Acessibilidade / Reportar erro

Brycon hilarii produced in hapas: effects in allometric growth

Brycon hilarii produzido em hapas: efeitos no crescimento alométrico

Abstract

Biometric evaluations are essential to determine the growth characteristics related to the weight and length of fish. This study aimed to determine the growth patterns of juvenile piraputangas (Brycon hilarii) produced in hapas within an excavated pond. The piraputangas were anesthetized and micro-chipped and their biometric characteristics were measured. Subsequently, the fish were distributed in six hapas of eight m3 at the density of 20 fish/hapa, totaling 120 animals. During the experimental period six months, the fish were fed twice (5% of the biomass) a day. Every 30 days, all fish were sampled to measure the biometric characteristics of body weight (g); standard length; total length; head height; head length; body height and body width (cm). The calculations of the weight ratio with the biometric characteristics were determined using allometric equation and estimated by linear regression according to the equation log Y = log a + b log X. All tested relationships were significant by the Student t-test (p < 0.05). Allometric growth was positive for: weight x total length; standard weight x length; weight x head height; weight x head length and weight x body height. The relative condition factor of piraputangas observed in this study was 1.00. The study provided information on the allometric parameters of juvenile Brycon hilarii produced in hapas, and the relative condition factor indicated good growth conditions for piraputangas with positive allometric growth.

Keywords:
condition factor; morphometric relationships; native fish; weight-length; piraputanga

Resumo

As avaliações biométricas são essenciais para determinar as características de crescimento relacionadas ao peso e comprimento dos peixes. Este estudo teve como objetivo determinar os padrões de crescimento de juvenis de piraputangas (Brycon hilarii) produzidas em hapas dentro de um viveiro escavado. As piraputangas foram anestesiadas, microchipadas e suas características biométricas foram mensuradas. Posteriormente, os peixes foram distribuídos em seis hapas de oito m3 na densidade de 20 peixes/ hapa, totalizando 120 animais. Durante o período experimental de seis meses, os peixes foram alimentados duas vezes (5% da biomassa) ao dia. A cada 30 dias todos os peixes foram amostrados para mensurar as características biométricas peso corporal (g); comprimento padrão; comprimento total; altura da cabeça; comprimento da cabeça; altura do corpo e largura do corpo (cm). Os cálculos das relações de peso com as características biométricas foram determinados por meio da equação alométrica e estimados por regressão linear de acordo com o log da equação Y = log a + b log X. Todas as relações testadas foram significativas pelo teste t de Student (p < 0,05). O crescimento alométrico foi positivo para: peso x comprimento total; peso x comprimento padrão; peso x altura da cabeça; peso x comprimento da cabeça e peso x altura do corpo. O fator de condição relativo das piraputangas observado neste estudo foi de 1,00. O estudo forneceu informações sobre os parâmetros alométrico de juvenis de Brycon hilarii produzidas em hapas, e o fator de condição relativo indicou boas condições de crescimento para piraputangas com crescimento alométrico positivo.

Palavras-chave:
fator de condição; relações morfométricas; peixe nativo; peso-comprimento; piraputanga

1. Introduction

Basic knowledge of animal growth is important for its application, as the growth process influences meat production almost directly (Albertini et al., 2013ALBERTINI, T.Z., NASCIMENTO, M.L., TORRES, G.D. and LANNA, D.P.D., 2013. Manipulação da curva de crescimento para otimizar a produção de carne. In: VII Jornada NESPRO, I Simpósio Internacional sobre Sistemas de Produção de Bovinos de Corte. Porto Alegre: NESPRO UFRGS, pp. 100-117. ; Bartz et al., 2018BARTZ, R.L., MOREIRA, G.C., SCHMIDT, C.A.P. and VINCENZI, S.L., 2018. Comparison of two feeding tables used in tilápia cultivation in the West Region of Paraná. Brazilian Journal of Development, vol. 4, pp. 3945-3958.), aiming at greater production in efficiency. The development of a body shape is what characterizes an animal grow and can be measured or compared by morphometric indexes and can be calculated from a set of data (Boussou et al., 2010BOUSSOU, C.K., KONAN, F.K., EDIA, E.O., OUATTARA, M., YVES, K.B., OUATTARA, A. and GOURÈNE, G., 2010. Morphometric analysis of populations of Chromidotilapia guntheri (Sauvage, 1882) (Cichlidae, perciformes) in four coastal rivers of Côte d’Ivoire (West Africa). Pan-American Journal of Aquatic Sciences, vol. 5, no. 3, pp. 387-400.; Kupren et al., 2014KUPREN, K., TRĄBSKA, I., ŻARSKI, D., KREJSZEFF, S., PALIŃSKA-ŻARSKA, K. and KUCHARCZYK, D., 2014. Early development and allometric growth patterns in burbot Lota lota L. Aquaculture International, vol. 22, no. 1, pp. 29-39. http://dx.doi.org/10.1007/s10499-013-9680-3.
http://dx.doi.org/10.1007/s10499-013-968...
).

Morphometric is defined as the study of changes in shape and size, and the relationship between these two variables, and can also be related to several other variables, such as, for example, age and gender through quantitative analysis (Santos et al., 2007SANTOS, V.B., FREITAS, R.T.F., LOGATO, P.V.R., FREATO, T.A., ORFÃO, L.H. and MILLIOTI, L.C., 2007. Rendimento do processamento de linhagens de tilápias (Oreochromis niloticus) em função do peso corporal. Ciência e Agrotecnologia, vol. 31, no. 2, pp. 554-562. http://dx.doi.org/10.1590/S1413-70542007000200041.
http://dx.doi.org/10.1590/S1413-70542007...
; Maciel et al., 2014MACIEL, L.G., SANTOS, J.S. and ARAÙJO, J.A., 2014. Relação das características externas do mandi (Pimelodus blochii) em relação ao seu potencial de produção de filé. Revista AGROTEC, vol. 35, pp. 113-120. ). On the other hand, allometry is defined as the study of variation in the different dimensions of body parts that are closely related to changes in the entire body and aims to explain part of the quantitative differences between animals, considering the weight-to-weight ratio and not the time to reach it (Furusho-Garcia and Perez, 2006FURUSHO-GARCIA, I.F. and PEREZ, J., 2006. Estudo alométrico dos cortes de cordeiros Santa Inês puros e cruza. Revista Brasileira de Zootecnia, vol. 35, no. 4, pp. 1416-1422. http://dx.doi.org/10.1590/S1516-35982006000500022.
http://dx.doi.org/10.1590/S1516-35982006...
; Gomiero et al., 2010GOMIERO, L.M., VILLARES-JUNIOR, G.A. and BRAGA, F.M.S., 2010. Relação peso-comprimento e fator de condição de Oligosarcus hepsetus (Cuvier, 1829) no Parque Estadual da Serra do Mar - Núcleo Santa Virgínia, Mata Atlântica, estado de São Paulo, Brasil. Biota Neotropica, vol. 10, no. 1, pp. 101-105. http://dx.doi.org/10.1590/S1676-06032010000100009.
http://dx.doi.org/10.1590/S1676-06032010...
).

In this context, through biometrics we can measure the growth of aquatic organism in different types of environments, whether they be natural or experimental (Kumar et al., 2012KUMAR, T., CHAKRABORTY, S., JAISWAR, K.A., SANDHYA, K.M. and PANDA, D., 2012. Biometric studies on Johnie opssina (Cuvier, 1830) along Ratnagiri coast of Maharashtra. Indian Journal of Fisheries, vol. 59, no. 1, pp. 7-13.; Varela et al., 2012VARELA, J.L., GALAZ, T., DE-LA-GÁNDARA, F., ORTEGA-GARCÍA, A., MEDINA, A. and RODRIGUEZ-MARIN, E., 2012. Relationship between fork andintestine length in Atlantic bluefin tuna (Thunnus thynnus). Collective Volume of Science Papers, vol. 68, no. 1, pp. 236-239.). Based on these measurements, we can identify the type of growth, habitat conditions, and animal health (Froese, 2006FROESE, R., 2006. Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations. Journal Applied Ichthyology, Kiel, vol. 22, no. 4, pp. 241-253. http://dx.doi.org/10.1111/j.1439-0426.2006.00805.x.
http://dx.doi.org/10.1111/j.1439-0426.20...
). However, the morphometric measurements in fish may vary depending on the characteristics of each species, and influence the body weight and fillet yield (Melo et al., 2013MELO, C.C.V., REIS-NETO, R.V., COSTA, A.C., FREITAS, R.T.F., FREATO, T.A. and SOUZA, U.N., 2013. Direct and indirect effects of measures and reasons morphometric on the body yield of Nile tilapia, Oreochromis niloticus. Acta Scientiarum. Animal Sciences, Maringá, vol. 35, no. 4, pp. 357-363. ).

The logarithmic transformation of Huxley's equation (1932) as Y=aXb allows a description of the growth of different regions and tissues, and the whole organism. The coefficient of allometry b measures the relative speed of growth of “Y” about “X”. This coefficient varies from 2.5 to 3.5, being considered isometric when b=3 and allometric when b ≠ 3. Isometric and allometric relationships based on regression analyses still prevail to estimate body composition in fish and production animals (Dumas et al., 2010DUMAS, A., FRANCE, J. and BUREAU, D., 2010. Modelling growth and body composition in fish nutrition: where have we been and where are we going? Aquaculture Research, vol. 41, no. 2, pp. 161-181. http://dx.doi.org/10.1111/j.1365-2109.2009.02323.x.
http://dx.doi.org/10.1111/j.1365-2109.20...
).

The weight-length relationship of a species provides important data to evaluate fish populations and estimate the pattern of growth and weight (Mahmood et al., 2012MAHMOOD, K., AYUB, Z., MOAZZAM, M. and SIDDIQUI, G., 2012. Length-weight relationship and condition factor of Ilisha melastoma (Clupeiformes: Pristigasteridae) of Pakistan. Pakistan Journal of Zoology, vol. 44, no. 1, pp. 71-77.; Antonetti et al., 2013ANTONETTI, D.A., LEAL, M.E. and SCHULZ, U.H., 2013. Length-weight relationships for 19 fish species from the Jacuí Delta, RS. Brazil. Journal of Applied Ichthyology, vol. 30, pp. 259-260. http://dx.doi.org/10.1111/jai.12351.
http://dx.doi.org/10.1111/jai.12351...
). The empirical relationship between fish length and weight helps to understand the natural history of commercial fish species, aiming at its conservation, and knowledge about climate and environmental changes (Sarkar et al., 2013SARKAR, U.K., KHAN, G.E., DABAS, A., PATHAK, A.K., MIR, J., REBELLO, S.C., PAL, A. and SINGH, S.P., 2013. Length weight relationship and condition factor of selected freshwater fish species found in River Ganga, Gomti and Rapti, India. Journal of Environmental Biology, vol. 34, no. 5, pp. 951-956. PMid:24558811.). Given this relationship, it is possible to estimate the condition factor, considered a quantitative indicator of the degree of health or well-being of the species, guaranteeing population success, since it influences growth, reproduction, and survival (Lê Cren, 1951; Vazzoler, 1996VAZZOLER, A.E.A.M., 1996. Biologia da reprodução de peixes teleósteos: teoria e prática. Maringá: Nupélia, 169 p. ).

The genus Brycon comprises about 40 species, some of which stand out for their great productive potential and good attractiveness for sport fishing (Ceccarelli and Senhorini, 1996CECCARELLI, P.S. and SENHORINI, J.A., 1996. Brycon: viabilização da produção de alevinos. Panorama da Aqüicultura, vol. 6, no. 35, pp. 10-11.; Lima, 2003LIMA, F.C.T., 2003. Subfamily Bryconinae (Characins, tetras). In: R.E. REIS, S.O. KULLANDER and C.J. FERRARIS, eds. Check list of the freshwater fishes of South and Central America. Porto Alegre: Edipucrs, pp. 174-181.). Piraputanga (B. hilarii, Valenciennes, 1850) is widely distributed in main Brazilian River basins such as the Amazon, Paraguay and Parana (Antunes at al., 2010ANTUNES, R.S.P., GOMES, V.N., PRIOLI, S.M.A.P., PRIOLI, R.A., JÚLIO JUNIOR, J.H.F., PRIOLI, L.M., AGOSTINHO, C.S. and PRIOLI, A.J., 2010. Molecular characterization and phylogenetic relationships among species of the genus Brycon (Characiformes: Characidae) from four hydrographic basins in Brazil. Genetics and Molecular Research, vol. 9, no. 2, pp. 674-684. http://dx.doi.org/10.4238/vol9-2gmr759. PMid:20449799.
http://dx.doi.org/10.4238/vol9-2gmr759...
), has great ecological importance (Zaniboni Filho et al., 2006ZANIBONI-FILHO, E., REYNALTE-TATAJE, D. and WEINGARTNER, M., 2006. Potencialidad del género Brycon en la piscicultura brasileña. Revista Colombiana de Ciencias Pecuarias, vol. 19, pp. 233-240.; Froese and Pauly, 2011FROESE, R. and PAULY, D., 2011 [viewed 15 December 2021]. FishBase [online]. Available from: http://www.fishbase.org
http://www.fishbase.org...
). However, little is known about the morphometric, weight-length ratio, and growth pattern of this species.

Allometric growth data is an important tool to develop better management protocols for the production of high-quality juveniles, assisting in the management and welfare of production fish (Getso et al., 2017GETSO, B.U., ABDULLAHI, J.M. and YOLA, I.A., 2017. Length-weight relationship and condition factor of Clarias gariepinus and Oreochromis niloticus of Wudil River, Kano, Nigeria. Agro Science, vol. 16, no. 1, pp. 1-4. http://dx.doi.org/10.4314/as.v16i1.1.
http://dx.doi.org/10.4314/as.v16i1.1...
). Given this, it is possible to understand how animal development can be influenced by various environmental factors, sex and gonadal maturity, health status, populations and variations within species (Froese, 2006FROESE, R., 2006. Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations. Journal Applied Ichthyology, Kiel, vol. 22, no. 4, pp. 241-253. http://dx.doi.org/10.1111/j.1439-0426.2006.00805.x.
http://dx.doi.org/10.1111/j.1439-0426.20...
; Portella et al., 2021PORTELLA, A.C., ARSENTALES, A.D., CAVALLARI, D.E. and SMITH, W.S., 2021. Efeito da sazonalidade na reprodução de peixes Characiformes em um rio Neotropical. Iheringia. Série Zoologia, vol. 111, pp. 1-9. http://dx.doi.org/10.1590/1678-4766e2021012.
http://dx.doi.org/10.1590/1678-4766e2021...
). Characiformes fish, for example, are capable to maintain their body size throughout their life cycle, which is why they tend to show isometric growth (Lizama and Ambrósio, 1999LIZAMA, M.A.P. and AMBRÓSIO, A.M., 1999. Brasil. Revista Brasileira de Zoologia, vol. 16, no. 3, pp. 779-788. http://dx.doi.org/10.1590/S0101-81751999000300015.
http://dx.doi.org/10.1590/S0101-81751999...
; Costa and Nunes, 2019COSTA, I. and NUNES, M.N.S., 2019. Relação peso-comprimento de peixes do rio Tarumã, drenagem do rio Machado, Rondônia, Norte do Brasil. Revista Colombiana de Ciencia Animal Recia, vol. 11, no. 2, pp. 718. http://dx.doi.org/10.24188/recia.v11.n2.2019.718.
http://dx.doi.org/10.24188/recia.v11.n2....
; Urbanski et al., 2023URBANSKI, B.Q., BRAMBILLA, E.M. and NOGUEIRA, M.G., 2023. Length-weight relationship and condition factor for Prochilodus lineatus, an important commercial fish, in contrasting water-quality environments of the middle Tietê River basin, Southeast Brazil. Biota Neotropica, vol. 23, no. 2, e20231467. http://dx.doi.org/10.1590/1676-0611-bn-2023-1467.
http://dx.doi.org/10.1590/1676-0611-bn-2...
)

The allometric growth of fish can be evaluated in different production systems such as nurseries, cages and hapas. Hapas are flexible net tanks, easy to manage and low in cost when compared to conventional net tanks. They are commonly used to allocate tilapia breeders for fingerling production (AIT, 1994ASIAN INSTITUTE OF TECHNOLOGY - AIT, 1994. Partners for development: the promotion of sustainable aquaculture. Bangkok: AIT Aquaculture, 98 p.; Bhujel, 2000BHUJEL, R.C., 2000. A review of strategies for the management of Nile tilapia (Oreochromis niloticus) broodfish in seed production systems, especially hapa-based systems. Aquaculture, vol. 181, no. 1-2, pp. 37-59. http://dx.doi.org/10.1016/S0044-8486(99)00217-3.
http://dx.doi.org/10.1016/S0044-8486(99)...
). It is a great option for using limited resources to produce small quantities of fish species, but with high commercial value. Furthermore, it is environmentally friendly as it releases fewer residual nutrients into the environment (Hasan et al., 2010HASAN, M., AHAMMAD, A.K.S., MUKHLESUR, M. and KHAN, R., 2010. A preliminary investigation into the production of Thai koi (Anabas testudineus) reared in nylon hapas in Bangladesh. Bangladesh Research Publications Journal, vol. 4, no. 1, pp. 15-23.).

That study aimed to determine the allometric growth pattern of body measurements of piraputangas (B. hilarii) cultured in hapas inside an excavated pond.

2. Material and Methods

2.1. Animals and sample condition

Piraputangas juveniles (B. hilarii), weighing 18.35 ± 3.16 g and total length of 11.89 ± 0.63 cm (mean ± SD), were obtained from a commercial fish farm and acclimatized for 30 days in a multifilament hapa (5 mm) of 8 m3 (4 m length x 2 m width x 1 depth) installed in an excavated pond, in the fish farming sector of the State University of Mato Grosso do Sul, Aquidauana Campus. The fish were fed twice daily with a commercial feed containing 360 g kg-1 crude protein, 80 g kg-1 ether extract, 150 g kg-1 mineral matter, and 600 mg kg-1 vitamin C, as specified by the manufacturer.

All procedures involving animals followed the guidelines for experimental procedures in animal research by the Animal Use Ethics Committee (AUEC) of the State University of Mato Grosso do Sul - UEMS, Aquidauana, MS, Brazil (Protocol No. 014/2021).

2.2. Biometric variables

After the acclimatization period of the two weeks, the fish were anesthetized in a eugenol solution (50 mg L-1) (Fernandes et al., 2017FERNANDES, I.M., BASTOS, Y.F., BARRETO, D.S., LOURENÇO, L.S. and PENHA, J.M., 2017. The efficacy of clove oil as an anaesthetic and in euthanasia procedure for small-sized tropical fishes. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 77, no. 3, pp. 444-450. http://dx.doi.org/10.1590/1519-6984.15015. PMid:27683808.
http://dx.doi.org/10.1590/1519-6984.1501...
) to collect morphometric data. Then, each fish received an identification microchip and were randomly distributed in six hapas of 8 m3, at a density of 20 fish/hapa. The hapas were arranged in a 100 m2 excavated pond, each hapa had an extra water intake to help with oxygenation and water renewal. During the experimental period, the fish were twice daily fed with extruded feed containing 36% CP in the first four months, and 32% CP in the following months, at 5% of the biomass. The amount of feed provided was adjusted according to the biometrics performed during production, every 30 days, for seven months.

Biometrics were performed using ichthyometer (total and standard length), calipers for other measurements and semi-analytical digital scale, and the following biometric characteristics were evaluated (Figure 1):

Figure 1
Biometric measurements of juvenile piraputangas Brycon hilarii grown in hapas. standard length (SL), total length (TL), head height (HH), head length (HL), body height (BW) and body width (BW).
  • Body weight (g);

  • Standard length (cm) (SL - from the anterior end of the head to the smallest perimeter of the peduncle - insertion of the caudal fin);

  • Total length (cm) (TL - from the anterior end of the head to the end of the caudal fin);

  • Height of the head (cm) (HH): measurement between the bottom and top of the head;

  • Length of the head (cm) (LH) - between the anterior end of the head and the caudal edge of the operculum);

  • Body height (cm) (BH - measured in front of the 1st ray of the dorsal fin);

  • Body width (cm) (BW - measured in front of the 1st dorsal-fin ray);

Water quality parameters were measured three times a week and were within acceptable levels for fish farming according to Boyd (1990)BOYD, C.E., 1990. Water quality in ponds for aquaculture. Alabama: Auburn University, 482 p.. In the period of the morning, pH (6.48 ± 0.19); dissolved oxygen (5.44 ± 1.13 mg L-1); and temperature (28.70 ± 1.79 °C); and in the afternoon, pH (6.64 ± 0.26); dissolved oxygen (6.19 ± 0.69 mg L-1); and temperature (32.06 ± 1.70 °C).

2.3. Biometric and statistical analysis

Weight calculations about morphometric measurements were determined using Huxley’s (1932) allometricHUXLEY, J.S., 1932. Problems of relative growth. London: Methuen, 577 p. equation, Y = a Xb, where Y is the total weight (g), X is the morphometric characteristic (cm), a is the intersection point related to body shape and b is growth coefficient (Ricker, 1973RICKER, W.E., 1973. Linear regressions in fishery research. Journal Research Board of Canada, vol. 30, pp. 309-334. ). Parameters a and b were estimated by linear regression according to the equation log Y= log a + b log X. The values obtained by the growth coefficient or angular coefficient (b) of the morphometric variables were tested by Student's t- test to assess whether the parameters differ from zero.

The angular coefficient characterizes the type of growth: isometric when b = 3 (the growth rates of X and Y are similar); positive allometric when b > 3, (Y grows proportionally more than X) and negative allometric when b < 3 (growth of Y is less than that of X).

The Fulton condition factor (K) was determined by the formula: K = (W ⁄ Lb), where W and L represent body weight (g) and total length (cm), respectively, and b is the angular coefficient of the regression between the weight ratio -length (Fulton, 1904FULTON, T.W., 1904. The rate of growth of fishes. In: FISHERIES BOARD OF SCOTLAND, ed. 22 Annual Report: Part III. Edinburgh: Neill & Companhy, pp. 141-241.; Vazzoler, 1996VAZZOLER, A.E.A.M., 1996. Biologia da reprodução de peixes teleósteos: teoria e prática. Maringá: Nupélia, 169 p. ). The relative condition factor was determined by Kn = Wt / We, where Wt is the individual total weight of the fish and We is the expected weight (estimated by the equation obtained from the weight-length relationship). When Kn ≥ 1 indicates good growth conditions for the fish, while kn<1 indicates that the fish is in low growth about the average individual with the same growth (Lê Cren, 1951LE CREN, E.D., 1951. The length-weight relationship and seasonal cycle in gonadal weight and condition in the perch, Perca luviatilus. Journal of Animal Ecology, London, vol. 20, no. 2, pp. 201-219. http://dx.doi.org/10.2307/1540.
http://dx.doi.org/10.2307/1540...
).

3. Results and Discussion

The descriptive analysis of the biometric data of juvenile piraputangas B. hilarii, the mean, standard deviation, minimum and maximum values, and coefficient of variation can be observed in Table 1. The data of the variables of total and standard length, head height, head length and body height had a variation of less than or close to 10%, characterizing a small variation.

Table 1
Descriptive analysis, mean, standard deviation (SD), minimum and maximum value and coefficient of variation (CV%) of the biometric variables of juvenile piraputangas Brycon hillarii cultivated in hapas (n=108).

The coefficient of variation (sampling) was higher for fish weight and may be related to several factors, such as hierarchical behavior, but it was expected to be higher for weight. Variations in fish weight and length occur frequently in production systems, due to the existence of larger fish in the batch. Therefore, it is relevant to classify the fish, to make the batch homogeneous and reduce the predominance within the tanks (Aydin et al., 2011AYDIN, I., KÜÇÜK, E., SAHIN, T. and KOLOTOĞLU, L., 2011. The effect of feeding frequency and feeding rate on growth performance of juvenile black sea turbot (Psetta maxima, Linneaus, 1758). Journl of Fissheries Sciences, vol. 5, pp. 35-42. http://dx.doi.org/10.3153/jfscom.2011004.
http://dx.doi.org/10.3153/jfscom.2011004...
; Baloi et al., 2016BALOI, M., CARVALHO, C.V., STERZELECKI, F.C., PASSINI, G. and CERQUEIRA, V.R., 2016. Effects of feeding frequency on growth, feed efficiency and body composition of juveniles Brazilian sardine, Sardinella brasiliensis (Steindacher 1879). Aquaculture Research, vol. 47, no. 2, pp. 554-560. http://dx.doi.org/10.1111/are.12514.
http://dx.doi.org/10.1111/are.12514...
).

Figure 2 shows the weight gain of B. hilarii juveniles as a function of time. Up to 150 days the weight growth was accentuated, however, in the following months the weight growth had a slower development. Overall, the average weight was low over time, even with a stocking density of 2.5 fish/m2, which was adequate for the species. There are no records of the growth of this species in hapas, possibly because this system is not adequate to get better development for the species.

Figure 2
Growth in weight (average) of Brycon hilarii as a function of production time.

Couto et al. (2014)COUTO, F.T., MATEUS, L.A.F., BARROS, L.A., MARTINS, M.V., FABIAN, E.C., MORAIS, M.A.V. and FARIA, A.A., 2014. Desempenho inicial de piraputangas (Brycon hilarii Valenciennes, 1850) Submetidas à diferentes densidades de estocagem em tanques-rede. Revista Eletronica Interdisciplinar, vol. 1, pp. 158-162. evaluated the stocking density of piraputangas in net cages and after 60 days of cultivation, they reached an average weight of 40.40 g, which is higher than the present study, which presented an average weight of 33.45 g. Although the species Brycon hilarii has great potential for animal production, its creation is still very regional and there are reports of producers pointing out that its growth becomes slower from 600 to 700 g. There are few studies on the species performance, and some focus of its ecological role as a seed disperser during migration periods (Reys et al., 2009REYS, P.E., SABINO, J. and GALETTI, M., 2009. Frugivory by the fish Brycon hilarii (Characidae) in western Brazil. Acta Oecologica, vol. 35, no. 1, pp. 136-141. http://dx.doi.org/10.1016/j.actao.2008.09.007.
http://dx.doi.org/10.1016/j.actao.2008.0...
).

Length-weight ratio and allometric condition factor are shown in Figure 3. The standard length-weight ratio was established using the equation y= 0.0089 x 3.1081 (R2) 0.9696. The value of b was greater than 3.0, and shows that the piraputangas have a positive allometric growth. This suggests that the fish's increase weight was greater than the increase of length, and the fish became less elongated and more rounded as they grew (Froese and Pauly, 2011FROESE, R. and PAULY, D., 2011 [viewed 15 December 2021]. FishBase [online]. Available from: http://www.fishbase.org
http://www.fishbase.org...
). This relationship provides important data on fish weight and biomass and can be compared to different populations or species, among other studies (Tavares-Dias et al., 2006TAVARES-DIAS, M., MORAES, F.R. and MARTINS, M.L., 2006. Equação da relação peso comprimento, fator de condição, relação hepato e esplenosomática de 11 teleósteos dulciaqüícolas cultivados no Brasil. In: Anais do V Congreso Iberoamericano Virtual de Acuicultura-CIVA, 2006, Zaragota. Zaragota: Sociedad Española de Acuicultura, pp. 713-720.; Froese, 2006FROESE, R., 2006. Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations. Journal Applied Ichthyology, Kiel, vol. 22, no. 4, pp. 241-253. http://dx.doi.org/10.1111/j.1439-0426.2006.00805.x.
http://dx.doi.org/10.1111/j.1439-0426.20...
). From the scatterplot plot of Figure 3, we can see that some fish are heterogeneous in terms of the range of variation, which is normal in the culture system.

Figure 3
Length-weight scatterplot of Brycon hilarii juveniles produced in hapas for 210 days.

The allometric condition factor indicates the state of well-being or good body condition of the fish, and cannot vary with the length, being correlated with the constant weight-length ratio, expressed by P = aCb (Gomiero et al., 2010GOMIERO, L.M., VILLARES-JUNIOR, G.A. and BRAGA, F.M.S., 2010. Relação peso-comprimento e fator de condição de Oligosarcus hepsetus (Cuvier, 1829) no Parque Estadual da Serra do Mar - Núcleo Santa Virgínia, Mata Atlântica, estado de São Paulo, Brasil. Biota Neotropica, vol. 10, no. 1, pp. 101-105. http://dx.doi.org/10.1590/S1676-06032010000100009.
http://dx.doi.org/10.1590/S1676-06032010...
). According to Seher and Süleyman (2012)SEHER, D. and SÜLEYMAN, Ç., 2012. Condition factors of seven Cyprinid fish species from Çamligöze dam lake on central Anatolia, Turkey. African Journal of Agricultural Research, vol. 7, no. 31, pp. 4460-4464. , the physiological condition of fish is related to the weight and length of the animal, fish with greater weight at a given length are considered healthier. Therefore, information about the condition factor can be fundamental for managing the cultivation system. Given that it is used as an indicator of fish welfare, its value reflects the nutritional and environmental conditions in which the animal develops, providing the producer with relevant information (Araneda et al., 2008ARANEDA, M., PEREZ, E.P. and GASCA-LEYVA, E., 2008. White shrimp Penaeus vannamei culture in freshwater at three densities: condition state based on length and weight. Aquaculture, vol. 283, no. 1-4, pp. 13-18. http://dx.doi.org/10.1016/j.aquaculture.2008.06.030.
http://dx.doi.org/10.1016/j.aquaculture....
; Seher and Suleyman, 2012).

The relative condition factor (Figure 4) of the piraputangas observed in this study was 1.00, indicating that the culture system did not affect the growth of the fish, suggesting a healthy state. These data can be used as a reference for this species, as there are no studies evaluating the condition factor. In matrinxã, (Brycon amazonicus) we can find relative condition factor ranging from 1.12 (Benacon et al., 2015BENACON, M.D.S., DOS SANTOS, S.M., ARAÚJO, R.L., PANTOJA-LIMA, J., ARIDE, P.H.R. and DE OLIVEIRA, A.T., 2015. Body condition indexes of Brycon amazonicus Matrinxã of the Juruá River, Amazonas. Colombian Journal Animal Science, vol. 7, no. 1, pp. 44-49.) to 1.00 from nursery (Tavares-Dias et al., 2008TAVARES-DIAS, M., MARCON, J.L., LEMOS, J.R.G., FIM, J.D.I., AFFONSO, E.G. and ONO, E.A., 2008. Índices de condição corporal em juvenis de Brycon amazonicus (Spix & Agassiz, 1829) e Colossoma macropomum (Cuvier, 1818) na Amazônia. Boletim do Instituto de Pesca, vol. 34, pp. 197-204.).

Figure 4
Individual values of the relative condition factor (Kn) in relation to the weight of Brycon hilarii produced in hapas after 210 days. Default value of Kn=1.0.

The relationship between body weight and morphometric measurements was estimated using a simple linear regression equation and adjusted to the tested model Table 2. All tested correlations were significant using Student's t-test (p<0.05), suggesting that body weight and body length has a dependent relationship with body measurements, just as standard length has a strong relationship with head length and body height. The type of growth was determined from the values obtained for b and was determined as positive allometric growth: weight x total length; standard weight x length; weight x head height; weight x head length and weight height of the body. Negative allometric growth was observed in the relationships between weight x body width, standard length x head length and standard length x body height. Benacon et al. (2015)BENACON, M.D.S., DOS SANTOS, S.M., ARAÚJO, R.L., PANTOJA-LIMA, J., ARIDE, P.H.R. and DE OLIVEIRA, A.T., 2015. Body condition indexes of Brycon amazonicus Matrinxã of the Juruá River, Amazonas. Colombian Journal Animal Science, vol. 7, no. 1, pp. 44-49. observed negative allometric growth (b=1.809) in Brycon amazonicus collected in Lago do Breu - Amazonas.

Table 2
Regression equations for the relationships between morphometric variables of juvenile piraputangas Brycon hilarii produced in hapas during 210 days. Correlation coefficient (r), determination coefficient (R2), coefficient of variation (CV%).

Fish of the genus Brycon have an elongated body and a small head, so the value of b for the standard length x head length and standard length x body height ratios was less than 3, indicating that length development was greater than the development in head and body height. The determination coefficient (R2), ranged from 0.91 to 0.97, and its highest correlation was observed between total weight-length, indicating a constant relationship between the two variables.

All correlation coefficients were positive and above 0.95, which is a strong correlation between the studied variables. The value of the correlation coefficient between body weight and total length was 0.98, higher than that observed by Benacon et al. (2015)BENACON, M.D.S., DOS SANTOS, S.M., ARAÚJO, R.L., PANTOJA-LIMA, J., ARIDE, P.H.R. and DE OLIVEIRA, A.T., 2015. Body condition indexes of Brycon amazonicus Matrinxã of the Juruá River, Amazonas. Colombian Journal Animal Science, vol. 7, no. 1, pp. 44-49. in Brycon amazonicus (0.85) and equal to that found by Tavares-Dias et al. (2006)TAVARES-DIAS, M., MORAES, F.R. and MARTINS, M.L., 2006. Equação da relação peso comprimento, fator de condição, relação hepato e esplenosomática de 11 teleósteos dulciaqüícolas cultivados no Brasil. In: Anais do V Congreso Iberoamericano Virtual de Acuicultura-CIVA, 2006, Zaragota. Zaragota: Sociedad Española de Acuicultura, pp. 713-720. in Brycon orbignyanus (0.92). Correlation coefficients (r) are mathematical models that measure the relationships between variables and what they represent.

There are several studies on the length-weight relationships of different species of fish. Olentino et al. (2021)OLENTINO, D., LUBICH, C.C.F., ROCHA, M.D.P., SANTOS, J.H.N., GOMES, T., BELTRÃO, H., SILVA, J.K. and YAMAMOTO, K.C., 2021. Length-weight relationships of fish from sandy beaches. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 83, e250003. http://dx.doi.org/10.1590/1519-6984.250003. PMid:34669803.
http://dx.doi.org/10.1590/1519-6984.2500...
with 16 species of fish that occur along the lower Rio Negro basin in the Brazilian Amazon. Freitas et al. (2017)FREITAS, T.M.S., SOUZA, J.B.S., PRUDENTE, B.S. and MONTAG, L.F.A., 2017. Length-weight relationship in ten fish species from the Nhamundá River, the Amazon Basin, Brazil. Acta Amazonica, vol. 47, no. 1, pp. 75-78. http://dx.doi.org/10.1590/1809-4392201601272.
http://dx.doi.org/10.1590/1809-439220160...
and Campanha et al. (2019)CAMPANHA, P.M.G.C., MATSUMOTO, A.A., BRAZÃO, M.L., BASILIO, L.M. and MARUYAMA, L.S., 2019. Length-weight relationships and biological aspects for 34 fish species from três irmãos reservoir, lower tietê river Basin, SP - Brazil. Boletim do Instituto de Pesca, vol. 45, no. 3, e458. in studies of native freshwater fish. Therefore, records help to describe the growth patterns of specific species in different habitats and its change, to better understand how each species develops in its environment. There are several factors that can interfere and affect the body composition of fish, such as nutrition, fish size, and environmental parameters (Ali et al., 2001ALI, M., SALAM, A. and IQBAL, F., 2001. Effect of environmental variables on body composition parameters of Channa punctata. Journal of Research (Science), vol. 12, pp. 200-206.; Ebrahimi and Ouraji, 2012EBRAHIMI, I.G. and OURAJI, H., 2012. Growth performance and body composition of kutum fingerlings, Rutilus frisii kutum (Kamenskii, 1901), in response to dietary protein levels. Turkish Journal of Zoology, vol. 36, pp. 551-558. http://dx.doi.org/10.3906/zoo-1008-139.
http://dx.doi.org/10.3906/zoo-1008-139...
). Morphometric measurements such as body length, width and height can determine the slaughter weight and fillet yield of tilapia (Oreochromis niloticus) (Gonçalves et al., 2001GONÇALVES, T.M., ALMEIDA, A.J.L. and OLIVEIRA, H.N., 2001. Avaliação de características de carcaças de tilápias do Nilo (Oreochromis niloticus). In: Anais da 38º Reunião Anual da Sociedade Brasileira de Zootecnia, 2001, Piracicaba. Piracicaba: SBZ, pp. 38. ; Rutten et al., 2005RUTTEN, M.J.M., BOVENHUIS, H. and KOMEN, H., 2005. Genetic parameters for fillet traits and body measurements in tilápia do Nilo (Oreochromis niloticus L.). Aquaculture, vol. 246, no. 1-4, pp. 125-132. http://dx.doi.org/10.1016/j.aquaculture.2005.01.006.
http://dx.doi.org/10.1016/j.aquaculture....
).

4. Conclusion

This study identified the allometric growth pattern of Brycon hilarii juveniles reared in hapas. Allometric growth was positive for five of the eight variables verified and the relative condition factor indicates good fish growth. These data are important for characterizing the growth pattern of piraputangas in this production system.

Acknowledgements

The authors acknowledge Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the doctoral scholarship granted to Oliveira, F.C.

References

  • ALBERTINI, T.Z., NASCIMENTO, M.L., TORRES, G.D. and LANNA, D.P.D., 2013. Manipulação da curva de crescimento para otimizar a produção de carne. In: VII Jornada NESPRO, I Simpósio Internacional sobre Sistemas de Produção de Bovinos de Corte Porto Alegre: NESPRO UFRGS, pp. 100-117.
  • ALI, M., SALAM, A. and IQBAL, F., 2001. Effect of environmental variables on body composition parameters of Channa punctata Journal of Research (Science), vol. 12, pp. 200-206.
  • ANTONETTI, D.A., LEAL, M.E. and SCHULZ, U.H., 2013. Length-weight relationships for 19 fish species from the Jacuí Delta, RS. Brazil. Journal of Applied Ichthyology, vol. 30, pp. 259-260. http://dx.doi.org/10.1111/jai.12351
    » http://dx.doi.org/10.1111/jai.12351
  • ANTUNES, R.S.P., GOMES, V.N., PRIOLI, S.M.A.P., PRIOLI, R.A., JÚLIO JUNIOR, J.H.F., PRIOLI, L.M., AGOSTINHO, C.S. and PRIOLI, A.J., 2010. Molecular characterization and phylogenetic relationships among species of the genus Brycon (Characiformes: Characidae) from four hydrographic basins in Brazil. Genetics and Molecular Research, vol. 9, no. 2, pp. 674-684. http://dx.doi.org/10.4238/vol9-2gmr759 PMid:20449799.
    » http://dx.doi.org/10.4238/vol9-2gmr759
  • ARANEDA, M., PEREZ, E.P. and GASCA-LEYVA, E., 2008. White shrimp Penaeus vannamei culture in freshwater at three densities: condition state based on length and weight. Aquaculture, vol. 283, no. 1-4, pp. 13-18. http://dx.doi.org/10.1016/j.aquaculture.2008.06.030
    » http://dx.doi.org/10.1016/j.aquaculture.2008.06.030
  • ASIAN INSTITUTE OF TECHNOLOGY - AIT, 1994. Partners for development: the promotion of sustainable aquaculture Bangkok: AIT Aquaculture, 98 p.
  • AYDIN, I., KÜÇÜK, E., SAHIN, T. and KOLOTOĞLU, L., 2011. The effect of feeding frequency and feeding rate on growth performance of juvenile black sea turbot (Psetta maxima, Linneaus, 1758). Journl of Fissheries Sciences, vol. 5, pp. 35-42. http://dx.doi.org/10.3153/jfscom.2011004
    » http://dx.doi.org/10.3153/jfscom.2011004
  • BALOI, M., CARVALHO, C.V., STERZELECKI, F.C., PASSINI, G. and CERQUEIRA, V.R., 2016. Effects of feeding frequency on growth, feed efficiency and body composition of juveniles Brazilian sardine, Sardinella brasiliensis (Steindacher 1879). Aquaculture Research, vol. 47, no. 2, pp. 554-560. http://dx.doi.org/10.1111/are.12514
    » http://dx.doi.org/10.1111/are.12514
  • BARTZ, R.L., MOREIRA, G.C., SCHMIDT, C.A.P. and VINCENZI, S.L., 2018. Comparison of two feeding tables used in tilápia cultivation in the West Region of Paraná. Brazilian Journal of Development, vol. 4, pp. 3945-3958.
  • BENACON, M.D.S., DOS SANTOS, S.M., ARAÚJO, R.L., PANTOJA-LIMA, J., ARIDE, P.H.R. and DE OLIVEIRA, A.T., 2015. Body condition indexes of Brycon amazonicus Matrinxã of the Juruá River, Amazonas. Colombian Journal Animal Science, vol. 7, no. 1, pp. 44-49.
  • BHUJEL, R.C., 2000. A review of strategies for the management of Nile tilapia (Oreochromis niloticus) broodfish in seed production systems, especially hapa-based systems. Aquaculture, vol. 181, no. 1-2, pp. 37-59. http://dx.doi.org/10.1016/S0044-8486(99)00217-3
    » http://dx.doi.org/10.1016/S0044-8486(99)00217-3
  • BOUSSOU, C.K., KONAN, F.K., EDIA, E.O., OUATTARA, M., YVES, K.B., OUATTARA, A. and GOURÈNE, G., 2010. Morphometric analysis of populations of Chromidotilapia guntheri (Sauvage, 1882) (Cichlidae, perciformes) in four coastal rivers of Côte d’Ivoire (West Africa). Pan-American Journal of Aquatic Sciences, vol. 5, no. 3, pp. 387-400.
  • BOYD, C.E., 1990. Water quality in ponds for aquaculture Alabama: Auburn University, 482 p.
  • CAMPANHA, P.M.G.C., MATSUMOTO, A.A., BRAZÃO, M.L., BASILIO, L.M. and MARUYAMA, L.S., 2019. Length-weight relationships and biological aspects for 34 fish species from três irmãos reservoir, lower tietê river Basin, SP - Brazil. Boletim do Instituto de Pesca, vol. 45, no. 3, e458.
  • CECCARELLI, P.S. and SENHORINI, J.A., 1996. Brycon: viabilização da produção de alevinos. Panorama da Aqüicultura, vol. 6, no. 35, pp. 10-11.
  • COSTA, I. and NUNES, M.N.S., 2019. Relação peso-comprimento de peixes do rio Tarumã, drenagem do rio Machado, Rondônia, Norte do Brasil. Revista Colombiana de Ciencia Animal Recia, vol. 11, no. 2, pp. 718. http://dx.doi.org/10.24188/recia.v11.n2.2019.718
    » http://dx.doi.org/10.24188/recia.v11.n2.2019.718
  • COUTO, F.T., MATEUS, L.A.F., BARROS, L.A., MARTINS, M.V., FABIAN, E.C., MORAIS, M.A.V. and FARIA, A.A., 2014. Desempenho inicial de piraputangas (Brycon hilarii Valenciennes, 1850) Submetidas à diferentes densidades de estocagem em tanques-rede. Revista Eletronica Interdisciplinar, vol. 1, pp. 158-162.
  • DUMAS, A., FRANCE, J. and BUREAU, D., 2010. Modelling growth and body composition in fish nutrition: where have we been and where are we going? Aquaculture Research, vol. 41, no. 2, pp. 161-181. http://dx.doi.org/10.1111/j.1365-2109.2009.02323.x
    » http://dx.doi.org/10.1111/j.1365-2109.2009.02323.x
  • EBRAHIMI, I.G. and OURAJI, H., 2012. Growth performance and body composition of kutum fingerlings, Rutilus frisii kutum (Kamenskii, 1901), in response to dietary protein levels. Turkish Journal of Zoology, vol. 36, pp. 551-558. http://dx.doi.org/10.3906/zoo-1008-139
    » http://dx.doi.org/10.3906/zoo-1008-139
  • FERNANDES, I.M., BASTOS, Y.F., BARRETO, D.S., LOURENÇO, L.S. and PENHA, J.M., 2017. The efficacy of clove oil as an anaesthetic and in euthanasia procedure for small-sized tropical fishes. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 77, no. 3, pp. 444-450. http://dx.doi.org/10.1590/1519-6984.15015 PMid:27683808.
    » http://dx.doi.org/10.1590/1519-6984.15015
  • FREITAS, T.M.S., SOUZA, J.B.S., PRUDENTE, B.S. and MONTAG, L.F.A., 2017. Length-weight relationship in ten fish species from the Nhamundá River, the Amazon Basin, Brazil. Acta Amazonica, vol. 47, no. 1, pp. 75-78. http://dx.doi.org/10.1590/1809-4392201601272
    » http://dx.doi.org/10.1590/1809-4392201601272
  • FROESE, R. and PAULY, D., 2011 [viewed 15 December 2021]. FishBase [online]. Available from: http://www.fishbase.org
    » http://www.fishbase.org
  • FROESE, R., 2006. Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations. Journal Applied Ichthyology, Kiel, vol. 22, no. 4, pp. 241-253. http://dx.doi.org/10.1111/j.1439-0426.2006.00805.x
    » http://dx.doi.org/10.1111/j.1439-0426.2006.00805.x
  • FULTON, T.W., 1904. The rate of growth of fishes. In: FISHERIES BOARD OF SCOTLAND, ed. 22 Annual Report: Part III. Edinburgh: Neill & Companhy, pp. 141-241.
  • FURUSHO-GARCIA, I.F. and PEREZ, J., 2006. Estudo alométrico dos cortes de cordeiros Santa Inês puros e cruza. Revista Brasileira de Zootecnia, vol. 35, no. 4, pp. 1416-1422. http://dx.doi.org/10.1590/S1516-35982006000500022
    » http://dx.doi.org/10.1590/S1516-35982006000500022
  • GETSO, B.U., ABDULLAHI, J.M. and YOLA, I.A., 2017. Length-weight relationship and condition factor of Clarias gariepinus and Oreochromis niloticus of Wudil River, Kano, Nigeria. Agro Science, vol. 16, no. 1, pp. 1-4. http://dx.doi.org/10.4314/as.v16i1.1
    » http://dx.doi.org/10.4314/as.v16i1.1
  • GOMIERO, L.M., VILLARES-JUNIOR, G.A. and BRAGA, F.M.S., 2010. Relação peso-comprimento e fator de condição de Oligosarcus hepsetus (Cuvier, 1829) no Parque Estadual da Serra do Mar - Núcleo Santa Virgínia, Mata Atlântica, estado de São Paulo, Brasil. Biota Neotropica, vol. 10, no. 1, pp. 101-105. http://dx.doi.org/10.1590/S1676-06032010000100009
    » http://dx.doi.org/10.1590/S1676-06032010000100009
  • GONÇALVES, T.M., ALMEIDA, A.J.L. and OLIVEIRA, H.N., 2001. Avaliação de características de carcaças de tilápias do Nilo (Oreochromis niloticus). In: Anais da 38º Reunião Anual da Sociedade Brasileira de Zootecnia, 2001, Piracicaba. Piracicaba: SBZ, pp. 38.
  • HASAN, M., AHAMMAD, A.K.S., MUKHLESUR, M. and KHAN, R., 2010. A preliminary investigation into the production of Thai koi (Anabas testudineus) reared in nylon hapas in Bangladesh. Bangladesh Research Publications Journal, vol. 4, no. 1, pp. 15-23.
  • HUXLEY, J.S., 1932. Problems of relative growth. London: Methuen, 577 p.
  • KUMAR, T., CHAKRABORTY, S., JAISWAR, K.A., SANDHYA, K.M. and PANDA, D., 2012. Biometric studies on Johnie opssina (Cuvier, 1830) along Ratnagiri coast of Maharashtra. Indian Journal of Fisheries, vol. 59, no. 1, pp. 7-13.
  • KUPREN, K., TRĄBSKA, I., ŻARSKI, D., KREJSZEFF, S., PALIŃSKA-ŻARSKA, K. and KUCHARCZYK, D., 2014. Early development and allometric growth patterns in burbot Lota lota L. Aquaculture International, vol. 22, no. 1, pp. 29-39. http://dx.doi.org/10.1007/s10499-013-9680-3
    » http://dx.doi.org/10.1007/s10499-013-9680-3
  • LE CREN, E.D., 1951. The length-weight relationship and seasonal cycle in gonadal weight and condition in the perch, Perca luviatilus. Journal of Animal Ecology, London, vol. 20, no. 2, pp. 201-219. http://dx.doi.org/10.2307/1540
    » http://dx.doi.org/10.2307/1540
  • LIMA, F.C.T., 2003. Subfamily Bryconinae (Characins, tetras). In: R.E. REIS, S.O. KULLANDER and C.J. FERRARIS, eds. Check list of the freshwater fishes of South and Central America Porto Alegre: Edipucrs, pp. 174-181.
  • LIZAMA, M.A.P. and AMBRÓSIO, A.M., 1999. Brasil. Revista Brasileira de Zoologia, vol. 16, no. 3, pp. 779-788. http://dx.doi.org/10.1590/S0101-81751999000300015
    » http://dx.doi.org/10.1590/S0101-81751999000300015
  • MACIEL, L.G., SANTOS, J.S. and ARAÙJO, J.A., 2014. Relação das características externas do mandi (Pimelodus blochii) em relação ao seu potencial de produção de filé. Revista AGROTEC, vol. 35, pp. 113-120.
  • MAHMOOD, K., AYUB, Z., MOAZZAM, M. and SIDDIQUI, G., 2012. Length-weight relationship and condition factor of Ilisha melastoma (Clupeiformes: Pristigasteridae) of Pakistan. Pakistan Journal of Zoology, vol. 44, no. 1, pp. 71-77.
  • MELO, C.C.V., REIS-NETO, R.V., COSTA, A.C., FREITAS, R.T.F., FREATO, T.A. and SOUZA, U.N., 2013. Direct and indirect effects of measures and reasons morphometric on the body yield of Nile tilapia, Oreochromis niloticus. Acta Scientiarum. Animal Sciences, Maringá, vol. 35, no. 4, pp. 357-363.
  • OLENTINO, D., LUBICH, C.C.F., ROCHA, M.D.P., SANTOS, J.H.N., GOMES, T., BELTRÃO, H., SILVA, J.K. and YAMAMOTO, K.C., 2021. Length-weight relationships of fish from sandy beaches. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 83, e250003. http://dx.doi.org/10.1590/1519-6984.250003 PMid:34669803.
    » http://dx.doi.org/10.1590/1519-6984.250003
  • PORTELLA, A.C., ARSENTALES, A.D., CAVALLARI, D.E. and SMITH, W.S., 2021. Efeito da sazonalidade na reprodução de peixes Characiformes em um rio Neotropical. Iheringia. Série Zoologia, vol. 111, pp. 1-9. http://dx.doi.org/10.1590/1678-4766e2021012
    » http://dx.doi.org/10.1590/1678-4766e2021012
  • REYS, P.E., SABINO, J. and GALETTI, M., 2009. Frugivory by the fish Brycon hilarii (Characidae) in western Brazil. Acta Oecologica, vol. 35, no. 1, pp. 136-141. http://dx.doi.org/10.1016/j.actao.2008.09.007
    » http://dx.doi.org/10.1016/j.actao.2008.09.007
  • RICKER, W.E., 1973. Linear regressions in fishery research. Journal Research Board of Canada, vol. 30, pp. 309-334.
  • RUTTEN, M.J.M., BOVENHUIS, H. and KOMEN, H., 2005. Genetic parameters for fillet traits and body measurements in tilápia do Nilo (Oreochromis niloticus L.). Aquaculture, vol. 246, no. 1-4, pp. 125-132. http://dx.doi.org/10.1016/j.aquaculture.2005.01.006
    » http://dx.doi.org/10.1016/j.aquaculture.2005.01.006
  • SANTOS, V.B., FREITAS, R.T.F., LOGATO, P.V.R., FREATO, T.A., ORFÃO, L.H. and MILLIOTI, L.C., 2007. Rendimento do processamento de linhagens de tilápias (Oreochromis niloticus) em função do peso corporal. Ciência e Agrotecnologia, vol. 31, no. 2, pp. 554-562. http://dx.doi.org/10.1590/S1413-70542007000200041
    » http://dx.doi.org/10.1590/S1413-70542007000200041
  • SARKAR, U.K., KHAN, G.E., DABAS, A., PATHAK, A.K., MIR, J., REBELLO, S.C., PAL, A. and SINGH, S.P., 2013. Length weight relationship and condition factor of selected freshwater fish species found in River Ganga, Gomti and Rapti, India. Journal of Environmental Biology, vol. 34, no. 5, pp. 951-956. PMid:24558811.
  • SEHER, D. and SÜLEYMAN, Ç., 2012. Condition factors of seven Cyprinid fish species from Çamligöze dam lake on central Anatolia, Turkey. African Journal of Agricultural Research, vol. 7, no. 31, pp. 4460-4464.
  • TAVARES-DIAS, M., MARCON, J.L., LEMOS, J.R.G., FIM, J.D.I., AFFONSO, E.G. and ONO, E.A., 2008. Índices de condição corporal em juvenis de Brycon amazonicus (Spix & Agassiz, 1829) e Colossoma macropomum (Cuvier, 1818) na Amazônia. Boletim do Instituto de Pesca, vol. 34, pp. 197-204.
  • TAVARES-DIAS, M., MORAES, F.R. and MARTINS, M.L., 2006. Equação da relação peso comprimento, fator de condição, relação hepato e esplenosomática de 11 teleósteos dulciaqüícolas cultivados no Brasil. In: Anais do V Congreso Iberoamericano Virtual de Acuicultura-CIVA, 2006, Zaragota. Zaragota: Sociedad Española de Acuicultura, pp. 713-720.
  • URBANSKI, B.Q., BRAMBILLA, E.M. and NOGUEIRA, M.G., 2023. Length-weight relationship and condition factor for Prochilodus lineatus, an important commercial fish, in contrasting water-quality environments of the middle Tietê River basin, Southeast Brazil. Biota Neotropica, vol. 23, no. 2, e20231467. http://dx.doi.org/10.1590/1676-0611-bn-2023-1467
    » http://dx.doi.org/10.1590/1676-0611-bn-2023-1467
  • VARELA, J.L., GALAZ, T., DE-LA-GÁNDARA, F., ORTEGA-GARCÍA, A., MEDINA, A. and RODRIGUEZ-MARIN, E., 2012. Relationship between fork andintestine length in Atlantic bluefin tuna (Thunnus thynnus). Collective Volume of Science Papers, vol. 68, no. 1, pp. 236-239.
  • VAZZOLER, A.E.A.M., 1996. Biologia da reprodução de peixes teleósteos: teoria e prática. Maringá: Nupélia, 169 p.
  • ZANIBONI-FILHO, E., REYNALTE-TATAJE, D. and WEINGARTNER, M., 2006. Potencialidad del género Brycon en la piscicultura brasileña. Revista Colombiana de Ciencias Pecuarias, vol. 19, pp. 233-240.

Publication Dates

  • Publication in this collection
    26 Feb 2024
  • Date of issue
    2023

History

  • Received
    01 June 2023
  • Accepted
    23 Nov 2023
Instituto Internacional de Ecologia R. Bento Carlos, 750, 13560-660 São Carlos SP - Brasil, Tel. e Fax: (55 16) 3362-5400 - São Carlos - SP - Brazil
E-mail: bjb@bjb.com.br