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1. Introduction

Worldwide, cardiovascular disease (CVD) is the number 
one cause of death and premature death (Kivimäki and 
Steptoe, 2018; Kovacic  et  al., 2019; Silva  et  al., 2015; 
Singh et al., 2020; Yang et al., 2021). A chronic inflammatory 
lipid-depositing disease causes peripheral artery disease, 
coronary artery disease, and myocardial infarction (Gao and 
Liu 2017). A dysfunction of vessel endothelium can initiate 
plaques and lead to atherosclerosis (Dotta et al., 2015; 
Rajendran et al., 2013). Oxidative stress and inflammatory 
reactions are important risk factors for atherosclerosis 
progression (Steven  et  al., 2019). Macrophages smooth 
muscle cells, and endothelial cells also apoptosis 
(Rajendran  et  al., 2021b). Stresses like Ox-LDL activate 
several inflammatory pathways, including NF-кB and 
mMAPK. NF-кB is normally inactivated by endogenous 

inhibitor IкBα, which is present in the cytoplasm 
(Steven et al., 2019). LPS, however, phosphorylates IкBα, 
which leads to IκBα degradation. IкBα degradation breaks up 
the complex between IкBα and NF-кB, which leads to NF-кB 
being translocated into the nucleus, which contributes to 
the expression of mediators that cause inflammation, like 
NO,IL-1β and IL-6. (Haybar et al., 2019) MAPKs are involved 
in the inflammatory response through activating ERK1/2 
and p38 and which lead to signal transduction from the 
surface of the cell to the nucleus for pro-inflammatory 
mediators to be expressed. Therefore, NF-кB and MAPKs 
signaling have been considered potential targets for 
anti‑inflammatory drugs.

Atherosclerosis is treated with a variety of chemical 
drugs, but some of them cause serious side effects 
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treated with 15 µmol (EC50) of KNL co-treated with Ox-
LDL was added. We collected the cell lysate after 24 hours.

2.3. MTT assay

HUVECs were cultured at 37°C with 10% FBS in DMEM. 
After 24 hours, HUVECs were treated with Ox-LDL at the 
indicated concentrations. The MTT assay (Sigma, MO 
USA) was used to measure the proliferation of the cells 
(Deng et al., 2021).

2.4. Nitric oxide formation

By Griess assay, we tested KNL’s NO production 
inhibitory activity. HUVECs cells (1 × 105 cells) were 
pretreated with KNL for 6 h and co-treated with Ox-LDL 
(100 *g/ml) for 18 h. Then, we mixed the supernatants 
with Griess reagent and let it sit for 15 minutes at room 
temperature. Using a UV/Visible spectrophotometer, we 
measured the absorbance at 540 nm after the reaction 
(Yang et al., 2018).

2.5. ROS accumulation measurements

DCFH2-DA fluorescence dye was used to amount of 
intracellular ROS accumulation (Ismail et al., 2021). We 
seeded 1 X 107 cells/mL in a 6-well plate, then treated 
with SPN (for 2 h) followed by DOX treatment. Afterward, 
DCFH2-DA was supplementary to the culture medium for 30 
min at 37°C. Using fluorescence microscopy, we examined 
the dichlorofluorescein (DCF) fluorescence intensity inside 
cells. By comparing the fluorescence intensity of treated 
cells and vehicle-treated cells, we measured ROS levels 
(Rajendran et al., 2021a).

2.6. Cytokine measurements

HUVECs were cultured in a 12-well plate with 
approximately 6.5 X 105 cells/well to measure cytokines, 
levels in the culture medium. We measured KNL protective 
effect on Ox-LDL-stimulated cells after pretreatment with 
KNL using ELISA (0-50 µmol, 2 h) and Ox-LDL treatment 
(100 µg/ml, 72 h). IL-6, IL-1β, TNF-α, were quantified using 
their respective ELISA kits (Yang et al., 2020).

2.7. Western blotting

Post-treatment, we harvested the cells and used cold PBS 
to wash them. We then prepared nuclear, cytoplasmic, and 
total extracts in the aforementioned manner. For detecting 
the status of the protein, we used a Bio-Rad protein assay 
in each sample, with bovine serum albumin (BSA) as the 
reference standard. To obtain protein (50 μg) in equal 
amounts, we used SDS-PAGE (8–15%) and transferred 
the proteins to nitrocellulose membranes overnight. We 
blocked the membranes using 5% skimmed milk at 3 °C for 
30 min and then incubated them for 2 h with the indicated 
primary antibodies (1:1000 dilution). Subsequently, a 
horseradish-peroxidase-conjugated goat anti-mouse or 
anti-rabbit secondary antibody (1:5000 dilution) was 
incubated using the nitrocellulose membranes for 1 h. 
Samples were scanned with a LI-COR 3600-00-C-Digit 
Blot Scanner (AbuZahra et al., 2021).

(Nakhlband  et  al., 2018). Therefore, understanding 
endothelial dysfunction is important for developing 
effective therapeutic strategies to deal with atherosclerosis. 
Herba Siegesbeckiae, a historical tropical plant, produces 
a natural diterpene called Kirenol (KNL) (Alzahrani et al., 
2021). In China, especially, it’s used for treating arthritis, 
malaria, hypertension, and snakebites (Ibrahim  et  al., 
2021a). Aside from inhibiting pro-inflammatory cytokines, 
kirenol activates annexin-1, IL-2, BMP, and Wnt (Liu et al., 
2020). Kirenol’s administration lowered IFN-γ and IL-17A 
serum expressions, as well as the ratio of Th1 and Th17 
cells in draining lymph nodes. In kirenol-treated EAE mice, 
lymphocyte priming was reduced and the apoptosis of 
myelin oligodendrocyte glycoprotein (MOG)-activated 
CD41T cells was increased. Based on the additional in vitro 
investigations by Xiao et al (Xiao et al., 2015). According 
to Rajendran et al.,, pretreatment with kirenol (25 µmoL) 
significantly improved the cell survival of human umbilical 
vein endothelial cells (HUVECs), whereas DNA damage and 
the formation of reactive oxygen species (ROS) caused by 
benzo(a)pyrene (B(a)P) was inhibited. Kirenol′s potential 
as an antioxidant is directly associated with the increased 
expression of an antioxidant gene and the nuclear 
translocation activation of Nrf2, even in the absence of B(a)
P, a ubiquitous environmental mutagen. Furthermore, this 
study established that Nrf2 translocation is mediated by 
the phosphatidylinositol 3-kinase (PI3K)/protein kinase B 
(AKT) signalling pathways as validated by the activation of 
It also stimulates LRP-5 and β-catenin mRNA expression, 
and inhibits glycogen synthase kinase 3 beta (GSK3β)-
phosphorylation by β-catenin (Ibrahim  et  al., 2021a). 
This makes kirenol anti-inflammatory, antiadipogenic, 
immunoregulatory, antioxidant, and antiarthritic. 
According to a systematic literature review, KNL boosts 
inflammation while reducing oxidative stress and reducing 
the risk of heart disease. Additionally, kirenol potentially 
ameliorates lung injury. Overall, despite the fact that the 
anti-inflammatory mechanism and underlying targets 
are unclear, kirenol′s favourable effects on LPS-induced 
inflammation make it an important lead molecule in 
future drug development and research (Nasir et al., 2022).

2. Materials and Methods

2.1. Reagents

Cell activity was assessed using a MTT assay kit 
(Promega, Madison, WI, USA). Kirenol (Cas#52659-56-0) 
were purchased from Sigma-Aldrich (St. Louis, MO, USA). 
2′7′-dichlorodihydrofluorescein diacetate (DCFH2-DA; CAS 
4091-99-0).Ox-LDL(L34357) pP65, P65, pP38, P38, Nrf2, 
and actin, derived from Invitrogen, Waltham, MA-based 
Thermo Fisher Scientific, Inc.

2.2. Cell culture

HUVECs were collected from the American Type Culture 
Collection (ATCC, Manassas, VA, USA). In Dulbecco’s 
modified essential medium (DMEM, ThermoFisher 
Scientific, Waltham, MA, USA), we cultured HUVECs 
endothelium from the ATCC (VA, USA). HUVECs cells were 



Brazilian Journal of Biology, 2024, vol. 84, e259421 3/7

Effect of kirenol on vascular inflammation

2.8. Statistics

This study analyzed the data using an analysis of variance 
(one-way analysis of variance) and compared the controls 
using Tukey’s post-hoc test. The results were considered 
significant at p<0.05.

3. Results

3.1. KNL inhibits Ox-LDL-induced cytotoxicity in HUVECs 
cells

MTT was used to test Ox-LDL and KNL for cytotoxicity. 
Figure 1A shows that treatment of HUVECs with Ox-LDL 
have cytotoxic effects. Figure 1B shows KNL didn’t have 
any cytotoxic effects up to 20 µmol/mL. We used a KNL 
concentration of 15 µm/mL in the experiments. Figure 1C 
shows that OX-LDL (100 µg) significantly reduced cell 
viability up to 42.54%, (p<0.05) but KNL dose-dependently 
protected the OX-LDL-induced induction of cell death. 
It’s clear from these results that KNL is protective against 
OX-LDL when exposed to HUVECs.

3.2. KNL suppresses intracellular ROS

DCFH2-DA fluorescence was used to measure 
intracellular ROS. KNL was pretreated then Ox-LDL was 

stimulated for 24 h. ROS accumulation in these cells was 
measured. KNL pretreatment attenuated Ox-LDL-induced 
ROS accumulation dose-dependently and significantly 
(p<0.05) (Figure 2A).

3.3. KNL affects PGE2 expression in Ox-LDL-induced 
HUVECs.

In Ox-LDL supplemented cells, we tested whether KNL 
inactivates the PGE2. According to spectrophotometer, cells 
pre-treated with KNL had significantly lower levels of PGE2 
level than cells pre-treated with Ox-LDL alone (Figure 2B) 
(p<0.05) KNL seems to suppress PGE2 production that 
causes Ox-LDL-induced inflammation.

3.4. Pro-inflammatory cytokine suppression by KNL

Endothelial cells stimulated with Ox-LDL showed KNL 
anti-inflammatory effects. In this experiment, cells were 
pretreated with KNL for co-treated being stimulated with 
Ox-LDL for 72 h. Figure 3A-C shows that Ox-LDL stimulation 
alone significantly increased the production of TNF-α, IL-
1β and IL-6. In contrast, KNL pre-treatment significantly 
(p<0.05) suppressed the release of pro-inflammatory 
cytokines, indicating a protective role for KNL in Ox-LDL-
induced inflammation.

Figure 1. KNL inhibit viability of HUVECs on Ox-LDL induced toxicity. (A and B) Cell growth effect of Ox-LDL and KNL indicated Dose 
for 24 hr by MTT. (C) Cell growth effect of SPN on DOX induced H9c2 cells. The data using an analysis of variance (one-way analysis 
of variance) and compared the controls using Tukey’s post-hoc test. Data are presented as the mean ± SD. *p<0.05 vs control, #p<0.05 
vs KNL treatment.
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3.5. KNL affects IL-6, iNOS, COX-2 and IL-1β gene 
expression in Ox-LDL-induced HUVECs.

In Ox-LDL supplemented cells, we tested whether KNL 
inactivates the mRNA expression of IL-6, iNOS, COX-2 
and IL-1β. According to qRT-PCR, cells pre-treated with 
KNL had significantly lower levels of mRNA than cells 
pre-treated with Ox-LDL alone (Figure 4 A-D) (p<0.05) 
KNL seems to suppress cytokine production that causes 
Ox-LDL-induced inflammation.

3.6. KNL inhibits the inflammatory reaction via Nfк-B 
pathways in Ox-LDL-induced HUVECs.

KNL may alleviate OX-LDL-induced endothelial 
dysfunction by activating Nrf2 and its downstream target 
genes. Co-treating with KNL didn’t reduce Nrf2 levels, but 
Ox-LDL did (Figure 5). Furthermore. This suggests that 
KNL enriched Nrf2 expression in nuclei. Further evaluate 
expression pP65, pP38 and PERK1/2 by western blot. In 
Figure  4 KNL could inhibits activation of this proteins 
where as KNL treatment significantly(p<0.05) suppressed 
in Ox-LDL induced cells.

4. Discussion

Kirenol (Kr) is an ent-pimarane type diterpenoid that has 
been reported from Siegesbeckiaorientalis, S. pubescens, 
and S. glabrescens (family Asteraceae). These plants have 
been used traditionally for treating various ailments such as 
hypertension, neurasthenia, rheumatoid arthritis, asthma, 

Figure 2. KNL inhibit the NO and PGE2 production in Ox-LDL induced 
endothelial cells cells. (A) Nitric oxide formation control treated cells. 
(B) Effect of PEG2 on Ox-LDL induced HUVECs cells. The data using 
an analysis of variance (one-way analysis of variance) and compared 
the controls using Tukey’s post-hoc test. Data are presented as the 
mean ± SD. *p<0.05 vs control, #p<0.05 vs KNL treatment.

Figure 3. KNL on pro-inflammatory cytokine expression Ox-LDL induced endothelial cells. Expression of TNF-α (A), IL-6 (B) and IL-1β (C) 
by spectrophotometer. The data using an analysis of variance (one-way analysis of variance) and compared the controls using Tukey’s 
post-hoc test. Data are presented as the mean ± SD. *p<0.05 vs control, #p<0.05 vs KNL treatment.
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Figure 4. Efect of KNL on mRNA expression. (A) TNF-α., (B), iNOS (C) COX-2 and (D) Il-1β analyzed by RT-PCR the data using an analysis 
of variance (one-way analysis of variance) and compared the controls using Tukey’s post-hoc test. Data are presented as the mean ± SD. 
*p<0.05 vs control, #p<0.05 vs KNL treatment.

Figure 5. Effect of KNL on Ox-LDL induced inflammation. (A) Activation of Nrf2 by western blot experiment. (B) pP65 expression internal 
control total p65 (C) pP38 expression internal control p38. (D) PERK1/2 analyzed by WB internal control ERK1/2. the data using an 
analysis of variance (one-way analysis of variance) and compared the controls using Tukey’s post-hoc test. Data are presented as the 
mean ± SD. *p<0.05 vs control, #p<0.05 vs KNL treatment.
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controller of ROS, was also restrained by KNL due to 
oxidized LDL in HUVECs.

5. Conclusion

In summary, we have identified KNL as a drug that 
inhibits endothelial inflammation via regulating NF-κB and 
Nrf2 signaling pathways. Our study supports the hypothesis 
that KNL may become an essential pharmacological 
agent by controlling key aspects of HUVECs homeostasis 
in physiologic variation or pathologic states. The anti-
inflammatory effect of KNL has critical implications for its 
clinical application as a preventative or treatment option 
for rheumatoid arthritis, and cardiovascular disease, 
inflammatory diseases and cancer.
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