ISSN 1519-6984 (Print) ISSN 1678-4375 (Online)

Erratum

In the article "Polyploidy as a chromosomal component of stochastic noise: variable scalar (λ) multiples of the diploid (2n) chromosome complement in the invertebrate species *Girardia schubarti* from Brazil", DOI http://dx.doi. org//10.1590/1519-6984.20615, published in Brazilian Journal of Biology, Braz. J. Biol. vol.77 no.4, pp, 745-751:

Where it reads:

Where a specimen is dominated by polyploidy at numerically rational multiples (e.g. 3n, 4n, 8n) total plate count will be the denominator in calculating overall polyploid proportions so that $\Sigma_{\text{[total plate count]}} = 2\text{n} + 3\text{n} + 4\text{n} + \dots$), when 7 plates at 2n=8, 15 plates at 3n=12, 41 plates at 4n=16, 9 plates at 8n=32; $\Sigma_{\text{[total plate count]}} = 7+15+41+9=72$. Any plate count that is a geometric scalar multiple of the polyploid dominant (e.g. 4n=16, 8n=32) is counted with/and as a component of the predominant polyploid count (e.g. 7 plates at 2n=8, 41 plates at 4n=16, 9 plates at 8n=32). The predominant polyploid plate count = 41 at 4n=16 $\Sigma_{\text{[predominant polyploidy plate count]}} = 7+41+9=57$. Use this sum to calculate the percentage that is the dominant polyploid component of the specimen (e.g. 57/72=0.792). Multiply that percentage by the haploid (i.e. n=4) of the specimen (e.g. 0.792×n=4=3.17). Add this result to the highest irrationally numerical scalar multiple of 2 n (e.g. 3n plus any of its rational multiples) within that specimen: $\Sigma_{\text{[predominant polyploidy plate count]}} = 41$ (at 4n=16)+9(at 8n=32)+7 (at 2n=8) =57/72=0.792 x [n=4] =3.17 + [3n=12] = 15.17=PV

It should read:

Where a specimen is dominated by polyploidy at numerically rational multiples (e.g. 3n, 4n, 8n) total plate count will be the denominator in calculating overall polyploid proportions so that $\Sigma_{\text{[total plate count]}} = 2n + 3n + 4n + \dots$), when 7 plates at 2n=8, 15 plates at 3n=12, 41 plates at 4n=16, 9 plates at 8n=32; $\Sigma_{\text{[total plate count]}} = 7 + 15 + 41 + 9 = 72$. Any plate count that is a geometric scalar multiple of the 2n polyploid dominant (e.g. 4n=16, 8n=32) is counted with/and as a component of the predominant polyploid count (e.g. 7 plates at 2n=8, 41 plates at 4n=16, 9 plates at 8n=32). The predominant polyploid plate count = 41 at 4n=16 $\Sigma_{\text{[predominant polyploidy plate count]}} = 7 + 41 + 9 = 57$. Use this sum to calculate the percentage that is the dominant polyploid component of the specimen (e.g. 57/72=0.792). Multiply that percentage by the haploid (i.e. n=4) of the specimen (e.g. 0.792×n=4=3.17). Add this result to the highest irrationally numerical scalar multiple of 2 n (e.g. 3n plus any of its rational multiples) within that specimen: $\Sigma_{\text{[predominant polyploidy plate count]}} = 41$ (at 4n=16)+9(at 8n=32)+7 (at 2n=8) =57/72=0.792 x [n=4] =3.17 + [3n=12]= 15.17=PV. Wherever the dominant (rational multiple) polyploid percentage is $\ge 90\%$, the PV becomes that dominant rational polyploid scaler (e.g., 4n plate count = 9, 8n plate count = 1, dominant polyploid percentage is $\ge 90\%$, PV = 16.00).

Where it reads:

Table 1. Regions furnishing specimens for this investigation and their altitudes, ploidal constitution and ploidal value (PV).

Region	Altitude (m)	Ploidal Constitution	(λ)n-value	Number of specimens	PV
Cachoeirinha	23	Tetraploid	4n=16	3	16.00
Camaquã	39	Tetraploid	4n=16	1	16.00
Salvador do Sul	113	Diploid	2n=8	9	8.00
		Triploid	3n=12	2	12.00
		Tetraploid	4n=16	2	16.00
		SS-1 Mosaic	*	8	8.44
					8.44
					8.80
					9.90
					11.458
					15.112
					15.608
					15.630

^{*}Karyotypic mosaics (SS-1 and SS-2) presented 2n, 3n, 4n, 5n, 6n or 8n ploidal multiples in varying proportions.

Table 1. Continued...

Region	Altitude (m)	Ploidal Constitution	(λ)n-value	Number of specimens	PV
		SS – 2 Mosaic	*	15	8.485
					8.50
					8.667
					8.769
					8.883
					9.22
					9.22
					9.33
					9.33
					9.50
					9.67
					10.03
					11.20
					11.33
					18.857
				n=40	

^{*}Karyotypic mosaics (SS-1 and SS-2) presented 2n, 3n, 4n, 5n, 6n or 8n ploidal multiples in varying proportions.

It should read:

Table 1. Region, distribution, ploidal value (PV), regional altitude of origin for the 40 specimens of *Girardia schubarti*.

Region	Altitude (m)	Ploidal Constitution	(λ)n-value	Number of specimens	PV
Cachoeirinha	23	Tetraploid	4n=16	3	16.00
Camaquã	39	Tetraploid	4n=16	1	16.00
Salvador do Sul	113	Diploid	2n=8	9	8.00
		Triploid	3n=12	2	12.00
		Tetraploid	4n=16	2	16.00
		SS-1 Mosaic	*	8	8.44
					8.50
					8.67
					8.97
					11.41
					15.28
					15.608
					15.32
		SS – 2 Mosaic	*	15	8.485
					8.50
					8.667
					8.769
					8.883
					9.11
					9.22
					9.33
					9.33
					9.50
					9.667
					9.87
					11.20
					11.33
					18.857
				n=40	

^{*}Karyotypic mosaics (SS-1 and SS-2) presented 2n, 3n, 4n, 5n, 6n or 8n ploidal multiples in varying proportions.