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ABSTRACT

In order to decide which is the best growth model for the tambaqui Colossoma macropomum Cuvier,
1818, we utilized 249 and 256 length-at-age ring readings in otholiths and scales respectively, for
the same sample of individuals. The Schnute model was utilized. It was concluded that the Von
Bertalanffy model is the most adequate for these data, because it proved highly stable for the data
set, and only slightly sensitive to the initial values of the estimated parameters. The Φ’ values
estimated from five different data sources presented a CV = 4.78%. The numerical discrepancies
between these values are of not much concern due to the high negative correlation between k and
L∞ viz, so that when one of them increases, the  other decreases and the final result in Φ’ remains
nearly unchanged.
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RESUMO

Crescimento do tambaqui Colossoma macropomum (Cuvier)
(Characiformes: Characidae): qual é o melhor modelo?

Para determinar qual o modelo de crescimento que melhor se ajusta ao tambaqui Colossoma
macropomum Cuvier, 1818, foram utilizados 249 e 256 observações de comprimento-idade obtidos
por meio de leituras de anéis em otólitos e em escamas, respectivamente, para os mesmos indivíduos.
Para tanto, foi utilizado o modelo de Schnute, modelo genérico em que vários modelos tradicionais
de crescimento estão incluídos. Com esse procedimento constatou-se que o modelo de von Bertalanffy
realmente é o mais adequado, pois se mostrou altamente estável para o conjunto de dados, sendo pouco
sensível aos valores iniciais adotados para as estimativas dos parâmetros. Os valores de Φ’ estimados
a partir de cinco conjuntos diferentes de dados apresentaram CV = 4.78%, o que não é preocupante,
pois as discrepâncias numéricas entre esses valores são conseqüência da alta correlação negativa entre
k e L∞ , visto que quando um aumenta o outro diminui e o resultado final expresso por Φ’ permanece
praticamente inalterado.

Palavras-chave: Tambaqui, Colossoma macropomum, crescimento de peixes, modelo de Schnute,
Amazônia Central, Brasil.
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INTRODUCTION

Classical fish stock management models rely
heavily upon growth parameter estimates that if biased
or based on inadequate model premises lead to wrong
strategies. Since the classical von Bertalanffy growth
model fits most of the length/weight-at-age data, it
is adopted a priori. In this paper we critically examine
its adequacy for describing the growth of the tambaqui
Colossoma macropomum Cuvier, 1818, in the Central
Amazon basin based on length-at-age data from
otholiths and scales readings.

The tambaqui is the largest characin of South
America. It may reach more than 1 m in total length
and 45 kg in total weight in a specimen observed
at the Guaporé river, municipality of Costa Mar-
ques (RO), in 1989 by M. Petrere Jr. At present it
is difficult to find individuals above 85 cm (20 kg)
in the fish markets of the Central Amazon (Araú-
jo-Lima & Goulding, 1997).

The favorite habitat of the tambaqui is the white-
water rivers of the basins of the Amazon and Orinoco
rivers. Eventually it migrates from clear, black waters
to feed in flooded forest areas (Goulding, 1979, 1980,
1981; Goulding & Carvalho, 1982; Araújo-Lima &
Goulding, 1997). Juveniles live in restricted flooded
areas for approximately 5 to 6 years. When adults,
in spite of feeding periodically in the flooded forest,
they rarely remain at the varzea lakes when these are
separated in the dry season from the main river (Costa,
1998).

According to Villacorta-Corrêa & Saint-Paul
(1999), the tambaqui reaches sexual maturity by the
time it averages 61 cm SL (standard length) and
attains approximately 5 years of age.

The reproductive period of the species ran-
ges from September to February with total spawning
synchronous with the water level.

The tambaqui presents a unique combination
of molariform teeth, which are adapted for breaking
hard seeds, and numerous prolonged branchial bristles
used for zooplankton retention (Goulding & Carvalho,
1982). Juveniles (TL (total length) < 60 cm) in general
are omnivorous, feeding on fruits, seeds, and
zooplankton (Honda, 1974; Goulding, 1979, 1980;
Goulding & Carvalho, 1982; Villacorta-Corrêa, 1997).
The young can also filter phytoplankton, whereas the
adults feed exclusively upon fruits, such as those of
the palm tree jauarí (Astrocaryum january), and seeds,

e.g., those of the rubber tree seeds (Hevea spruceana,
H. brasiliensis), which makes this fish an important
seed disperser (Araújo-Lima & Goulding, 1997).

At the end of the 70s, in the Manaus fish
market the tambaqui was the most important fish
sold (Petrere, 1978). Merona & Bittencourt (1988)
showed that the catch began to fall in the middle
of the 80s, and the tambaqui is now overfished
(Isaac & Ruffino, 1996).

The main objective of this paper was to test
using the Schnute (1981) generic growth model,
because it is that which better adjusts to age-at-length
data, and then to compare the estimates of the
parameters L∞, k, and t0 with those already obtained
by Costa (1998), Villacorta-Corrêa (1997), Isaac
& Ruffino (1996), and Petrere (1983).

MATERIAL AND METHODS

Data
The complete dataset used in the present work

was extracted from Villacorta-Corrêa (1997) and
Penna (1999) for readings of scales (n = 256) and
otholith rings (n = 249), and measures of standard
length (SL, cm) of a single group of individuals.

We will describe the von Bertalanffy (1938)
and Schnute (1981) models to fulfil as nearly as
possible the aim of this paper.

Models

The von Bertalanffy growth model
Probably, the most used model to describe the

growth curve in fish is that of  von Bertalanffy
(1938). Due to such wide acceptance, its parameters
have been incorporated into several fish stock
assessment models.

The original von Bertalanffy equation is:

)1( )( 0ttk
t eLL −−

∞ −⋅= (1)

where:

t = time;
t0 = nominal age at which the individual fish

presents length zero;
Lt = length at the instant t;
L∞ = asymptotic length (theoretical mean

maximum size that an individual can reach);
k = growth coefficient (describes the speed

at which L∞ is reached).
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The parameters k, L∞, and to can be estimated
through non-linear regression, as will be seen further
on.

A more general way to write the von
Bertalanffy growth curve was given by Schnute
(1981):

pttk
t eYY ]1[ )( 0−⋅−

∞ −⋅= (2)

We may call the von Bertalanffy curve “Pütter
number 1” when p = 1, and “Pütter number 2” when
p = 3. For these p values, the model is referred to
as the specific equation of von Bertalanffy; for other
values of p, the model is called von Bertalanffy
generalized equation (Ricker, 1979).

The Schnute growth model
Because there are several models proposed

in the literature for adjusting growth curves, the
problem is to find the most suitable one. Therefore,
Schnute (1981) developed a generic model in which
the traditional growth models are incorporated as
particular cases. This model has four statistically
stable parameters with biological meaning.

The original equation proposed by Schnute is:
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where:

yt = length or weight of an individual at age t;
t = age;
τ1 = predetermined age of a young individual;
τ2 = predetermined age of an old individual;
γ1 = length or weight of an individual at age τ1;
γ2 = length or weight of an individual at age τ2.

Depending on the values of a and b, the
Schnute generic equation 3 may change. We can cite
3 specific cases:

Case 1: a ?0 and b = 0

( )
( ) 


















−
−⋅





−−

−−

⋅=
12

1

1

2

1
1ln

1

ττ

τ

γ
γ

γ
a

ta

e
e

b
t ey (3a)

Case 2: a = 0 and b ?0
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Case 3: a = 0 and b = 0
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The parameters a and b describe the curve as
being positive, negative, or zero. Parameter a is related
to curve steepness (t–1). Parameter b is dimensionless.
A given combination of a and b indicates in which
regions of Fig. 1 is the dataset, making it possible
to determine which is the most appropriate sub-model.

Fig. 1 presents the eight regions determined
by the particular combination of the pair (a, b). The
solid lines represent the axes a and b. The dashed
line parallel to the a axis corresponds to the fixed
value of b = 1. The diagonal dashed line corresponds
to Equation 4:
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Fig. 2 presents the growth curves related to
the possible Schnute sub-models.

Each one of the curves shown in Fig. 2 are
related to the region of the same number in Fig. 1.

The following are some of the sub-models of
Schnute method:

von Bertalanffy: included in regions (and
respective curves) 1 (a > 0, 0 < b < 1) and 2 (a >
0, b = 1). Region 1 represents the classic situation
in which all parameters are defined, corresponding
to the von Bertalanffy model. The curve has an S
shape and is asymptotic with the limit in γoo (whose
inflection point is located in (τ*, y*), crossing the
abscissa at age τ0). In region 2, the curve is
asymptotic, crosses the axis t, with a non-existent
inflection point.

Pütter number 1: located in region 2 (a >
0, b = 1) when b = 1;

Pütter number 2: located in region 1 (a >
0, b = 1) when b = 1/3 (a > 0, 0 < b < 1).

Other possible sub-models are: Richards,
Gompertz, logistic, linear, quadratic, and exponential.

Table 1 shows all possibilities for each (a,b)
combination related to the 8 regions of Fig. 1.

Applying the Schnute method
To apply Equation 3, initially we should

choose initial values (seeds), with a certain number
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of observations, provided that they are not very
close (for parameters γ1 and γ2 ), and pre-determine
τ1 and τ2. Any current statistical package with a
nonlinear program may simulate the data, using
mean age classes for γ1 and γ2  (bearing in mind
that γ1 > γ2), and whenever possible, the mean age
should belong to the classes with the higher number
of observations. It is important to remember that
the mean ages only serve to predetermine
parameters γ1 and γ2, and are not appropriate for
data simulation. The initial a and b values can be
obtained from the model that seems to be better
adjusted to the data.

One can transform the parameters a and b
of the Schnute model into conventional growth
model parameters in the following way:

p
bka 1, == (5)

The parameters L∞  and t0 depend on the
observation pairs (a, b) for being calculated

(a ?0, b ? 0):
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Fig. 1 — The 8 regions in the plane (a, b) related to the Schnute (1981) sub-models.

TABLE 1
The 8 Schnute sub-models according to the particular combinations of the pair (a, b). Its respective regions are

represented in Fig. 1 (Schnute, 1981).

Pair (a, b) Model Region
a > 0 , b > 0 von Bertalanffy generalized equation 1, 2
a > 0 , b = 1 Pütter n. 1 2

a > 0 , b = 1/3 Pütter n. 2 1
a > 0 , b = 0 Gompertz 8
a > 0 , b < 0 Richards 8
a > 0 , b = –1 Logistic 8

5
4

3 2

1

7

8

a

b

b = 1

6
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Fig. 2 — Set of the 8 growth curves appropriate to the pair (a, b) from each region of Fig. 1 (redrawn from Schnute, 1981).
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(a ? 0, b = 0)
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Independent of a and b:

b
az
−

=
1* (14)

where:

y = theoretical maximum size;
t0 = individual size at time zero;
t* = projection of the curve inflection point in the
abscissa;
y* = projection of the curve inflection point in the
ordinate;
z* = increment rate at the curve inflection point.

Error models
Schnute proposes two error models:

(1) addictive iii yy εσ1ˆ += (15)

(2) multiplicative ieyy ii
εσ 2ˆ ⋅= (16)

where:
ei = random variable (i = 1, 2,..., n) considered

independent and N(0,1);
σ1 = parameter which measures the addictive

standard error (its unit depends on the unit
measurement adopted);

σ2 = dimensionless parameter that measures
the logarithmic standard error.

Their respective minimizing functions are:
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Kimura maximum likelihood test
To test if two growth curves are different, a

test of maximum likelihood developed by Kimura
(1980) can be carried out. The Kimura equations
are as follows:
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where:

SQe + o = sum of the squared residuals of
fitted curve to datasets 1 and 2;

SQe = sum of the squared residuals of the fitted
curve to dataset 1;

SQo = sum of the squared residuals of the fitted
curve to dataset 2;

n = total number of sampled individuals (n =
notholiths + nscales).

For σΩ, eight parameters are calculated and
for σω, four, giving us 4 degrees of freedom. Thus,
Equation 18 follows an approximate χ2 distribution
with 4 degrees of freedom.

F statistics
To test if the growth model indicated by

Equation 3 is the most appropriate for the data, the
following procedure should be followed (Schnute,
1981; Walter, 1997):

– Estimate the parameters γ1, γ2 , a, and b,
as described previously;

– verify the indicated region (Fig. 1) and
estimate the 4 above parameters again, fixing
b at the corresponding value for the region
(Table 1), transforming the generic Schnute
model (MG) in a specific model (M0);

– consider the sum of the squares of the
residuals (SQ) of the two estimates;

– perform the hypothesis test:

HO:M0 is adequate to represent MG;
H1:otherwise.

– To test this hypothesis, the Fisher distri-
bution is used with (4-v, n-4) degrees of
freedom:
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where:

SQ0 = sum of squares of the residuals of the
specific model (MO);

SQG = sum of squares of the residuals of the
generic model (MG);

v = number of parameters to be estimated;
n = number of individuals.

Growth performance index (Ö´)
When fish growth is described by the same

model, we can compare the growth performance
between species or between stocks of the same
species through Φ’, which can be used to characterize
species from a same family. Preliminary analyses
suggest that Φ’ coefficient of variation (CV) for
several stocks of the same species should not exceed
5% (Gayanilo & Pauly, 1997).

The value of Φ’ may be estimated by:

∞+= LK loglog´φ (23)

(according to Pauly & Munro, 1984)

RESULTS

The data were fitted by the generic equation
of Schnute (Equation 3), using several combinations
of the mean values of the datasets as initial values
for γ1 and γ2. For the initial values of (a, b), (0,1) were
used for both, because the von Bertalanffy  equation
is the one initially expected to better adjust to the
data.

In Tables 2 and 3, we have the values of (a,
b), SQ, γ1, and γ2, referent to the data of scales and
otholiths, respectively, calculated by Equation 3 as
well as the estimated values of the parameters k,
L∞  and t0, calculated by Equations (5), (6), and
(7) respectively.

Fig. 3 shows the age-length graph for the scales
data fitted by the Schnute model.

Fig. 4 presents the age-length graph for the
otholith data, also fitted by the Schnute model.

To test if the von Bertalanffy model is the most
appropriate, the parameters are again estimated fixing
the value of b = 1. Equation (22) is used.

SQO (scales) = 888030.62 x SQG (otholiths) =
509719.90

Fscales (1; 252) = 0.1132 x Pscales = 0.737
Fotholits (1; 245) = 0.01895 x Potholiths = 0.89

In other words, M0 for scales as well as for
otholiths is appropriate to represent the generic model
of Schnute. So, the values of L∞ , k, and t0 were
calculated by Equations (5), (6) and (7), using the
new values of a for scales and otholiths.

To test if the curves for otholiths and scales
are different, the Kimura test was applied. Using
Equations (20) and (21), we have:

SQe+o = (1588468.87); SQe = (Table 2);
SQo = (Table 3); notholiths + nscales = 505

Inserting the appropriate values in the Equation
(19), we have:

χ 2(4) = 6.014; p = 0.198

TABLE 2
Values of a, b, SQ, γ1 and γ 2, calculated by Equation (3) using mean standard lengths (cm)

referent to reading rings in scales (t1 e t2); and the values of k, L∞ and t0, calculated by
Equations (5), (6) and (7) respectively.

τ1 τ2 γ1 γ2 a b SQ k (yr–1) L∞ (cm) t0(yr)

1 12 285.36 795.60 0.26 0.75 887620.52 0.26 830.23 –1.28

1 11 285.36 785.38 0.26 0.75 887620.52 0.26 830.23 –1.28

1 9 285.36 755.12 0.26 0.75 887620.52 0.26 830.23 –1.28

1 8 285.36 733.14 0.26 0.75 887620.52 0.26 830.23 –1.28

1 7 285.36 704.86 0.26 0.75 887620.52 0.26 830.23 –1.28

1 6 285.36 668.60 0.26 0.75 887620.52 0.26 830.23 –1.28

1 5 285.36 622.28 0.26 0.75 887620.52 0.26 830.23 –1.28

1 4 285.36 563.44 0.26 0.75 887620.52 0.26 830.23 –1.28
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TABLE 3
Values of a, b, SQ, γ1 e γ2, calculated by Equation (3) using mean standard lengths (cm)

referent to reading rings in otholiths (t1 and t2); and the values of k, L∞ and t0, calculated
by Equations (5), (6) and (7) respectively.

Fig. 3 — Growth curve for the length-at-age data obtained through scale rings, fitted by the Schnute model.

TABLE 4
Estimated values of L∞, k e t0, calculated by Equations (5), (6), and (7) respectively.

τ1 τ2 γ1 γ2 a b SQ k (yr–1) L∞ (cm) t0(yr)

1 13 306.99 871.30 0.13 1.09 509681.58 0.13 1021.95 –1.47

1 11 306.99 827.42 0.13 1.09 509681.58 0.13 1021.95 –1.53

1 10 306.99 800.83 0.13 1.09 509681.58 0.13 1021.95 –1.53

1 9 306.99 770.56 0.13 1.09 509681.58 0.13 1021.95 –1.54

1 8 306.99 736.06 0.13 1.09 509681.58 0.13 1021.96 –1.54

1 7 306.99 696.72 0.13 1.09 509681.58 0.13 1021.96 –1.54

1 6 306.99 651.02 0.13 1.09 509681.58 0.13 1020.33 –1.55

1 5 306.99 600.50 0.13 1.09 509681.58 0.13 1021.96 –1.55

1 4 306.99 541.76 0.13 1.09 509681.58 0.13 1021.97 –1.56

1 3 306.99 474.37 0.13 1.09 509681.58 0.13 1021.97 –1.58

Parameter Scales Otholiths

L∞ (cm) 85.125 100.39

a = k (yr–1) 0.225 0.137
t0 (yr) –0.807 –1.676
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Fig. 4 — Growth curve for the length-at-age data obtained by otholith readings fitted by the Schnute model.

Thus, we conclude that the curves for otholiths
and scales are not statistically different.

DISCUSSION

The Schnute model, used in the present
work, was shown to be highly stable for the dataset,
and only slightly sensitive to the initial values of
the estimated parameters. To test its robustness,
several combinations of γ1, γ2, a, and b were used,
as seen in Tables 1 and 2. It was also possible to
prove that the model is highly stable (Walter, 1997).

In addition, through the method of Schnute
it was possible to verify that the curve that better
adjusts to the age-length data for the tambaqui is the
von Bertalanffy growth equation (a > 0, b > 0). This
is fortunate as Petrere (1983) and Isaac & Ruffino
(1996), when estimating the MSY (maximum sus-
tainable yield) for the tambaqui based on length-
frequency distributions, adopted the Beverton & Holt
(1957) model. This model is based on estimates of
L∞ and k to which it is very sensitive. If we had shown
that the von Bertalanffy growth model was not appro-
priate for the species, a drastic review of the practical
consequences of these two papers would be necessary.

The difference between the values of L∞, k and
t0 for otholiths and scales probably is due to different
results of ring counting in otholiths and scales.

Although widely employed, age determination
in fishes through hard structures presents a series of
difficulties when interpreting annual marks (Beamish,
1979; Carlander, 1990). Otholiths have been cited

by several authors as more reliable for age deter-
mination, although Beamish & Chilton (1977) have
argued that fin rays are more reliable for some fish
species. Scale readings have the reputation of under-
estimating the true age, especially for older specimens
(Campbell & Babaluk, 1979) and, therefore, it is
recommended for young fish with high growth rates.
Tropical fish marks are still considered difficult to
interpret due to false rings, which may be mistaken
for true rings (Casselman, 1983).

In the Table 5, the parameters L∞, k and t0 are
compared to those in the literature.

In our view the differences between our
estimates and those of other authors may be due to:
(1) use of the Equations (6) and (7), instead of the
linearized forms of the von Bertalanffy used in other
research;
(2) Petrere (1983) and Isaac & Ruffino (1996) used
length-frequency methods that are more subjective
than ring readings;
(3) Costa (1998) fixed L∞ = 107.4 cm instead of
estimating this parameter individually and, conse-
quently, estimating  k and t0 as a function of this
L∞  value;
(4) Villacorta-Corrêa (1997) used retrocalculated
lengths instead  the original data.

Although Villacorta-Corrêa (1997) did not
conclude which of the reading methods is more
reliable, we could argue that the estimates of L∞
, k, and t0 for otholiths would be more appropriate,
because L∞ = 100.4 cm is more plausible biolo-
gically than L∞  = 85.12 for scales.
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TABLE 5
Comparison of the estimated growth parameters for the tambaqui. TL = Total Length, SL = Standard Length, FL =

Furcal Length, φ’ = logk+2log L∞.

 Besides, for otholiths the von Bertalanffy
model is more appropriate, because when we fixed
b = 1, its probability of being the most appropriate
model was high.

Table 5 shows the Φ’ values with a CV = 4.78%.
In an analogy with a suggestion of Gayanilo & Pauly
(1997), we could say that the numerical discrepancies
between these values are not of much concern. This
is due to the high correlation between k and L∞: when
one of them increases, the other one decreases, and
the final result in Φ’ is nearly unchanged.

Acknowledgements — This work is a consequence of a
Baccalaureate in Biological Sciences monograph presented by
M. A. H. Penna,  who was advised by M. Petrere Jr. to UNESP
(Rio Claro).We thank INPA, UNESP, and CNPq for partially
financing this research.

REFERENCES

ARAUJO-LIMA, C. & GOULDING, M., 1997, So fruitful a fish.
Ecology, conservation, and aquaculture of the Amazon’s
Tambaqui. Columbia University Press, New York, USA, 191p.

BEAMISH, R. J., 1979, Differences in the age of Pacific hake
(Merlucius productus) using whole otholiths and sections
of otholiths. J. Fish. Res. Board Can., 36: 141-151.

BEAMISH, R. J. & CILTON, D., 1977, Age determination of
lingcod (Ophiodon elongates) using dorsal fin rays and
scales. J. Fish. Res. Board Can., 34: 1305-1313.

BEVERTON, R. J. H. & HOLT, S. J., 1957, On the dynamics
of exploited fish populations. U. K. Min. Agric. Fish., Fish
Invest. (Ser. 2), 19, 533p.

CAMPBELL, J. S. & BABALUK, J. A., 1979, Age determination
of walleye Stizosteidon vitreum (Mitchell), based on the
examination of eight different structures. Can. Fish. Mar.
Serv. Tech. Rep., 849: 23p.

CARLANDER, K. D., 1990, A history of scale age and growth
studies of North American freshwater fishes. In: R.C.
Sommerfelt & G. E. Hall (eds.), Age and growth of fish.
Iowa State University Press, Iowa, pp. 3-14.

CASSELMAN, J. P. M., 1983, Age and growth assessment of
fish from their calcified structures: techniques and tools.
In: L. M. Pulos (ed.), Proceedings of the International
Workshop on Age Determination of Oceanic Pelagic Fishes:
Tunas and Sharks. NOAA Technical Report. National Marine
Fisheries Service.

COSTA, L. R. F., 1998, Subsídios ao Manejo do Tambaqui
(Colossoma macropomum Cuvier,1818) na várzea do Médio
Solimões: pesca, dinâmica de população, estimativa de
densidade e dispersão. MSc. Dissertation, INPA, Manaus, 76p.

GAYANILO JR., F. C. & PAULY, D., 1997, The FAO-ICLARM
stock assessment tools (fisat) user´s Guide. FAO
Computarized Information Series (Fisheries), 7: 124p.

GOULDING, M., 1979, Ecologia da pesca do rio madeira.
CNPq/INPA, Manaus, 172p.

GOULDING, M., 1980, The fishes and the forest: explorations
in Amazonian natural history. University of California Press,
Berkeley, USA, 280p.

GOULDING, M., 1981, Man and fisheries on an Amazon
frontier. The Hague: Dr. W. Junk Publishers. 137p.

GOULDING, M. & CARVALHO, M. L., 1982, Life history and
management of the tambaqui (Colossoma macropomum,
Characidae): An important amazonian food fish. Revista
Brasileira de Zoologia , 1: 107-133.

HONDA, E. M. S., 1974, Contribuição ao conhecimento da
biologia de peixes do Amazonas. II. Alimentação do
tambaqui, Colossoma bidens (Spix). Acta Amazonica, 4:
47-53.

ISAAC, V. J. & RUFFINO, M. L., 1996, Population dynamics
of tambaqui, Colossoma macropomum Cuvier, in the lower
Amazon, Brazil. Fisheries Management and Ecology, 3:
315-333.

KIMURA, D. K., 1980, Likehood methods for the von
Bertalanffy growth curve. Fishery Bulletin, 77(4): 765-776.

MERONA, B. & BITTENCOURT, M. M., 1988, A pesca na
Amazônia através dos desembarques no mercado de Manaus:
resultados preliminares. Memoria Sociedad de Ciencias
Naturales de La Salle , 48: 433-453.

PAULY, D. & MUNRO, J. L., 1984, Once more on the
comparison of growth in fish and invertebrates. ICLARM
Fishbyte, 2(1): 21p.

Autor L∞ (cm) k (yr–1) t0 (yr) φ’
Petrere (1983) 107.3 (TL) 0.23 – 3.423

Isaac & Ruffino (1996) 119.85 (TL) 0.23 – 3.519

Villacorta–Correa (1997) – otholiths 92.316 (SL) 0.16 –1.34 3.135

Costa (1998) – means 107.4 (FL) 0.156 –1.063 3.255

This study– otholiths 100.39 (SL) 0.137 –1.676 3.141

This study – scales 85.125 (SL) 0.225 –0.807 3.212



Braz. J. Biol., 65(1): 129-139, 2005

GROWTH OF THE TAMBAQUI 139

PENNA, M. A. H., 1999, Crescimento do tambaqui Colossoma
macropomum Cuvier, 1818 (Characiformes: Characidae):
qual é o melhor modelo? Baccalaureate in Biology
Monograph, UNESP, Rio Claro (SP), 48p.

PETRERE, M., 1978, Pesca e esforço de pesca no Estado do
Amazonas. II. Locais, aparelhos de captura e estatísticas
de desembarque. Acta Amazônica, 3: 1-54.

PETRERE, M., 1983, Yield per recruit of the tambaqui,
Colossoma macropomum Cuvier, in the Amazonas State,
Brazil. Journal of Fish Biology, 22: 133-144.

RICKER, W. E., 1979, Growth rates and models. In: W. S. Hoan
& D. J. Randall (eds.), Fish physiology, bioenergetics and
growth. Vol. 8. Academic Press, New York.

SCHNUTE, J., 1981, A versatile growth model with statistically
stable parameters. Canadian Journal of Fisheries and
Aquatic Sciences, 38: 1128-1140.

VILLACORTA-CORRÊA, M. A., 1997, Estudo de idade e cres-
cimento do tambaqui Colossoma macropomum (Characiformes:
Characidae) no Amazonas Central, pela análise de marcas
sazonais nas estruturas mineralizadas e microestruturas nos
otólitos. Tese de Doutorado, Instituto Nacional de Pesquisas
da Amazônia, Manaus, Amazonas, 217p.

VILLACORTA-CORRÊA, M. A. & SAINT-PAUL, U., 1999,
Structural index and sexual maturity of tambaqui Colossoma
macropomum (Cuvier, 1818) (Characiformes: Characidae)
in Central Amazon, Brazil. Rev. Bras. Biol., 59: 637-652.

von BERTALANFFY, L., 1938, A quantitative theory of organic
growth. Hum. Biol., 10: 181-213.

WALTER, T., 1997, Curvas de crescimento aplicadas a
organismos aquáticos. Um estudo de caso para Toninha
Pontoporia blainvillei (Cetacea, Pontoporiidae) do Extremo
Sul do Brasil. Baccalaureate in Oceanography Monograph,
FURG, Rio Grande, 101p.


