolution, vol. 22, no. 1, pp. 42-47. http://doi.org/10.1016/j.tree.2006.09.010. PMid:17011070.
http://doi.org/10.1016/j.tree.2006.09.01...
; Norberg et al., 2019NORBERG, A., ABREGO, N., BLANCHET, F.G., ADLER, F.R., ANDERSON, B.J., ANTTILA, J., ARAÚJO, M.B., DALLAS, T., DUNSON, D., ELITH, J., FOSTER, S.D., FOX, R., FRANKLIN, J., GODSOE, W., GUISAN, A., O’HARA, B., ILL, N.A., HOLT, R.D., HUI, F.K.C., HUSBY, M., KÅLÅS, J.A., LEHIKOINEN, A., LUOTO, M., MOD, H.K., NEWELL, G., RENNER, I., ROSLIN, T. and SOININEN, J., 2019. A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecological Monographs, vol. 89, no. 3, e01370. http://doi.org/10.1002/ecm.1370.
http://doi.org/10.1002/ecm.1370...
; Thuiller et al., 2019THUILLER, W., GUÉGUEN, M., RENAUD, J., KARGER, D.N. and ZIMMERMANN, N.E., 2019. Uncertainty in ensembles of global biodiversity scenarios. Nature Communications, vol. 10, no. 1, pp. 1446. http://doi.org/10.1038/s41467-019-09519-w. PMid:30926936.
http://doi.org/10.1038/s41467-019-09519-...
).

Our models underwent k-fold cross-validation with five folds (Fielding and Bell, 1997FIELDING, A.H. and BELL, J.F., 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, vol. 24, no. 1, pp. 38-49. http://doi.org/10.1017/S0376892997000088.
http://doi.org/10.1017/S0376892997000088...
). We assessed performance using AUC, TSS, and the Jaccard index (Leroy et al., 2018LEROY, B., DELSOL, R., HUGUENY, B., MEYNARD, C.N., BARHOUMI, C., BARBET-MASSIN, M. and BELLARD, C., 2018. Without quality presence-absence data, discrimination metrics such as TSS can be misleading measures of model performance. Journal of Biogeography, vol. 45, no. 9, pp. 1994-2002. http://doi.org/10.1111/jbi.13402.
http://doi.org/10.1111/jbi.13402...
), introducing the latter to offset potential biases. A score over 0.7 in any metric indicated satisfactory performance.

The entire modeling procedure, including adjustments, was executed using the ENMTML R package (Andrade et al., 2020ANDRADE, A.F.A., VELAZCO, S.J.E. and DE MARCO JÚNIOR, P., 2020. ENMTML: an R package for a straightforward construction of complex ecological niche models. Environmental Modelling & Software, vol. 125, pp. 104615. http://doi.org/10.1016/j.envsoft.2019.104615.
http://doi.org/10.1016/j.envsoft.2019.10...
). Finally, distribution maps were generated with QGIS version 3.22.14.

3. Results

In determining the niche characterization of S. terebinthifolia, various bioclimatic predictors were evaluated based on the Variance Inflation Factor (VIF). As shown in Table 1, out of the 19 bioclimatic variables considered, nine predictors were selected for inclusion in the model, while the others were excluded due to high collinearity (VIF > 10). Specifically, the model utilized predictors capturing temperature extremes and variations, such as the “Max Temperature of Warmest Month” and the “Temperature Annual Range”. Additionally, the predictors describing annual precipitation patterns and those of specific quarters were also incorporated. These selections ensure a more robust and accurate model by reducing multicollinearity, thus improving the reliability of the projected niche characterization for S. terebinthifolia.

The evaluation of modeling algorithms for S. terebinthifolia highlighted the robustness of the consensus model. While individual algorithms like SVM exhibit commendable accuracy, the consensus model consistently outperforms in terms of precision across the evaluated metrics. Specifically, the Area Under the Curve (AUC) values for the consensus model suggest exemplary discrimination capabilities. While the GLM and MXD models yield proficient results, MXS lags slightly, especially in its TSS and Jaccard scores (Table 2).

Table 2
Algorithms and consensus model performance for Schinus terebinthifolia. Generalized Linear Models (GLM); Maximum Entropy Default (MXD); Maximum Entropy Simple (MXS); Support Vector Machine (SVM); Area Under the Curve (AUC); True Skill Statistic (TSS).

3.1. Predicted current and future potential distributions

The Figure 2 offers an incisive look at the evolving environmental suitability patterns of the S. terebinthifolia from its current to projections leading up to the year 2100. The current potential distribution of S. terebinthifolia exhibits a widespread environmental suitability across the Latin American continent, as illustrated by the broader spectrum of suitability evident in the map.

Figure 2
Predicted Distribution of S. terebinthifolia from Current Patterns to Projections for 2100. The map showcases current and future habitat suitability under two climate scenarios (SSP2-4.5 & SSP5-8.5) across four-time intervals.

As we progress into future projections, there’s a clear and undeniable contraction of habitat suitability for S. terebinthifolia. Under both the SSP2-4.5 and SSP5-8.5 climate scenarios, a decrease in environmental adequability for this species is noticeable, but the contraction is notably more pronounced under the SSP5-8.5 scenario. This more aggressive model, which factors in higher greenhouse gas emissions, showcases a more significant reduction in suitable habitats for the species.

By the end of the century, specifically leading up to 2100, the regions exhibiting the highest habitat suitability are largely concentrated in the south and southeast regions of Brazil. This points to a stark change from its current widespread distribution. Moreover, the areas of the Atlantic Forest along the Brazilian coast also stand out as significant strongholds for the species’ habitat suitability.

Another notable observation is that under the high-emission scenario, SSP5-8.5, the species’ suitable habitats face a more drastic reduction compared to the moderate scenario. The implications of this could be manifold, but what stands out is the urgency and importance of emission control and mitigation strategies.

4. Discussion

Invasive species, such as S. terebinthifolia, are noteworthy for their remarkable ability to adapt to various types of vegetation, enabling them to spread by increasing seed and biomass productivity (Hogg et al., 2020HOGG, B.N., STOKES, K., RAYAMAJHI, M.B., GEIGER, J. and PRATT, P.D., 2020. Foliar lifespan, phenology and seasonal dynamics of the invasive shrub Schinus terebinthifolia. Weed Research, vol. 60, no. 3, pp. 212-220. http://doi.org/10.1111/wre.12414.
http://doi.org/10.1111/wre.12414...
). Modeling studies play a pivotal role in understanding biological invasions and their impact on climate change. These invasions have proven to be responsible for a significant portion of global extinctions, resulting in substantial economic costs (Roy et al., 2023ROY, H.E., PAUCHARD, A., STOETT, P., RENARD TRUONG, T., BACHER, S., GALIL, B.S., HULME, P.E., IKEDA, T., SANKARAN, K.V., MCGEOCH, M.A., MEYERSON, L.A., NUÑEZ, M.A., ORDONEZ, A., RAHLAO, S.J., SCHWINDT, E., SEEBENS, H., SHEPPARD, A.W. and VANDVIK, V., 2023. IPBES invasive alien species assessment: summary for policymakers. Bonn: IPBES. http://doi.org/10.5281/zenodo.7430692.
http://doi.org/10.5281/zenodo.7430692...
). This underline the necessity of addressing these threats, especially in the context of climate change, which can exacerbate the issue further.

Our findings indicate a trend of reduced habitat suitability for S. terebinthifolia under projected climate scenarios (SSP2-4.5 and SSP5-8.5), with this contraction being particularly pronounced in the high-emission scenario (SSP5-8.5). Despite anticipated reductions in environmental suitability under future scenarios, current conditions in South America still reveal large areas of potential habitat where regions like the Andes (Bolivia, Peru, Guyana, Suriname) have no recorded invasions but possess environmental suitability. S. terebinthifolia is already present in Mexico, Guatemala, Honduras, Nicaragua, Costa Rica, Panama, Colombia, Venezuela, Brazil, Paraguay, and the Caribbean islands. The moderate emission scenario suggests that the areas in these countries will remain suitable, potentially allowing the species to become well-established by 2100. However, under the high-emission scenario, suitable environmental suitability areas are expected to decrease progressively. Nevertheless, even under the high-emission scenario, models project that suitable areas are expected to remain in Brazil, Paraguay, and Uruguay, with only narrow corridors of suitable habitats persisting in the Andean regions of Bolivia, Peru, and Colombia, as well as smaller patches in Venezuela, certain Caribbean islands, and parts of Central America by 2100. This discovery highlights the invasive species’ potential to increase competition for native species both non-native regions and areas without previous records, potentially further destabilize ecosystems, as discussed in previous studies (see Ahmad et al., 2019AHMAD, R., KHUROO, A.A., CHARLES, B., HAMID, M., RASHID, I. and ARAVIND, N.A., 2019. Global distribution modelling, invasion risk assessment and niche dynamics of Leucanthemum vulgare (Ox-eye Daisy) under climate change. Scientific Reports, vol. 9, no. 1, pp. 11395. http://doi.org/10.1038/s41598-019-47859-1. PMid:31388050.
http://doi.org/10.1038/s41598-019-47859-...
; Hogg et al., 2020HOGG, B.N., STOKES, K., RAYAMAJHI, M.B., GEIGER, J. and PRATT, P.D., 2020. Foliar lifespan, phenology and seasonal dynamics of the invasive shrub Schinus terebinthifolia. Weed Research, vol. 60, no. 3, pp. 212-220. http://doi.org/10.1111/wre.12414.
http://doi.org/10.1111/wre.12414...
; Alencar et al., 2022ALENCAR, J.B.R., BENTO, M., YOSHIDA, T., DA FONSECA, C.R.V. and BEGGIATO BACCARO, F., 2022. Modeling potential invasion of stored-product pest Cryptamorpha desjardinsii (Guérin-Méneville, 1844) (Coleoptera: Silvanidae) with emphasis on newly recorded areas. Journal of Asia-Pacific Entomology, vol. 25, no. 2, pp. 101891. http://doi.org/10.1016/j.aspen.2022.101891.
http://doi.org/10.1016/j.aspen.2022.1018...
, 2024ALENCAR, J.B.R., SAMPAIO, A. and FONSECA, C.R.V., 2024. Ecological niche modeling of two Microtheca Stål, 1860 species (Coleoptera: Chrysomelidae: Chrysomelinae) in the Americas: insights from Brassicaceae occurrence. International Journal of Biometeorology, vol. 68, no. 5, pp. 891. http://doi.org/10.1007/s00484-024-02634-4. PMid:38374294.
http://doi.org/10.1007/s00484-024-02634-...
; Aguiar et al., 2023AGUIAR, C.V.S., ALENCAR, J.B.R. and SANTANA, G., 2023. Predicting the potential global distribution of Scirtothrips dorsalis (Hood) (Thysanoptera: Thripidae) with emphasis on the Americas using an ecological niche model. Neotropical Entomology, vol. 52, no. 3, pp. 512-520. http://doi.org/10.1007/s13744-023-01038-0. PMid:36884146.
http://doi.org/10.1007/s13744-023-01038-...
). Therefore, the need to implement control strategies, as previously suggested (Canavan et al., 2021CANAVAN, K., MAGENGELELE, N.L., PATERSON, I.D., WILLIAMS, D.A. and MARTIN, G.D., 2021. Uncovering the phylogeography of Schinus terebinthifolia in South Africa to guide biological control. AoB Plants, vol. 14, no. 1, pp. plab078. http://doi.org/10.1093/aobpla/plab078. PMid:35079330.
http://doi.org/10.1093/aobpla/plab078...
), and applied (see Bowers et al., 2022BOWERS, K., HIGHT, S.D., WHEELER, G.S. and MINTEER, C.R., 2022. Ecological host range of Pseudophilothrips ichini (Thysanoptera: Phlaeothripidae), a biological control agent of Brazilian peppertree, Schinus terebinthifolia. Biological Control, vol. 172, pp. 104976. http://doi.org/10.1016/j.biocontrol.2022.104976.
http://doi.org/10.1016/j.biocontrol.2022...
), becomes increasingly essential. Furthermore, the observation that areas of higher suitability are concentrated in the southern and southeastern regions of Brazil suggests the possibility of distribution pattern changes with regional-scale impacts.

However, it is of utmost importance to highlight that the reduction in habitat suitability in a high-emission scenario brings forth significant challenges, with a substantial increase in the number of invasive species expected by the year 2050 (Seebens et al., 2021SEEBENS, H., BACHER, S., BLACKBURN, T.M., CAPINHA, C., DAWSON, W., DULLINGER, S., GENOVESI, P., HULME, P.E., KLEUNEN, M.V., KÜHN, I., JESCHKE, J.M., LENZNER, B., LIEBHOLD, A.M., PATTISON, Z., PERG, J., PYŠEK, P., WINTER, M. and ESSL, F., 2021. Projecting the continental accumulation of alien species through to 2050. Global Change Biology, vol. 27, no. 5, pp. 970-982. http://doi.org/10.1111/gcb.15333. PMid:33000893.
http://doi.org/10.1111/gcb.15333...
). This reinforces the urgency of adopting measures to control greenhouse gas emissions and implement mitigation strategies, as emphasized by Cruz et al. (2023)CRUZ, P.V., ALENCAR, J.B.R., CARDOSO, M.N. and BACCARO, F.B., 2023. Predicting the South American invasion pathways of the mayfly Cloeon dipterum Linnaeus 1761 (Ephemeroptera: Baetidae) using species distribution models. Insect Conservation and Diversity, vol. 16, no. 4, pp. 521. http://doi.org/10.1111/icad.12642.
http://doi.org/10.1111/icad.12642...
. Nevertheless, it is essential to consider that this study focused on a single species, and the impacts of climate change on biological invasions can vary considerably among different taxonomic groups.

The finding that the consensus model outperforms other algorithms in predicting distribution areas is encouraging, as it suggests a higher accuracy in projecting the impacts of climate change. Models can play a crucial role in contributing to effective management both in and around conservation units and in controlling the introduction of invasive exotic species with notable natural dispersal capacity (Wang et al., 2017WANG, C.J., WAN, J.Z., QU, H. and ZHANG, Z.X., 2017. Modelling plant invasion pathways in protected areas under climate change: implication for invasion management. Web Ecology, vol. 17, no. 2, pp. 69-77. http://doi.org/10.5194/we-17-69-2017.
http://doi.org/10.5194/we-17-69-2017...
). These results highlight challenges that require immediate action, such as the control of greenhouse gas emissions and the development of long-term management strategies (Hulme, 2021HULME, P.E., 2021. Unwelcome exchange: international trade as a direct and indirect driver of biological invasions worldwide. One Earth, vol. 4, no. 5, pp. 666-679. http://doi.org/10.1016/j.oneear.2021.04.015.
http://doi.org/10.1016/j.oneear.2021.04....
; Cruz et al., 2023CRUZ, P.V., ALENCAR, J.B.R., CARDOSO, M.N. and BACCARO, F.B., 2023. Predicting the South American invasion pathways of the mayfly Cloeon dipterum Linnaeus 1761 (Ephemeroptera: Baetidae) using species distribution models. Insect Conservation and Diversity, vol. 16, no. 4, pp. 521. http://doi.org/10.1111/icad.12642.
http://doi.org/10.1111/icad.12642...
; Roy et al., 2023ROY, H.E., PAUCHARD, A., STOETT, P., RENARD TRUONG, T., BACHER, S., GALIL, B.S., HULME, P.E., IKEDA, T., SANKARAN, K.V., MCGEOCH, M.A., MEYERSON, L.A., NUÑEZ, M.A., ORDONEZ, A., RAHLAO, S.J., SCHWINDT, E., SEEBENS, H., SHEPPARD, A.W. and VANDVIK, V., 2023. IPBES invasive alien species assessment: summary for policymakers. Bonn: IPBES. http://doi.org/10.5281/zenodo.7430692.
http://doi.org/10.5281/zenodo.7430692...
). Furthermore, they underscore the ongoing importance of research and monitoring to assess the effects of climate change on biodiversity and biological invasions (Seebens et al., 2021SEEBENS, H., BACHER, S., BLACKBURN, T.M., CAPINHA, C., DAWSON, W., DULLINGER, S., GENOVESI, P., HULME, P.E., KLEUNEN, M.V., KÜHN, I., JESCHKE, J.M., LENZNER, B., LIEBHOLD, A.M., PATTISON, Z., PERG, J., PYŠEK, P., WINTER, M. and ESSL, F., 2021. Projecting the continental accumulation of alien species through to 2050. Global Change Biology, vol. 27, no. 5, pp. 970-982. http://doi.org/10.1111/gcb.15333. PMid:33000893.
http://doi.org/10.1111/gcb.15333...
). This continuous monitoring is fundamental to inform decisions and the development of effective management strategies.

Brazilian pepper is valued in some regions for its medicinal properties and culinary use (Ronchi et al., 2022RONCHI, H.S., COUTINHO, E.T. and BONFIM, F.P.G., 2022. Espécies alimentícias e medicinais nativas: produtos florestais não madeireiros e potencial de exploração sustentável. Ciência Florestal, vol. 32, no. 3, pp. 1149-1164. http://doi.org/10.5902/1980509834747.
http://doi.org/10.5902/1980509834747...
). However, upon introduction into novel ecosystems, such as Florida and South Africa, this species exhibits a pronounced capacity for engendering detrimental effects impacts (see Hogg et al., 2020HOGG, B.N., STOKES, K., RAYAMAJHI, M.B., GEIGER, J. and PRATT, P.D., 2020. Foliar lifespan, phenology and seasonal dynamics of the invasive shrub Schinus terebinthifolia. Weed Research, vol. 60, no. 3, pp. 212-220. http://doi.org/10.1111/wre.12414.
http://doi.org/10.1111/wre.12414...
; Canavan et al., 2021CANAVAN, K., MAGENGELELE, N.L., PATERSON, I.D., WILLIAMS, D.A. and MARTIN, G.D., 2021. Uncovering the phylogeography of Schinus terebinthifolia in South Africa to guide biological control. AoB Plants, vol. 14, no. 1, pp. plab078. http://doi.org/10.1093/aobpla/plab078. PMid:35079330.
http://doi.org/10.1093/aobpla/plab078...
). The adverse impacts on native fauna are extensively recorded, positioning invasive species as the second most significant driver of contemporary extinctions, subsequent only to habitat destruction (Bellard et al., 2016BELLARD, C., CASSEY, P. and BLACKBURN, T.M., 2016. Alien species as a driver of recent extinctions. Biology Letters, vol. 12, no. 2, pp. 20150623. http://doi.org/10.1098/rsbl.2015.0623. PMid:26888913.
http://doi.org/10.1098/rsbl.2015.0623...
).

The negative impact of S. terebinthifolia on invaded ecosystems outside South America is remarkable, especially due to its ability to colonize disturbed habitats, such as pastures, road margins, forest clearings, and mangroves (Enloe et al., 2021ENLOE, S.F., LEARY, J.K., PRINCE, C.M., SPERRY, B.P. and LAUER, D.K., 2021. Response of Brazilian peppertree (Schinus terebinthifolia) and four mangrove species to imazamox and carfentrazone-ethyl herbicides. Invasive Plant Science and Management, vol. 14, no. 3, pp. 190-195. http://doi.org/10.1017/inp.2021.22.
http://doi.org/10.1017/inp.2021.22...
; Canavan et al., 2021CANAVAN, K., MAGENGELELE, N.L., PATERSON, I.D., WILLIAMS, D.A. and MARTIN, G.D., 2021. Uncovering the phylogeography of Schinus terebinthifolia in South Africa to guide biological control. AoB Plants, vol. 14, no. 1, pp. plab078. http://doi.org/10.1093/aobpla/plab078. PMid:35079330.
http://doi.org/10.1093/aobpla/plab078...
). This invasion results in resource competition, harming biodiversity and leading to a decline in native plant species (Ahmad et al., 2019AHMAD, R., KHUROO, A.A., CHARLES, B., HAMID, M., RASHID, I. and ARAVIND, N.A., 2019. Global distribution modelling, invasion risk assessment and niche dynamics of Leucanthemum vulgare (Ox-eye Daisy) under climate change. Scientific Reports, vol. 9, no. 1, pp. 11395. http://doi.org/10.1038/s41598-019-47859-1. PMid:31388050.
http://doi.org/10.1038/s41598-019-47859-...
). Furthermore, Brazilian pepper can alter the natural fire cycles in ecosystems, increasing their frequency and affecting local vegetation.

To mitigate those impacts, it will be crucial to adopt comprehensive management strategies. This includes monitoring and early detection for a swift response, employing physical and chemical control methods, with manual removal in smaller areas and the use of selective herbicides in larger ones. Furthermore, investing in the restoration of affected ecosystems is essential, promoting the planting of native species and sustainable practices. Awareness along with public policies regarding the impacts of invasive species and the importance of biodiversity is crucial (Early et al., 2016EARLY, R., BRADLEY, B.A., DUKES, J.S., LAWLER, J.J., OLDEN, J.D., BLUMENTHAL, D.M., GONZALEZ, P., GROSHOLZ, E.D., IBAÑEZ, I., MILLER, L.P., SORTE, C.J.B. and TATEM, A.J., 2016. Global threats from invasive alien species in the twenty-first century and national response capacities. Nature Communications, vol. 7, no. 1, pp. 12485. http://doi.org/10.1038/ncomms12485. PMid:27549569.
http://doi.org/10.1038/ncomms12485...
). Ongoing research supports the improvement of these strategies, ensuring an evidence-based approach and effective long-term management.

5. Conclusion

The present study, to the best of our knowledge, is the first to model the current potential distribution and predicted the future distribution of S. terebinthifolia under climate change. In the current scenario, despite notable advancements in scientific and technological development related to bioclimatic modeling, the growing threat to global biodiversity resulting from biological invasions exacerbated by climate change makes it essential to understand and mitigate these challenges. Projections of distribution under current and future climate scenarios indicate a significant decline in suitable habitats in North and Central America, especially under high-emission scenarios, leaving only areas previously identified as native. Additionally, this study underlines the need for collaboration among scientists, policymakers, land managers, and local communities to tackle these challenges, particularly in Atlantic Forest areas, a critical biodiversity hotspot on this continent. Strategies such as monitoring, control, restoration, and awareness play crucial roles in the battle against the impacts of biological invasions, as in the case of Brazilian pepper, which threatens vulnerable ecosystems. Therefore, the research has provided valuable insights into the dynamics of invasive species distribution in the face of climate change and highlights the importance of effective policies and actions to mitigate their impacts. These findings are crucial in guiding future conservation and biodiversity management efforts in a constantly changing world.

Acknowledgements

We thank the Graduate Program in Forestry Sciences at the Federal Rural University of Pernambuco for their logistical support. We also express our gratitude to the Coordination for the Improvement of Higher Education Personnel (CAPES) for providing a scholarship to the Ph.D. student R.S. Santos. We also acknowledge the financial support provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior CAPES/Brazil (Finance Code 001), FAPEAM-Programa POSGRAD, Conselho Nacional de Desenvolvimento Científico e Tecnológico CNPq/BRAZIL (Finance Code 001), and for the support provided under EDITAL N. 001/2023 - UNIVERSAL - FAPEAM 20 Anos.

References

  • AGUIAR, C.V.S., ALENCAR, J.B.R. and SANTANA, G., 2023. Predicting the potential global distribution of Scirtothrips dorsalis (Hood) (Thysanoptera: Thripidae) with emphasis on the Americas using an ecological niche model. Neotropical Entomology, vol. 52, no. 3, pp. 512-520. http://doi.org/10.1007/s13744-023-01038-0 PMid:36884146.
    » http://doi.org/10.1007/s13744-023-01038-0
  • AHMAD, R., KHUROO, A.A., CHARLES, B., HAMID, M., RASHID, I. and ARAVIND, N.A., 2019. Global distribution modelling, invasion risk assessment and niche dynamics of Leucanthemum vulgare (Ox-eye Daisy) under climate change. Scientific Reports, vol. 9, no. 1, pp. 11395. http://doi.org/10.1038/s41598-019-47859-1 PMid:31388050.
    » http://doi.org/10.1038/s41598-019-47859-1
  • ALENCAR, J.B.R., BENTO, M., YOSHIDA, T., DA FONSECA, C.R.V. and BEGGIATO BACCARO, F., 2022. Modeling potential invasion of stored-product pest Cryptamorpha desjardinsii (Guérin-Méneville, 1844) (Coleoptera: Silvanidae) with emphasis on newly recorded areas. Journal of Asia-Pacific Entomology, vol. 25, no. 2, pp. 101891. http://doi.org/10.1016/j.aspen.2022.101891
    » http://doi.org/10.1016/j.aspen.2022.101891
  • ALENCAR, J.B.R., SAMPAIO, A. and FONSECA, C.R.V., 2024. Ecological niche modeling of two Microtheca Stål, 1860 species (Coleoptera: Chrysomelidae: Chrysomelinae) in the Americas: insights from Brassicaceae occurrence. International Journal of Biometeorology, vol. 68, no. 5, pp. 891. http://doi.org/10.1007/s00484-024-02634-4 PMid:38374294.
    » http://doi.org/10.1007/s00484-024-02634-4
  • ALLOUCHE, O., TSOAR, A. and KADMON, R., 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, vol. 43, no. 6, pp. 1223-1232. http://doi.org/10.1111/j.1365-2664.2006.01214.x
    » http://doi.org/10.1111/j.1365-2664.2006.01214.x
  • ANDERSEN, M.C., ADAMS, H., HOPE, B. and POWELL, M., 2004. Risk analysis for invasive species: general framework and research needs. Risk Analysis, vol. 24, no. 4, pp. 893-900. http://doi.org/10.1111/j.0272-4332.2004.00487.x PMid:15357808.
    » http://doi.org/10.1111/j.0272-4332.2004.00487.x
  • ANDRADE, A.F.A., VELAZCO, S.J.E. and DE MARCO JÚNIOR, P., 2020. ENMTML: an R package for a straightforward construction of complex ecological niche models. Environmental Modelling & Software, vol. 125, pp. 104615. http://doi.org/10.1016/j.envsoft.2019.104615
    » http://doi.org/10.1016/j.envsoft.2019.104615
  • ARAÚJO, M. and NEW, M., 2007. Ensemble forecasting of species distributions. Trends in Ecology & Evolution, vol. 22, no. 1, pp. 42-47. http://doi.org/10.1016/j.tree.2006.09.010 PMid:17011070.
    » http://doi.org/10.1016/j.tree.2006.09.010
  • BAI, F., CHISHOLM, R., SANG, W. and DONG, M., 2013. Spatial risk assessment of alien invasive plants in China. Environmental Science & Technology, vol. 47, no. 14, pp. 7624-7632. http://doi.org/10.1021/es400382c PMid:23738912.
    » http://doi.org/10.1021/es400382c
  • BARVE, N., BARVE, V., JIMÉNEZ-VALVERDE, A., LIRA-NORIEGA, A., MAHER, S.P., PETERSON, A.T., SOBERÓN, J. and VILLALOBOS, F., 2011. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, vol. 222, no. 11, pp. 1810-1819. http://doi.org/10.1016/j.ecolmodel.2011.02.011
    » http://doi.org/10.1016/j.ecolmodel.2011.02.011
  • BELLARD, C., CASSEY, P. and BLACKBURN, T.M., 2016. Alien species as a driver of recent extinctions. Biology Letters, vol. 12, no. 2, pp. 20150623. http://doi.org/10.1098/rsbl.2015.0623 PMid:26888913.
    » http://doi.org/10.1098/rsbl.2015.0623
  • BOWERS, K., HIGHT, S.D., WHEELER, G.S. and MINTEER, C.R., 2022. Ecological host range of Pseudophilothrips ichini (Thysanoptera: Phlaeothripidae), a biological control agent of Brazilian peppertree, Schinus terebinthifolia. Biological Control, vol. 172, pp. 104976. http://doi.org/10.1016/j.biocontrol.2022.104976
    » http://doi.org/10.1016/j.biocontrol.2022.104976
  • CAMILLO, J., 2018. Schinus terebinthifolia Aroeira-vermelha. In: L. CORADIN, J. CAMILLO and F.G.C. PAREYN, eds. Espécies nativas da flora brasileira de valor econômico atual ou potencial. Plantas para o futuro: região nordeste. 1ª ed. Brasilia: Ministério do Meio Ambiente, vol. 1, pp. 401-412. Available from: www.gov.br/mma/pt-br/assuntos/biodiversidade-e-ecossistemas/fauna-e-flora/copy_of_LivroNordeste21122018.pdf
  • CANAVAN, K., MAGENGELELE, N.L., PATERSON, I.D., WILLIAMS, D.A. and MARTIN, G.D., 2021. Uncovering the phylogeography of Schinus terebinthifolia in South Africa to guide biological control. AoB Plants, vol. 14, no. 1, pp. plab078. http://doi.org/10.1093/aobpla/plab078 PMid:35079330.
    » http://doi.org/10.1093/aobpla/plab078
  • CARVALHO, P.E.R.C., 2003. Espécies arbóreas brasileiras: aroeira-pimenteira: schinus terebinthifolius. Brasília: Embrapa, vol. 1, pp. 161-168. Available from: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/231664/1/Especies-Arboreas-Brasileiras-vol-1-Aroeira-Pimenteira.pdf
    » https://ainfo.cnptia.embrapa.br/digital/bitstream/item/231664/1/Especies-Arboreas-Brasileiras-vol-1-Aroeira-Pimenteira.pdf
  • CESÁRIO, L.F. and GAGLIANONE, M.C., 2008. Biologia floral e fenologia reprodutiva de Schinus terebinthifolia Raddi (Anacardiaceae) em Restinga do Norte Fluminense. Acta Botanica Brasílica, vol. 22, no. 3, pp. 828-833. http://doi.org/10.1590/S0102-33062008000300018
    » http://doi.org/10.1590/S0102-33062008000300018
  • CRUZ, P.V., ALENCAR, J.B.R., CARDOSO, M.N. and BACCARO, F.B., 2023. Predicting the South American invasion pathways of the mayfly Cloeon dipterum Linnaeus 1761 (Ephemeroptera: Baetidae) using species distribution models. Insect Conservation and Diversity, vol. 16, no. 4, pp. 521. http://doi.org/10.1111/icad.12642
    » http://doi.org/10.1111/icad.12642
  • EARLY, R., BRADLEY, B.A., DUKES, J.S., LAWLER, J.J., OLDEN, J.D., BLUMENTHAL, D.M., GONZALEZ, P., GROSHOLZ, E.D., IBAÑEZ, I., MILLER, L.P., SORTE, C.J.B. and TATEM, A.J., 2016. Global threats from invasive alien species in the twenty-first century and national response capacities. Nature Communications, vol. 7, no. 1, pp. 12485. http://doi.org/10.1038/ncomms12485 PMid:27549569.
    » http://doi.org/10.1038/ncomms12485
  • ENGLER, R., GUISAN, A. and RECHSTEINER, L., 2004. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. Journal of Applied Ecology, vol. 41, no. 2, pp. 263-274. http://doi.org/10.1111/j.0021-8901.2004.00881.x
    » http://doi.org/10.1111/j.0021-8901.2004.00881.x
  • ENLOE, S.F., LEARY, J.K., PRINCE, C.M., SPERRY, B.P. and LAUER, D.K., 2021. Response of Brazilian peppertree (Schinus terebinthifolia) and four mangrove species to imazamox and carfentrazone-ethyl herbicides. Invasive Plant Science and Management, vol. 14, no. 3, pp. 190-195. http://doi.org/10.1017/inp.2021.22
    » http://doi.org/10.1017/inp.2021.22
  • FICK, S.E. and HIJMANS, R.J., 2017. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, vol. 37, no. 12, pp. 4302-4315. http://doi.org/10.1002/joc.5086
    » http://doi.org/10.1002/joc.5086
  • FIELDING, A.H. and BELL, J.F., 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, vol. 24, no. 1, pp. 38-49. http://doi.org/10.1017/S0376892997000088
    » http://doi.org/10.1017/S0376892997000088
  • FOURCADE, Y., ENGLER, J.O., RÖDDER, D. and SECONDI, J., 2014. Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS One, vol. 9, no. 5, e97122. http://doi.org/10.1371/journal.pone.0097122 PMid:24818607.
    » http://doi.org/10.1371/journal.pone.0097122
  • GLOBAL CORE BIODATA RESOURCE – GBIF, 2023. GBIF occurrence download of Schinus terebinthifolia Raddi. Copenhagen. http://doi.org/10.15468/dl.6urwr2
    » http://doi.org/10.15468/dl.6urwr2
  • GUISAN, A. and THUILLER, W., 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters, vol. 8, no. 9, pp. 993-1009. http://doi.org/10.1111/j.1461-0248.2005.00792.x PMid:34517687.
    » http://doi.org/10.1111/j.1461-0248.2005.00792.x
  • HOGG, B.N., STOKES, K., RAYAMAJHI, M.B., GEIGER, J. and PRATT, P.D., 2020. Foliar lifespan, phenology and seasonal dynamics of the invasive shrub Schinus terebinthifolia. Weed Research, vol. 60, no. 3, pp. 212-220. http://doi.org/10.1111/wre.12414
    » http://doi.org/10.1111/wre.12414
  • HORTAL, J., ROURA-PASCUAL, N., SANDERS, N.J. and RAHBEK, C., 2010. Understanding (insect) species distributions across spatial scales. Ecography, vol. 33, no. 1, pp. 51-53. http://doi.org/10.1111/j.1600-0587.2009.06428.x
    » http://doi.org/10.1111/j.1600-0587.2009.06428.x
  • HULME, P.E., 2021. Unwelcome exchange: international trade as a direct and indirect driver of biological invasions worldwide. One Earth, vol. 4, no. 5, pp. 666-679. http://doi.org/10.1016/j.oneear.2021.04.015
    » http://doi.org/10.1016/j.oneear.2021.04.015
  • JARDIM BOTÂNICO DO RIO DE JANEIRO – JBRJ, 2023 [viewed 14 October 2023]. Consulta Pública do Herbário Virtual: Schinus terebinthifolia Raddi [online]. Rio de Janeiro. Available from: https://floradobrasil.jbrj.gov.br/reflora/herbarioVirtual/ConsultaPublicoHVUC/BemVindoConsultaPublicaHVConsultar.do?modoConsulta=LISTAGEM&quantidadeResultado=20&nomeCientifico=Schinus+terebinthifolia+Raddi
    » https://floradobrasil.jbrj.gov.br/reflora/herbarioVirtual/ConsultaPublicoHVUC/BemVindoConsultaPublicaHVConsultar.do?modoConsulta=LISTAGEM&quantidadeResultado=20&nomeCientifico=Schinus+terebinthifolia+Raddi
  • LEROY, B., DELSOL, R., HUGUENY, B., MEYNARD, C.N., BARHOUMI, C., BARBET-MASSIN, M. and BELLARD, C., 2018. Without quality presence-absence data, discrimination metrics such as TSS can be misleading measures of model performance. Journal of Biogeography, vol. 45, no. 9, pp. 1994-2002. http://doi.org/10.1111/jbi.13402
    » http://doi.org/10.1111/jbi.13402
  • MARQUARIDT, D.W., 1970. Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics, vol. 12, no. 3, pp. 591-612.
  • MILANI, J.E.F., RODERJAN, C.V., KERSTEN, R.A. and GALVÃO, F., 2013. Fenologia vegetativa e reprodutiva de Schinus terebinthifolius Raddi (Anacardiaceae) em um fragmento de Floresta Ombrófila Mista Aluvial – Araucária (PR). Estudos De Biologia, vol. 35, no. 85, pp. 135-142. http://doi.org/10.7213/estud.biol.35.085.AO04
    » http://doi.org/10.7213/estud.biol.35.085.AO04
  • NEOTROPTREE, 2023 [viewed 14 October 2023]. Search by taxonomy of Schinus terebinthifolia Raddi [online]. Available from: http://www.neotroptree.info/data/speciesearch
    » http://www.neotroptree.info/data/speciesearch
  • NEVES, E.J.M., SANTOS, A.M., GOMES, J.B.V., RUAS, F.G. and VENTURA, J.A., 2016. Cultivo da aroeira-vermelha (Schinus terebinthifolius Raddi) para produção de pimenta rosa. Colombo: Embrapa Florestas, 24 p. Documentos, no. 294.
  • NOCCHI, S.R., FERREIRA, L., CASTRO-HOSHINO, L.V., TRUITI, M.C.T., NATALI, M.R.M., MELLO, J.C.P., BAESSO, M.L., DIAS FILHO, B.P., NAKAMURA, C.V. and UEDA-NAKAMURA, T., 2022. Development and evaluation of topical formulations that contain hydroethanolic extract from Schinus terebinthifolia against HSV-1 infection. Brazilian Journal of Pharmaceutical Sciences, vol. 58, pp. e18637. https://doi.org/10.1590/s2175-97902020000318637
    » https://doi.org/10.1590/s2175-97902020000318637
  • NORBERG, A., ABREGO, N., BLANCHET, F.G., ADLER, F.R., ANDERSON, B.J., ANTTILA, J., ARAÚJO, M.B., DALLAS, T., DUNSON, D., ELITH, J., FOSTER, S.D., FOX, R., FRANKLIN, J., GODSOE, W., GUISAN, A., O’HARA, B., ILL, N.A., HOLT, R.D., HUI, F.K.C., HUSBY, M., KÅLÅS, J.A., LEHIKOINEN, A., LUOTO, M., MOD, H.K., NEWELL, G., RENNER, I., ROSLIN, T. and SOININEN, J., 2019. A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecological Monographs, vol. 89, no. 3, e01370. http://doi.org/10.1002/ecm.1370
    » http://doi.org/10.1002/ecm.1370
  • PILATTI, D.M., FORTES, A.M.T., JORGE, T.C.M. and BOIAGO, N.P., 2019. Comparison of the phytochemical profiles of five native plant species in two different forest formations. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 79, no. 2, pp. 233-242. http://doi.org/10.1590/1519-6984.179526 PMid:29924133.
    » http://doi.org/10.1590/1519-6984.179526
  • PIMENTA, M., ANDRADE, A.F.A., FERNANDES, F.H.S., AMBONI, M.P.M., ALMEIDA, R.S., SOARES, A.H.S. B., FALCON, G.B., RAÍCES, D.S.L. and DE MARCO JÚNIOR, P., 2022. One size does not fit all: priority areas for real world problems. Ecological Modelling, vol. 470, pp. 110013. http://doi.org/10.1016/j.ecolmodel.2022.110013
    » http://doi.org/10.1016/j.ecolmodel.2022.110013
  • RICHARDSON, D.M. and REJMÁNEK, M., 2011. Trees and shrubs as invasive alien species: a global review. Diversity & Distributions, vol. 17, no. 5, pp. 788-809. http://doi.org/10.1111/j.1472-4642.2011.00782.x
    » http://doi.org/10.1111/j.1472-4642.2011.00782.x
  • RONCHI, H.S., COUTINHO, E.T. and BONFIM, F.P.G., 2022. Espécies alimentícias e medicinais nativas: produtos florestais não madeireiros e potencial de exploração sustentável. Ciência Florestal, vol. 32, no. 3, pp. 1149-1164. http://doi.org/10.5902/1980509834747
    » http://doi.org/10.5902/1980509834747
  • ROY, H.E., PAUCHARD, A., STOETT, P., RENARD TRUONG, T., BACHER, S., GALIL, B.S., HULME, P.E., IKEDA, T., SANKARAN, K.V., MCGEOCH, M.A., MEYERSON, L.A., NUÑEZ, M.A., ORDONEZ, A., RAHLAO, S.J., SCHWINDT, E., SEEBENS, H., SHEPPARD, A.W. and VANDVIK, V., 2023. IPBES invasive alien species assessment: summary for policymakers. Bonn: IPBES. http://doi.org/10.5281/zenodo.7430692
    » http://doi.org/10.5281/zenodo.7430692
  • SANTOS, C.C., TORRACA, D.S.M., SILVERIO, J.M. and SCALON, S., 2023. Does silicon and salicylic acid contribute in the morphophysiology of Schinus terebinthifolia seedlings under flooding? Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 83, e270935. http://doi.org/10.1590/1519-6984.270935 PMid:37075431.
    » http://doi.org/10.1590/1519-6984.270935
  • SANTOS, E.B., DANTAS, G.S., SANTOS, H.B., DINIZ, M.F.F.M. and SAMPAIO, F.C., 2009. Etnobotanical studies of medicinal plants for oral conditions in the municipality of João Pessoa, Brazil. Brazilian Journal of Pharmacognosy, vol. 19, no. 1B, pp. 321-324. http://doi.org/10.1590/S0102-695X2009000200024
    » http://doi.org/10.1590/S0102-695X2009000200024
  • SEEBENS, H., BACHER, S., BLACKBURN, T.M., CAPINHA, C., DAWSON, W., DULLINGER, S., GENOVESI, P., HULME, P.E., KLEUNEN, M.V., KÜHN, I., JESCHKE, J.M., LENZNER, B., LIEBHOLD, A.M., PATTISON, Z., PERG, J., PYŠEK, P., WINTER, M. and ESSL, F., 2021. Projecting the continental accumulation of alien species through to 2050. Global Change Biology, vol. 27, no. 5, pp. 970-982. http://doi.org/10.1111/gcb.15333 PMid:33000893.
    » http://doi.org/10.1111/gcb.15333
  • SHACKLETON, R.T., LARSON, B.M.H., NOVOA, A., RICHARDSON, D.M. and KULL, C.A., 2019. The human and social dimensions of invasion science and management. Journal of Environmental Management, vol. 229, pp. 1-9. http://doi.org/10.1016/j.jenvman.2018.08.041 PMid:30172420.
    » http://doi.org/10.1016/j.jenvman.2018.08.041
  • SOBERÓN, J. and PETERSON, A.T., 2005. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics, vol. 2, no. 0, pp. 1-10. http://doi.org/10.17161/bi.v2i0.4
    » http://doi.org/10.17161/bi.v2i0.4
  • THUILLER, W., GUÉGUEN, M., RENAUD, J., KARGER, D.N. and ZIMMERMANN, N.E., 2019. Uncertainty in ensembles of global biodiversity scenarios. Nature Communications, vol. 10, no. 1, pp. 1446. http://doi.org/10.1038/s41467-019-09519-w PMid:30926936.
    » http://doi.org/10.1038/s41467-019-09519-w
  • VELAZCO, S.J.E., VILLALOBOS, F., GALVÃO, F. and DE MARCO JÚNIOR, P., 2019. A dark scenario for Cerrado plant species: effects of future climate, land use and protected areas ineffectiveness. Diversity & Distributions, vol. 25, no. 4, pp. 660-673. http://doi.org/10.1111/ddi.12886
    » http://doi.org/10.1111/ddi.12886
  • WANG, C.J., WAN, J.Z., QU, H. and ZHANG, Z.X., 2017. Modelling plant invasion pathways in protected areas under climate change: implication for invasion management. Web Ecology, vol. 17, no. 2, pp. 69-77. http://doi.org/10.5194/we-17-69-2017
    » http://doi.org/10.5194/we-17-69-2017
  • WORLDCLIM [online], 2023 [viewed 22 October 2023]. Available from: www.worldclim.org
    » www.worldclim.org

Publication Dates

  • Publication in this collection
    24 June 2024
  • Date of issue
    2024

History

  • Received
    22 Oct 2023
  • Accepted
    01 May 2024
Instituto Internacional de Ecologia R. Bento Carlos, 750, 13560-660 São Carlos SP - Brasil, Tel. e Fax: (55 16) 3362-5400 - São Carlos - SP - Brazil
E-mail: bjb@bjb.com.br