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Abstract
We evaluated three mathematical procedures to estimate the parameters of the relationship between weight and length 
for Cichla monoculus: least squares ordinary regression on log-transformed data, non-linear estimation using raw data 
and a mix of multivariate analysis and fuzzy logic. Our goal was to find an alternative approach that considers the 
uncertainties inherent to this biological model. We found that non-linear estimation generated more consistent estimates 
than least squares regression. Our results also indicate that it is possible to find consistent estimates of the parameters 
directly from the centers of mass of each cluster. However, the most important result is the intervals obtained with the 
fuzzy inference system.

Keywords: allometric model, Cichla, fuzzy logic, parameter estimation.

O uso da lógica fuzzy para estimar os parâmetros da  
relação entre peso e comprimento

Resumo
Empregamos três procedimentos matemáticos, regressão com mínimos quadrados ordinários com dados log-transformados, 
estimação não-linear e uma combinação de análise multivariada e lógica fuzzy para estimar os parâmetros da relação 
peso × comprimento para Cichla monoculus. Nosso objetivo foi apresentar uma abordagem alternativa que considere as 
incertezas inerentes ao modelo. Observamos que as estimativas da estimação não-linear foram mais consistentes que as 
obtidas por regressão linear sobre dados log-transformados. Nossos resultados também mostraram que é possível obter 
estimativas dos parâmetros diretamente dos centros de máximos formados dos grupos por uma análise de agrupamento 
k-means. No entanto, os resultados mais importantes foram os intervalos obtidos com o sistema de inferência fuzzy.

Palavras-chave: modelo alométrico, Cichla, logica fuzzy, estimação de parâmetros.

1. Introduction

The square-cube law has a long history in the biological 
sciences (Froese, 2006), and the question of how it should 
be used has been the subject of debate since the beginning 
of the 20th century. Fulton (1904) was the first to find that 
assuming a power of three for the length-weight relationship 
could be incorrect for fish. Later, Keys (1928) and Clark 
(1928) first proposed the modern equation that estimates 
the length-weight relationship, W = aLB, where W is 
the weight, L is the length, and a and b are parameters. 
They  employed least squares ordinary regression to 
estimate these parameters after log-transformation of the 
length and weight data.

Several authors have reiterated the importance of 
the length-weight relationship and interpretation of 

the parameters that define it (Fulton, 1904; Le Cren, 
1951; Venugopalan and Prajneshu, 1998; Froese, 2006). 
Parameter a is called the condition factor and has been 
used to evaluate the relative health of an individual fish, 
i.e., the fish’s well-being.

However, problems were pointed out by Le Cren (1951), 
who proposed the relative condition factor to offset changes 
in form or condition as a result of an increase in length. 
Nevertheless, this approach does not resolve the critical 
question of the variability of this index. As pointed out by 
Le Cren (1951), the differences in the mean conditions of 
two populations can be explained by at least three factors, 
including environmental conditions (e.g., the season of the 
hydrological cycle in large rivers with adjacent floodplains) 
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and the current stage of gonad development. In fact, there is 
a consensus that the condition factor is strongly influenced 
by environmental conditions, including the availability of 
food. In addition, the assumption that the parameter b was 
a constant has been disproven; the problem is that there 
are substantial morphological changes that occur during 
a fish’s ontogeny, which mainly happen during the larval 
stages (Pepin, 1995). However, the criticism in general 
has been leveled at the use of the square-cube law (b = 3) 
in the length-weight relationship (Froese, 2006), which is 
an oversimplification of the problem. As with parameter 
a, the critical question to be addressed for parameter b is 
the variance.

Another key question that few have stressed in the 
literature is the estimation procedure. Venugopalan 
and Prajneshu (1998) pointed out the deficiencies of 
the ordinary least squares procedure when it is used to 
estimate the parameters of the allometric equation and 
explained that fitting the allometric equation with an 
additive error is not equivalent to fitting a linearized model 
after a log‑transformation. However, even though fitting 
nonlinear models should result in more robust estimates 
of parameters a and b, this change in the estimation 
procedure does not account for the inherent variability 
of these parameters.

Recently, Froese et al. (2014) proposed a Bayesian 
hierarchical approach for estimating the length-weight 
relationship and stated that this produces more realistic 
estimates of the uncertainty inherent in this relation. 
For stochastic models, the mean parameters are known a 
posteriori when there is a probability distribution associated 
with the phenomena being studied.

Another potential approach to address the uncertainties 
in the length-weight relationship is fuzzy set theory or 
fuzzy logic (Zadeh, 1965). Using fuzzy logic, intervals 
or fuzzy sets can be built for the parameters, which 
have different degrees of membership. A subject can 
belong to one or more fuzzy sets with different degrees 
of membership in each set. Fuzzy sets thus incorporate 
the uncertainties that are inherent in the data. The use 
of fuzzy sets to represent the parameters defining fish 
population dynamics could help support fishing management 
plans because of the flexibility of this type of set and 
the possibility of using lower limits for these sets as 
a precautionary approach. In this paper we describe a 
procedure that combines multivariate analysis and fuzzy 
logic (Zadeh, 1965) to estimate the parameters of the 
length-weight relationship. The procedure is suited to 
this application because it can handle the variability 
that is inherent in the data measures at an individual 
level. To evaluate the procedure, we used length and 
weight data for tucunaré (Cichla monoculus) caught in 
a large floodplain lake on the left bank of the Amazon 
River. Linear regression using ordinary least squares 
on log‑transformed data and non-linear regression were 
used to compare the results.

1.1. Concepts and definitions of fuzzy set theory
This section presents some essential concepts and 

definitions of fuzzy set theory (Zadeh, 1996; Pedrycz and 
Gomide, 1998; Barros and Bassanezi, 2010).

Def. 1 (Fuzzy Sets): Let U be a universal set that contains 
all the possible elements of concern in each particular context 
or application. A fuzzy subset A of U is characterized by 
a membership function Aφ  that assigns to each element 
x of U a number ( )A xφ  in the interval [0,1]. ( )A xφ  gives 
the degree of membership of x in A. An ordinary subset 
A of U is a fuzzy set for which the membership function 
is the indicator function of A, defined by : {0,1}A Uφ → , 
where (Equation 1):

1 ,  
( )
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Def. 2 (Triangular Fuzzy Number): A triangular 
fuzzy number is a fuzzy subset A ⊂ R characterized by a 
membership function φA: R→ [0,1] defined by (Equation 2):
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where l, m, and n are real numbers.
Thus, definition of l, m, and n is enough to define the 

respective triangular fuzzy number. Hence, we can denote 
the triangular fuzzy number by A~= [l, m, n].

Def. 3 (Trapezoidal Fuzzy Number): A trapezoidal 
fuzzy number is a fuzzy subset A ⊂ R characterized by 
a membership function φA: R→ [0,1] defined as follows 
(Equation 3):
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where l, m, n and r ∈ R with l < m < n < r.
The definition of l, m, n and r is enough to define 

the respective trapezoidal fuzzy number. Hence, we can 
denote the trapezoidal fuzzy number by A = [l; m; n; r].

Def. 4 (Zadeh’s Extension): Let f: R → R be an ordinary 
real function and A be a fuzzy subset of R. Then, the image 
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of the fuzzy set A by the function f is the fuzzy subset B of 
R whose membership function is defined by (Equation 4):

{ }max ( ) ,    {  ;  ( )}
( )

0
A

B
x if x y f x

x
  if  otherwise

 φ = ≠ ϕ
φ = 


 	 (4)

Def. 5 (Support of Fuzzy Set): Let A ⊂ U be a 
fuzzy set of U defined by the membership function 

]1,0[: →UAϕ . The support set of A is the crisp set of U 
defined by (Equation 5):

( ) { }  ; ( ) 0 Axsuppor Ut A xφ= ∈ >  	 (5)

Def. 6 (α-cut): Let A be a fuzzy set A in U defined 
by its membership function φA and α ∈ [0,1]. The α-level 
set of a fuzzy set A, which is denoted by , is defined as 
an ordinary set for which the degree of the membership 
function exceeds the level α (Equation 6):

[ ] { } ; ( )  AA x U xα = ∈ φ ≥ α  	 (6)

1.2. Fuzzy rule-based system
A fuzzy inference system consists of four essential 

parts: an input variables processor (fuzzificator), a 
system of propositional rules such as ‘if’ and ‘then’, an 
inference machine and an output processor (defuzzificator). 
The fuzzificator converts the input variables into fuzzy 
sets associated with the respective universe of speech. 
The system of propositional rules contains all the linguistic 
values suggested by experts, which are the support for 
the rules that will relate the rule antecedents (if) to their 
consequents (then). Conceptually, the fuzzy system is 
intended to collect the experts’ knowledge and convert the 
fuzzy set into a number using the defuzzificator. In this 
study, the rule antecedents were standard length and total 
weight, and each variable was classified into one of six 
linguistic values. One fuzzy set was attributed to each 
linguistic value.

2. Material and Methods

2.1. Dataset
The Cichla monoculus whose data we used were caught 

in the Lago Grande (Amazonas, Brazil), which is located 
on the left bank of the lower stretch of the Rio Solimões. 
This large lake is part of a floodplain characterized by a 
marked annual hydrologic cycle. The fish were caught 
from boats in the Panairzinha harbor, where we collected 
measures of standard length and total weight every month 
between February 2007 and January 2008. C. monoculus 
is an important natural resource in many regions of South 
America because of its natural abundance, sporting nature 
and high-quality flesh (Jepsen et  al., 1999). The genus 
Cichla is widely distributed in the Amazon, Tocantins and 
Orinoco river basins as well as in smaller rivers that drain 
the Guyana Plateau toward the Atlantic Ocean (Kullander 
and Ferreira, 2006).

2.2. Data analysis
The data set was analyzed using three distinct procedures. 

First, we employed linear regression by ordinary least squares 
estimation on the log-transformed weight and length data. 
Then we used the Levenberg-Marquardt iteration algorithm 
to perform a non-linear estimation on the original data. 
We calculated confidence intervals for all of the estimated 
parameters. R software (R CORE TEAM, 2013) was 
used for these analyses. The third approach combined 
multivariate analysis and fuzzy logic. We started with a 
cluster analysis of the dataset of weights and lengths of 
the fish examined to identify similarities in terms of their 
maturity status, as this species has a specific interval for 
its reproductive activity, which occurs between December 
and March (Corrêa, 1998). Our hypothesis was that fish 
with the same maturity status might exhibit similarities 
that could be identified with the metrics.

2.3. Determination of the fuzzy sets a  and b

2.3.1. Fuzzy set b

Using the square-cube law as a starting point, we 
assumed that the parameter b oscillates around a value of 
3. Values of b smaller than 3 are typical for fishes whose 
body growth is dominated by their weight. In contrast, 
values of b higher than 3 are typical for fishes whose length 
dominates their body growth. Le Cren (1951) proposed that 
the possible values of b are between 2.5 and 4.0. However, 
Royce (1972) argued for an interval between 2.0 and 3.5.

The phrase “at around” can be modeled by a triangular 
fuzzy number (Barros and Bassanezi, 2010), such as 
b =  [b1; b2; b3]. Thus, we assumed that b2 equals 3, as 
in the square-cube law, and the values of b1 and b3 were 
estimated as b2 - ε and b2 + ε, respectively, where ε > 0 is 
associated with the variability of the parameter b suggested 
by the expert. In this work we assumed b1 = 2.7 and b3 = 3.3 
(±10% around b2).

2.3.2. Fuzzy set ã
We used the Zadeh extension to estimate the fuzzy set 

a  for each cluster Gj as follows:
Let (Wj, Lj) be the coordinates of the center of the 

cluster that belongs to the group Gj, j ∈ {1,2,3,4,5,6}. 
Let Hj ⊂ R2 be the set composed of the possible ordered 
pairs (b, a) of the allometric parameters such that , where 
Hj is defined by Hj = {(b, a) ∈ R2 | Wj = aLj

b}
The set Hj can be interpreted as a curve in R2 that is 

located in the first quadrant of the Cartesian coordinate 
system.

We used Hj to explicitly define a as a function of b 

since j
b
j

W
a

L
= .

This equation indicates that the parameter a can be 
estimated from an estimated value for b.

Let  with ( ) j
j b

j

W
f b

L
= ; then fj is a function with values 

pertaining to the R set and a graph shape coincident with 
Hj. If b is defined as a fuzzy set b, then (4) and fj can be 
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employed to estimate the set a . Using this procedure, we 
are able to obtain a fuzzy set a j associated with cluster 
Gj, which is the distribution of possible values of the 
parameter a in this cluster.

To construct a fuzzy inference system we used the 
classification provided by the specialist (Table  1) and 
trapezoidal fuzzy numbers. The fuzzy sets were then 
used to determine the linguistic values associated with 
the linguistic variables standard length and total weight. 
Each fuzzy set associated with the corresponding linguistic 
term is a trapezoidal fuzzy number. Based on the experience 
of the experts, the term sets (TS (L) and TS (W)) of the 

linguistic variables (standard length and total weight) 
were built (Table 1).

Using the K-means method, six clusters G1, G2, G3, 
G4, G5 and G6 were identified (Figure 1). This number of 
clusters was chosen using the minimum standard deviation 
within each group as criterion (Table 2). We performed 
group fuzzification to determine which data fitted into each 
group. In this procedure each variable (i.e., weight and 
length) inside each cluster is fuzzified using trapezoidal 
fuzzy numbers. Maximum membership was attributed to 
the interval with the highest frequency of observed data 
in each cluster (Table 3).

Table 1. Linguistic value “labels” and their respective fuzzy sets for Cichla monoculus (Amazon Basin, Brazil).
Standard Length (cm) Total Weight (g)

Label Fuzzy Set TS (L) Label Fuzzy Set TS (W)
Very small (Vsm) [13; 19; 24; 25] Very slight (Vsl) [145; 150; 300; 301]
Small (Sm) [24; 25; 29; 30] Slight (Sl) [300; 301; 575; 576]
Medium (Md) [29; 30; 35; 36] Fairly slight (Fs) [575; 576; 950; 956]
Big (B) [35; 36; 40; 41] Heavy (H) [950; 956; 1400; 1401]
Very big (Vb) [40; 41; 45; 46] Very heavy (Vh) [1400; 1401; 1950; 1951]
Very very big (Vvb) [45; 46; 51; 55] Very very heavy (Vvh) [1950; 1951; 3120; 3125]

Table 2. Coordinates of the center of mass for each cluster identified using the k-means method on Cichla monoculus 
length‑weight data.

Variable Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
Weight (g) 641.98 384.06 1018.61 259.58 802.32 508.06
Standard length (cm) 30.97 26.02 36.03 22.79 33.26 28.65

Figure 1. Clusters of measures identified by the k-means method for Cichla monoculus length-weight data.

Table 3. Fuzzy sets for the variables total weight (φTW) and standard length (φSL) for Cichla monoculus.

Cluster j Standard Length (ϕ j
SL) Total Weight (ϕ j

TW)
1 [27; 29; 32; 34] [500; 555; 715; 800]
2 [22; 25; 27.5; 30] [290; 325; 442; 520]
3 [32; 34.4; 37.2; 50] [800; 912; 1137.5; 3500]
4 [15; 22; 24.4; 26] [120; 199.5; 332; 400]
5 [28; 31.6; 35.2; 38] [600; 715.4; 874.4; 1000]
6 [26; 27.8; 30.2; 33] [380; 455; 591; 640]
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The process by which the IF-THEN rules used in the 
inference system were extracted consisted of determining 
a relationship between the variables standard length and 
total weight and the fuzzy set a j for the group Gj. Because 
of its simplicity, the Mamdani method was used to build 
the fuzzy inference system (Pedrycz and Gomide, 1998). 
The OR expression was modeled by the maximum operator 
and the AND expression and its consequent (then) by the 
minimum operator. First, the fish in each cluster were 
classified according to linguistic values. Then the number 
of elements in the cluster Gj was denoted #Gj. For each k, 
1 # jk G≤ ≤ , there were ( )j jL k G∈ , the kth element of 
cluster Gj. The procedure to classify each fish was:

(i) If Ljk =( ,k k
j jp c ) denotes the kth element of group j, 

then to identify the linguistic term activated, the degree 
of membership of the linguistic terms in each fuzzy set 
is calculated. The fuzzy set with the highest membership 
then serves to indicate which linguistic term is activated.

However, this table generated ambiguous outputs, 
which are rules with the same rule antecedents and different 
consequents. It was therefore decided to follow Wang 
(1997), who suggested using indices as decision criteria 
for tiebreaks. Let (W, L) be a pair of values of weight and 
length for a hypothetical fish associated with a cluster Gj. 
Then the index of adherence is given by (Equation 7):

( , ) min( ( ), ( ))
j

j j
G TW SLI W L W L= φ φ  	 (7)

And the relationship between fuzzy sets ( )
i
T Wφ  and 

( )
i
T SLφ  activated in the ith IF-THEN rule on parameters 

(W, L) can be estimated as (Equation 8):

( ) ( )( , ) min( ( ), ( ))i i
i TS W TS LI W L W L= φ φ  	 (8)

It follows from Equation 7 that the greater this index, 
the greater the degree of membership of the individual in 
group Gj. Here, j

TWφ  and j
SLφ  are the membership functions 

for the total weight and standard length, respectively, in 
group Gj.

Later the weight wi of each rule set for each group Gj 
was defined as 

( , )   
max { ( , ) . ( , )}

j
j

i G iw l G
w I w l I w l

∈
= .

This procedure was used to obtain a final pool of 
rules based on the value of  as criterion. If there were 
two or more rules to define the cluster to which the fish 
belonged, the prevalent rule was that with highest value 
of . The final rules are shown in Table 4, where 0 indicates 
a non-selected rule and 1 a selected rule.

Finally, we employed the inference machine to 
estimate the fuzzy set  for the possible values of a 
exploring a sub‑sample with 5% (n = 60) of the original 
data extracted at random. The defuzzification procedure 
to estimate  was the center of gravity, which exhibits 
steady topological properties of continuity (i.e., small 
changes in the fuzzy set  will have a small effect on the 
estimate ) (Wang, 1997).

Table 4. Selected and non-selected set rules after use of the index of adherence.

Cluster Total Weight Standard Length wj Sel.Vsl Sl Fs H Vh Vvh Vsm Sm Md B Vb Vvb

1
X X 0.8223 0

X X 0.9855 1
X X 0.8385 0

2
X X 0.9538 1
X X 0.5488 0

3

X X 0.8333 1
X X 0.9601 1

X X 0.8766 1
X X 0.9481 0

X X 0.7821 1
X X 0.5102 1

X X 0.0766 1
X X 0.6102 1

4
X X 0.8488 1

X X 0.9265 1
X X 0.3381 1

5
X X 0.8826 0
X X 0.5432 0

6
X X 0.8895 1

X X 0.7957 0
X X 0.9319 1

Vsl – Very slight; Sl – Slight; Fs – Fairly slight; H – Heavy; Vh – Very heavy; Vvh – Very very heavy; Vsm – Very small; Sm – 
Small; Md – Medium; B – Big; Vb – Very big; Vvb – Very very big.



Braz. J. Biol., 2016,  vol. 76, no. 3, pp. 611-618616

Bitar, S.D., Campos, C.P. and Freitas, C.E.C.

616

3. Results

The condition factor estimated using log-transformed 
weight and length data in a linear model was substantially 
different from the estimates obtained with untransformed 
data using a non-linear model (Table 5). This difference 
was of approximately one order of magnitude. In contrast, 
the estimates of the allometric coefficients for these two 
models were quite similar and consistently smaller than 
3, indicating allometric growth (Table 5).

When simulated using the sub-sample of 60 individuals, 
the parameter a showed highest variability for fish with a 
total weight of less than 400 g and was almost monotonic 
for fish with a total weight of between 625 and 900 g 
(Figure 2). After defuzzification, the parameter oscillated 
around a limit value of 0.032, which is quite similar to 

the values obtained by non-linear estimation (Table 5). 
Similarly, a was more stable for fish longer than 34 cm 
(Figure 3). This finding, together with the dynamics of 
this parameter modeled as a function of total weight, 
confirms that the condition factor tends to vary less in 
larger fish.

4. Discussion

Our results indicate that the procedure for estimating 
the parameters of the length-weight relationship based on 
identification of the centers of maximum of the clusters 
in a scatter-plot generated with length and weight data 
series is a good initial approach and yields estimates that 
differ only slightly from those obtained by non-linear 
models (Table 5).

Table 5. Parameters estimated using linear and non-linear models.

Model Parameter Estimate Confidence Interval

Linear a
b

0.2161
2.9082

0.2059 ----- 0.2268
2.8747 ----- 2.9416

Non-linear a
b

0.0349
2.8592

0.0306 ----- 0.0392
2.8232 ----- 2.8952

Figure 2. Parameter a as a function of total weight, showing the variance around the median.

Figure 3. Parameter a as a function of standard length, showing the variance around the median.
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The use of least squares ordinary regression on 
log-transformed data to estimate the parameters of the 
length-weight relationship has been criticized recently 
(Venugopalan and Prajneshu, 1998; Robertis and Williams, 
2008; Packard, 2009; Xiao  et  al., 2011). An important 
difference between linear and non-linear models relates to 
the assumptions about the scale on which random errors 
are distributed (Seber and Wild, 2003; Chartejee and Hadi, 
2006). Because log y = f(log x) + ε, a log-transformation 
of the dataset lets us assume that the error is additive on a 
logarithmic scale. In contrast, in a non-linear model such 
as y = f(x) + ε, the error is additive on an arithmetic scale. 
As pointed out by Xiao et al. (2011), for a single dataset, 
both of these assumptions cannot be correct. Contrary to 
Venugopalan and Prajneshu (1998), Xiao  et  al. (2011) 
argue that the choice of method depends on the error 
distribution and that future analyses of the power law 
should be preceded by explicit analyses of the underlying 
error structure. Indeed, alternative approaches would be 
very useful for datasets with indeterminate error structures.

Nevertheless, the main advantage of fuzzy logic is the 
interval that is generated by the support of the fuzzy set 
obtained using the inference system. By comparing the 
estimates obtained from the support of fuzzy set a calculated 
by the inference system, we can see that the estimates 
that were previously made by other authors are included 
in the intervals with higher frequency (Figures 2 and 3). 
For example, Gomiero and Braga (2003) used the least 
squares ordinary model to estimate the weight-length 
relationship for two Cichla species caught in an artificial 
reservoir. They found values of 0.0063 and 0.007 for 
C. monoculus males and females and 0.0059 and 0.0053 for 
C. cf. ocellaris males and females, respectively. Holley et al. 
(2008) estimated that the parameter a is equal to 0.0101 
for Cichla temensis caught in the middle of the Rio Negro 
(Amazonas, Brazil). They used the least squares method 
on log-transformed data. However, Gomiero et al. (2008) 
also used least squares ordinary regression and found that 
the smallest values for the parameter a were those for 
Cichla kelberi introduced into an artificial lake in Southeast 
Brazil. In fact, the estimates in the study by Gomiero et al. 
(2008) have an important source of bias because the species 
studied was introduced into the environment and there is 
no information about its subsequent adaptations.

There are no studies on the variability of the parameter 
a as a function of fish size for the Cichla species. However, 
a high variability of mean weight-at-age with environmental 
conditions was observed for cod (Gadus morhua) and 
was especially apparent in fish that were less than seven 
years old (Anon, 1994), reflecting the higher variability 
observed in parameter a for the smallest fish recorded in 
our data. Jorgensen (1992) related long-term changes in 
the growth of immature Artic cod (Gadus morhua) to an 
index of food availability and temperature fluctuations. 
Because this parameter can be used as an indicator of the 
fish’s welfare and because peacock bass is a top predator, it 
is possible that it is more difficult for peacock bass to find 
prey of an appropriate size when it is younger and smaller.

We believe that, in addition to the fact that it yields 
similar results to those of earlier studies, the most important 
advantages of our approach are those features that are 
inherent to fuzzy logic: (i) the estimates obtained directly 
by identifying clusters of length-weight pairs, (ii) the 
inclusion of the consulted expert’s opinion, which was 
incorporated as a semantic sentence in the estimation 
procedure and (iii)  the generation of intervals for the 
parameters of interest. These features are interrelated as one 
is a consequence of the other. Furthermore, we hypothesize 
that these features could be used for the efficient analysis 
of data with non-linear allometry (Knell, 2009); indeed, 
this phenomenon has already been described for the 
relationships between the size of a particular body part or 
organ and the size of the whole organism. Packard (2012) 
called the phenomenon “non-loglinear allometry” and 
pointed out that the confounding effects of transformations 
by logarithms are common to all applications of allometric 
methods. This phenomenon can arise when the allometric 
exponent b is a continuously changing function of body 
size or when it changes abruptly (Packard, 2012). In both 
cases, the fuzzy logic approach could identify these changes 
and fit values for the parameters a and b that are more 
accurate in each stage (cluster).
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