Braz J Biol
bjb
Brazilian Journal of Biology
Braz. J. Biol.
1519-6984
1678-4375
Instituto Internacional de Ecologia
Resumo
Morcegos nectarívoros que ocorrem na região Neotropical consomem grandes quantidades de carboidratos, e usam a energia obtida da dieta diretamente, a partir da glicose na circulação sanguínea. Esta adaptação sugere que morcegos nectarívoros tenham evoluído no sentido de apresentar adaptações fisiológicas que permitam o baixo armazenamento de reservas energéticas corporais. Nós testamos a hipótese de que morcegos Glossophaga soricina poupam o gasto energético envolvido com a formação de reservas energéticas teciduais, mesmo que isso represente uma arriscada suscetibilidade da espécie frente ao jejum. As concentrações de glicose apresentaram uma diminuição de 40% após 18 h de jejum. As concentrações de lipídios do músculo peitoral e do tecido adiposo, bem como as de ácidos graxos da carcaça e glicogênio hepático também diminuíram após 18 h de jejum. A incapacidade de manter a normoglicemia observada após o jejum de curto-prazo confirma que morcegos nectarívoros desta espécie não investem na formação de reservas energéticas, e apresentam, consequentemente, uma severa susceptibilidade ao jejum. Este estudo suporta a hipótese de que adaptações evolucionárias da espécie envolvem diminuição da massa corporal, reduzindo o custo energético do voo e aumentado o tempo de forrageamento.
1. Introduction
Vertebrates that consume different diets often differ in the way they store and mobilize body energy reserves, and therefore it is expected different species to have different responses to fasting. Although bats have the largest variety of diets among all mammalian orders, data on physiological responses to fasting in bats are restricted to a few frugivorous, insectivorous and hematophagous species ( Ben-Hamo et al., 2012 ).
Nectarivorous bats stand out for their ecological role in pollinating plants ( Fleming and Sosa, 1994 ; Kunz et al., 2011 ). Their extraordinary energy-rich diet is based mainly on sugar, since nectar consists basically of a solution of glucose, fructose and sucrose ( Baker et al., 1998 ). While taking advantage of this high sugar food source, nectar bats also must face the challenge of dealing with post-feeding hyperglycemia ( Helversen and Winter, 2003 ). Some physiological adaptations to this unusual diet have been reported for Glossophaga soricina (Pallas, 1766), including enhanced glucose absorption through higher intestinal sucrase activity ( Hernandez and Martínez del Rio, 1992 ) and direct use of recently-ingested sugar for high muscle activity ( Suarez et al., 2011 ; Kelm et al., 2011 ).
Considering these unique adaptations among mammals, we would expect that sparing the energy cost of converting sugar into fat for future use would be advantageous, specially to maintain a low body mass. However, this would implicate in lower energy reserves, raising the problem on how to deal with fasting. The aim of this study was to determine blood glucose, liver and muscle glycogen, muscle and adipose lipids and carcass fatty acids in Pallas’s long-tongued bats (Glossophaga soricina) fed and fasted for 12, 18 and 24 h.
2. Material and Methods
2.1. Animals
Adult male nectar bats Glossophaga soricina (Pallas, 1766) (n = 52) were captured in the region of Brasilia, DF, Brazil (15º47 'S, 47 53' W). All bats were immediately brought to the lab and kept in the Bioterium of the Biology Institute, University of Brasilia, for two days. Bats were kept in cages (33 × 46 × 23 cm) (5 bats each cage) installed in a 15-square-meter room, with 12 h light:dark cycle. During this period, bats were fed bananas, papayas and vitamin supplement for hummingbirds (Alcon Pet®, São Paulo, Brazil) with 25% sucrose concentration, while held in the hand. Water was provided ad libitum. After the 2-days acclimation period, bats were divided in four groups: 1) Control (FED, n = 17); 2) 12 h fasted bats (F12, n = 13); 3) 18 h fasted bats (F18, n = 15); and 4) 24 h fasted bats (F24, n = 7). Fasting treatment started three hours after the last feeding. During the fasting period, all bats received water ad libitum. The experimental N was calculated based on a desired statistical power level of 0.8 and a P level of 0.05 (n=14 per group). Because we are using wild bats as experimental models, we tried to stay near this value, but we were limited by the amount of adult male bats we could capture in the same season. This work was developed under Federal license SISBIO from the Institute for Biodiversity Conservation (MMA number 39296-1) and also under consent of the Ethics Committee on Animal Use at the University of Brasília (UnBDOC No. 116319/2011).
2.2. Sample preparation
Following the experimental period, all animals were euthanized. Blood, liver, breast muscle, adipose tissue and carcasses were collected for subsequent processing. To obtain the plasma, blood was collected directly into heparinized tubes and centrifuged (2000 rpm x 10 min). Plasma glucose concentration was determined by the method of glucose oxidase (Glucox 500 kit, Doles, Goiânia, Brazil). Liver and muscle glycogen was measured according to Sjörgren et al. (1938) . Total lipids of breast muscle and adipose tissue were determined gravimetrically, according to Folch et al. (1957) . Carcass fatty acids were determined after digestion in 100 mL of KOH (6N), filtration and addition to an equal volume of absolute alcohol to obtain a KOH-ethanol solution (50% v/v). After manual agitation for extraction with chloroform (25 mL for 1 min, 3x), the supernatant was collected and the carcass fatty acids concentration was determined gravimetrically ( Folch et al., 1957 ).
2.3. Statistical analyses
All data were analyzed (Statistica, StatSoft®) using one-way ANOVA followed by the Tukey's test or Kruskal-Wallis test (for nonparametric data), depending on the assumptions of normality and homoscedasticity. Statistical significance was set at p< 0.05. Data can be obtained in detail directly with the corresponding author.
3. Results
Results are shown in Table 1 . Six out of seven bats from the F24 group died before the procedures, though we decided to exclude this group from our experimental design. All bats from the other groups (FED, F12 and F18) were alert and able to fly until the time the end of the experiment. Blood glucose concentrations were decreased in F18 bats compared with the FED group (F2,40= 6.76, P< 0.001 ). Liver glycogen concentrations were also decreased in F18 compared to FED ( H2,43= 18.27, P= 0.05). Breast muscle glycogen was decreased in both F12 and F18 fasted groups (H2,44= 5.78, P< 0.001). Breast muscle and adipose tissue lipids, as well as carcass fatty acids, were decreased in F18 compared to the FED bats (H2,40= 10.20, P= 0.006; H2,31 = 11.48, P= 0.00; H2,44= 17.47, P< 0.001).
Table 1
Metabolic parameters in fed nectar-feeding bats and following 12 (F12) and 18 (F18) hours of fasting.
FED
F12
F18
Blood glucose (mmol.L-1)
5.5 ± 0.54a
4.15 ± 0.38a
3.3 ± 0.21b
Liver glycogen (µmol-1glicosil- units/g)
485.92 ± 50.47a
358.26 ± 71.08a
221.56 ± 14.36b
Breast muscle glycogen (µmol-1glicosil- units/g)
148.55 ± 13.37a
124.71 ± 9.14b
114.98 ± 7.41b
Breast muscle lipids (g.100g-1)
17.91 ± 4.21a
36.21 ± 7.96a
8.58 ± 1.05b
Adipose tissue lipids (g.100g-1)
29.18 ± 4.89a
37.88 ± 11.79a
12.80 ± 0.87b
Carcass fatty acids (g.100g-1)
2.22 ± 0.15a
2.63 ± 0.69a
1.29 ± 0.08b
Different letters indicate statistical differences.
4. Discussion
Overall, we observed decreases in all tested energy reserves after 18 hours of fasting in Glossophaga soricina, although blood glucose levels failed to remain constant during short-term fasting. In mammals, glucose is the main energy molecule, and its declining circulating levels are considered a homeostatic imbalance signal, since it demonstrates that the body can no longer maintain normoglycemia ( Cryer, 1991 ). Most bats, including species fed a variety of foods, use their body energy reserves, especially liver glycogen and lipid stores in the adipose tissue, to produce glucose to be released in the bloodstream via glucogenolysis and gluconeogenesis ( Widmaier and Kunz, 1993 ; Freitas et al., 2003 ; Pinheiro et al., 2006 ; Melo et al., 2012 ; Amaral et al., 2012a , 2012b ; Barros et al., 2013 ). Most mammals depend on this liver pathway to obtain glucose when food is not available ( McCue, 2010 ). Unlike this pattern, we demonstrated that nectar-feeding bats had their glycogen and lipid stores mobilized after 18 hours, but failed to convert these energy substrates into glucose, proving their inability to maintain blood glucose levels following a short-term fasting.
Blood glucose concentration observed in G. soricina fasted for 18 h was similar to the value found in frugivorous bats fasted for 48 hours ( Pinheiro et al., 2006 ). Unlike nectar bats, fruit bats could keep blood glucose levels stable for up to 6 days of fasting. The amount of nectar bats that could not survive the 24 h challenge also indicates that G. soricina is clearly more sensitive to fasting periods.
In the same way as blood glucose, liver glycogen also decreased after 12 h of fasting. Liver glycogen reserves provide a rapid source of glucose to the bloodstream ( Casey, 2003 ; Kraus-Friedmann, 1984 ). The same pattern of liver glycogen mobilization was observed in fruit-eating bats ( Pinheiro et al., 2006 ) and vampire bats ( Freitas et al., 2003 ; 2005 ). Glossophaga soricina seems to use this carbohydrate reserve to supply energy during foraging periods. This nectar-feeding species. Glossophagine bats have undergone evolutionary convergence with hummingbirds ( Welch et al., 2008 ). As hovering flight is energetically very costly, nectar-bats show some of the highest known mass-specific metabolic rates ( Suarez et al., 2011 ).
Although lipid reserves are important for bats dealing with fasting ( Freitas et al., 2003 ; Pinheiro et al., 2006 ), and also for providing and efficient energy source for bats during reproduction ( Barros et al., 2013 ) and to deal with increased foraging time due to habitat degradation ( Melo et al., 2012 ), among other activities, nectar feeding bats seem to have evolved to a metabolic pattern that made them able to live with less energy reserves. It is known that up to 95% of the daily energy use by G. soricina is provided by exogenous glucose intake from their diets ( Voigt and Speakman, 2007 ; Welch et al., 2008 ), using directly the bloodstream as the main source of glucose for their activities, such as flight ( Voigt and Speakman, 2007 ; Welch et al., 2008 ). This mechanism would allow them to meet their high energy demands and also regulate their blood glucose levels at the same time ( Kelm et al., 2011 ).
In the Cerrado area, G. soricina faces a large variety of food items. Its diet consists of pollen, nectar, fruit and insects ( Zortéa, 2003 ). It is also reported some variation on these items proportions according to different seasons ( Voigt and Speakman, 2007 ).
Regarding the lipid reserves, the observed decreased after 18 h of fasting may result from gluconeogenesis, which may provide free fatty acids and glycerol to the meet these high energy demands. Taken together, the energy reserves we found in G. soricina is very limited compared to fruit ( Pinheiro et al., 2006 ) or insect-eating bats ( Freitas et al., 2006 )
A similar condition is observed in vampire bats, which also struggle to deal with fasting for having evolved to prioritize a lower and more flight efficient body mass over storing energy reserves ( Freitas et al., 2003 ). Although vampires’ susceptibility seem to be driven by opposite mechanisms (in their case, a low carbohydrate, protein-rich diet), vampires also have to deal with a metabolism designed to spare the costs of energy turnover. In both cases, compensatory behavioral mechanisms seem to play important roles for energy adjustments to very unique diets.
We conclude that the nectarivorous bat Glossophaga soricina are critically susceptible to fasting for presenting poor energy stores, which are mobilized after 18 hours of fasting. Lacking body energy stores, nectar feeding bats became more susceptible to fasting. Not being able to maintain normoglycemia after this period, fasting may lead them to die after 24 h of food absence. This condition may be associated with their extremely high-carbohydrate diet and the high foraging cost of this species.
Acknowledgements
We thank the National Council for Scientific and Technological Development (CNPq) and the Academic English Solutions (AES) for revising the English version.
References
AMARAL
T.S.
CARVALHO
T.F.
SILVA
M.C.
BARROS
M.S.
PICANÇO
M.
NEVES
C.A.
FREITAS
M.B.
2012
a
Short-term effects of a spinosyn’s family insecticide on energy metabolism and liver morphology in frugivorous bats.
Brazilian Journal of Biology = Revista Brasileira de Biologia
72
299
304
http://dx.doi.org/10.1590/S1519-69842012000200010
22735137.
AMARAL, T.S., CARVALHO, T.F., SILVA, M.C., BARROS, M.S., PICANÇO, M., NEVES, C.A. and FREITAS, M.B., 2012a. Short-term effects of a spinosyn’s family insecticide on energy metabolism and liver morphology in frugivorous bats. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 72, pp. 299-304. http://dx.doi.org/10.1590/S1519-69842012000200010. PMid:22735137.
AMARAL
T.S.
CARVALHO
T.F.
SILVA
M.C.
GOULART
L.S.
BARROS
M.S.
PICANÇO
M.C.
NEVES
C.A.
FREITAS
M.B.
2012
b
Metabolic and histopathological alterations in the fruit-eating bat Artibeus lituratus induced by the organophosphorous pesticide fenthion
Acta Chiropterologica
14
1
225
232
http://dx.doi.org/10.3161/150811012X654420
AMARAL, T.S., CARVALHO, T.F., SILVA, M.C., GOULART, L.S., BARROS, M.S., PICANÇO, M.C., NEVES, C.A. and FREITAS, M.B., 2012b. Metabolic and histopathological alterations in the fruit-eating bat Artibeus lituratus induced by the organophosphorous pesticide fenthion. Acta Chiropterologica, vol. 14, no. 1, pp. 225-232. http://dx.doi.org/10.3161/150811012X654420.
BAKER
H.G.
BAKER
I.
HODGES
A.S.
1998
Sugar composition of nectars and fruits consumed by birds and bats in the tropics and subtropics
Biotropica
30
4
559
586
http://dx.doi.org/10.1111/j.1744-7429.1998.tb00097.x
BAKER, H.G., BAKER, I. and HODGES, A.S., 1998. Sugar composition of nectars and fruits consumed by birds and bats in the tropics and subtropics. Biotropica, vol. 30, no. 4, pp. 559-586. http://dx.doi.org/10.1111/j.1744-7429.1998.tb00097.x.
BARROS
M.S.
MORAIS
D.B.
ARAUJO
M.R.
CARVALHO
T.F.
MATTA
S.L.P.
PINHEIRO
E.C.
FREITAS
M.B.
2013
Seasonal variation of energy reserves and reproduction in neotropical free-tailed bats Molossus molossus (Chiroptera: Molossidae)
Brazilian Journal of Biology = Revista Brasileira de Biologia
73
3
629
635
http://dx.doi.org/10.1590/S1519-69842013000300022
24212705.
BARROS, M.S., MORAIS, D.B., ARAUJO, M.R., CARVALHO, T.F., MATTA, S.L.P., PINHEIRO, E.C. and FREITAS, M.B., 2013. Seasonal variation of energy reserves and reproduction in neotropical free-tailed bats Molossus molossus (Chiroptera: Molossidae). Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 73, no. 3, pp. 629-635. http://dx.doi.org/10.1590/S1519-69842013000300022. PMid:24212705.
BEN-HAMO
M.
MUÑOZ-GARCIA
A.
PINSHOW
B.
2012
Physiological responses to fasting in bats.
McCue
M. D.
Comparative physiology of fasting, starvation, and food limitation
Berlin
Springer Berlin Heidelberg, Inc.
257
275
http://dx.doi.org/10.1007/978-3-642-29056-5_16
BEN-HAMO, M., MUÑOZ-GARCIA, A. and PINSHOW, B. 2012. Physiological responses to fasting in bats. In: M. D. McCue, ed. Comparative physiology of fasting, starvation, and food limitation. Berlin: Springer Berlin Heidelberg, Inc. pp. 257-275. http://dx.doi.org/10.1007/978-3-642-29056-5_16.
CASEY
A.
2003
Hormonal control of metabolism: regulation of plasma glucose
Surgery
21
5
128a
128d
CASEY, A., 2003. Hormonal control of metabolism: regulation of plasma glucose. Surgery, vol. 21, no. 5, pp. 128a-128d.
CRYER
P.E.
1991
Regulation of glucose metabolism in man
Journal of Internal Medicine
735
31
39
1675054.
CRYER, P.E., 1991. Regulation of glucose metabolism in man. Journal of Internal Medicine, vol. 735, pp. 31-39. PMid:1675054.
FLEMING
T.H.
SOSA
V.J.
1994
Effects of nectarivorous and frugivorous mammals on reproductive success of plants
Journal of Mammalogy
75
4
847
851
http://dx.doi.org/10.2307/1382466
FLEMING, T.H. and SOSA, V.J., 1994. Effects of nectarivorous and frugivorous mammals on reproductive success of plants. Journal of Mammalogy, vol. 75, no. 4, pp. 847-851. http://dx.doi.org/10.2307/1382466.
FOLCH
J.
LESS
M.
STANLEY
G.H.S.
1957
A simple method for the isolation and purification of total lipids from animal tissues
The Journal of Biological Chemistry
226
1
497
509
13428781.
FOLCH, J., LESS, M. and STANLEY, G.H.S., 1957. A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry , vol. 226, no. 1, pp. 497-509. PMid:13428781.
FREITAS
M.B.
PASSOS
C.B.C.
VASCONCELOS
R.B.
PINHEIRO
E.C.
2005
Effects of short-term fasting on energy reserves of vampire bats (Desmodus rotundus)
Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology
140
1
59
62
http://dx.doi.org/10.1016/j.cbpc.2004.09.023
15621510.
FREITAS, M.B., PASSOS, C.B.C., VASCONCELOS, R.B. and PINHEIRO, E.C., 2005. Effects of short-term fasting on energy reserves of vampire bats (Desmodus rotundus). Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, vol. 140, no. 1, pp. 59-62. http://dx.doi.org/10.1016/j.cbpc.2004.09.023. PMid:15621510.
FREITAS
M.B.
WELKER
A.F.
PINHEIRO
E.C.
2006
Seasonal variation and food deprivation in common vampire bats (Chiroptera: Phyllostomidae)
Brazilian Journal of Biology = Revista Brasileira de Biologia
66
4
1051
1055
http://dx.doi.org/10.1590/S1519-69842006000600012
17299941.
FREITAS, M.B., WELKER, A.F. and PINHEIRO, E.C., 2006. Seasonal variation and food deprivation in common vampire bats (Chiroptera: Phyllostomidae). Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 66, no. 4, pp. 1051-1055. http://dx.doi.org/10.1590/S1519-69842006000600012. PMid:17299941.
FREITAS
M.B.
WELKER
A.F.
MILLAN
S.F.
PINHEIRO
E.C.
2003
Metabolic responses induced by fasting in the common vampire bat Desmodus rotundus.
Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology
173
8
703
707
http://dx.doi.org/10.1007/s00360-003-0383-3
13680131.
FREITAS, M.B., WELKER, A.F., MILLAN, S.F. and PINHEIRO, E.C., 2003. Metabolic responses induced by fasting in the common vampire bat Desmodus rotundus. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology , vol. 173, no. 8, pp. 703-707. http://dx.doi.org/10.1007/s00360-003-0383-3. PMid:13680131.
HELVERSEN
O.V.
WINTER
Y.
2003
Bats and flowers.
Kunz
T. H.
Fenton
M. B.
Bat ecology
Chicago
University of Chicago Press
346
397
HELVERSEN, O.V. and WINTER, Y. 2003. Bats and flowers. In: T. H. Kunz and M. B. Fenton, eds. Bat ecology. Chicago: University of Chicago Press. pp. 346-397.
HERNANDEZ
A.
MARTINEZ DEL RIO
C.
1992
Intestinal disaccharidases in five species of phyllostomid bats
Comparative Biochemistry and Physiology. B, Comparative Biochemistry
103
1
105
111
http://dx.doi.org/10.1016/0305-0491(92)90420-V
1451428.
HERNANDEZ, A. and MARTINEZ DEL RIO, C., 1992. Intestinal disaccharidases in five species of phyllostomid bats. Comparative Biochemistry and Physiology. B, Comparative Biochemistry, vol. 103, no. 1, pp. 105-111. http://dx.doi.org/10.1016/0305-0491(92)90420-V. PMid:1451428.
KELM
D.H.
SIMON
R.
KUHLOW
D.
VOIGT
C.C.
RISTOW
M.
2011
High activity enables life on a high-sugar diet: blood glucose regulation in nectar-feeding bats
Proceedings. Biological sciences / The Royal Society
278
1724
3490
3496
http://dx.doi.org/10.1098/rspb.2011.0465
21490011.
KELM, D.H., SIMON, R., KUHLOW, D., VOIGT, C.C. and RISTOW, M., 2011. High activity enables life on a high-sugar diet: blood glucose regulation in nectar-feeding bats. Proceedings. Biological sciences / The Royal Society, vol. 278, no. 1724, pp. 3490-3496. http://dx.doi.org/10.1098/rspb.2011.0465. PMid:21490011.
KRAUS-FRIEDMANN
N.
1984
Hormonal regulation of hepatic gluconeogenesis
Physiological Reviews
64
1
170
259
http://dx.doi.org/10.1152/physrev.1984.64.1.170
6141578.
KRAUS-FRIEDMANN, N., 1984. Hormonal regulation of hepatic gluconeogenesis. Physiological Reviews, vol. 64, no. 1, pp. 170-259. http://dx.doi.org/10.1152/physrev.1984.64.1.170. PMid:6141578.
KUNZ
T.H.
TORREZ
E.B.
BAUER
D.
LOBOVA
T.
FLEMING
T.H.
2011
Ecosystem services provided by bats
Annals of the New York Academy of Sciences
1223
1
1
38
http://dx.doi.org/10.1111/j.1749-6632.2011.06004.x
21449963.
KUNZ, T.H., TORREZ, E.B., BAUER, D., LOBOVA, T. and FLEMING, T.H., 2011. Ecosystem services provided by bats. Annals of the New York Academy of Sciences, vol. 1223, no. 1, pp. 1-38. http://dx.doi.org/10.1111/j.1749-6632.2011.06004.x. PMid:21449963.
McCUE
M.D.
2010
Starvation physiology: reviewing the different strategies animals use to survive a common challenge
Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology
156
1
1
18
http://dx.doi.org/10.1016/j.cbpa.2010.01.002
20060056.
McCUE, M.D., 2010. Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, vol. 156, no. 1, pp. 1-18. http://dx.doi.org/10.1016/j.cbpa.2010.01.002. PMid:20060056.
MELO
B.E.S.
BARROS
M.S.
CARVALHO
T.F.
AMARAL
T.S.
FREITAS
M.B.
2012
Energy reserves of Artibeus lituratus (Chiroptera: Phyllostomidae) in two areas with different degrees of conservation in Minas Gerais.
Brazilian Journal of Biology = Revista Brasileira de Biologia
72
181
187
http://dx.doi.org/10.1590/S1519-69842012000100022
22437400.
MELO, B.E.S., BARROS, M.S., CARVALHO, T.F., AMARAL, T.S. and FREITAS, M.B., 2012. Energy reserves of Artibeus lituratus (Chiroptera: Phyllostomidae) in two areas with different degrees of conservation in Minas Gerais. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 72, pp. 181-187. http://dx.doi.org/10.1590/S1519-69842012000100022. PMid:22437400.
PINHEIRO
E.C.
TADDEI
V.A.
MIGLIORINI
R.H.
KETTELHUT
I.C.
2006
Effect of fasting on carbohydrate metabolism in frugivorous bats (Artibeus lituratus and Artibeus jamaicensis)
Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology
143
3
279
284
http://dx.doi.org/10.1016/j.cbpb.2005.11.013
16455278.
PINHEIRO, E.C., TADDEI, V.A., MIGLIORINI, R.H. and KETTELHUT, I.C., 2006. Effect of fasting on carbohydrate metabolism in frugivorous bats (Artibeus lituratus and Artibeus jamaicensis). Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, vol. 143, no. 3, pp. 279-284. http://dx.doi.org/10.1016/j.cbpb.2005.11.013. PMid:16455278.
SJÖRGREN
B.
NOERDENSKJOLD
T.
HOLMGEEN
H.
MOLLERSTRÖM
J.
1938
Beitrag zur kenntnis der leberrhythmik (glykogen, phosphor und calcium in der kaninchenleber)
European Journal of Phycology
240
427
432
SJÖRGREN, B., NOERDENSKJOLD, T., HOLMGEEN, H. and MOLLERSTRÖM, J., 1938. Beitrag zur kenntnis der leberrhythmik (glykogen, phosphor und calcium in der kaninchenleber). European Journal of Phycology, vol. 240, pp. 427-432.
SUAREZ
R.K.
HERRERA M
L.G.
WELCH
K.C.
Jr
2011
The sugar oxidation cascade: aerial refueling in hummingbirds and nectar bats
The Journal of Experimental Biology
214
Pt 2
172
178
http://dx.doi.org/10.1242/jeb.047936
21177938.
SUAREZ, R.K., HERRERA M, L.G. and WELCH, K.C. Jr, 2011. The sugar oxidation cascade: aerial refueling in hummingbirds and nectar bats. The Journal of Experimental Biology , vol. 214, no. Pt 2, pp. 172-178. http://dx.doi.org/10.1242/jeb.047936. PMid:21177938.
VOIGT
C.C.
SPEAKMAN
J.R.
2007
Nectar-feeding bats fuel their high metabolism directly with exogenous carbohydrates
Functional Ecology
21
5
913
921
http://dx.doi.org/10.1111/j.1365-2435.2007.01321.x
VOIGT, C.C. and SPEAKMAN, J.R., 2007. Nectar-feeding bats fuel their high metabolism directly with exogenous carbohydrates. Functional Ecology, vol. 21, no. 5, pp. 913-921. http://dx.doi.org/10.1111/j.1365-2435.2007.01321.x.
WELCH
K.C.
Jr
HERRERA M
L.G.
SUAREZ
R.K.
2008
Dietary sugar as a direct fuel for flight in the nectarivorous bat Glossophaga soricina.
The Journal of Experimental Biology
211
Pt 3
310
316
http://dx.doi.org/10.1242/jeb.012252
18203985.
WELCH, K.C. Jr., HERRERA M, L.G. and SUAREZ, R.K., 2008. Dietary sugar as a direct fuel for flight in the nectarivorous bat Glossophaga soricina. The Journal of Experimental Biology, vol. 211, no. Pt 3, pp. 310-316. http://dx.doi.org/10.1242/jeb.012252. PMid:18203985.
WIDMAIER
E.P.
KUNZ
T.H.
1993
Basal, diurnal, and stress-induced levels of glucose and glucocorticoids in captive bats
The Journal of Experimental Biology
265
5
533
540
8468542.
WIDMAIER, E.P. and KUNZ, T.H., 1993. Basal, diurnal, and stress-induced levels of glucose and glucocorticoids in captive bats. The Journal of Experimental Biology , vol. 265, no. 5, pp. 533-540. PMid:8468542.
ZORTÉA
M.
2003
Reproductive patterns and feeding habits of three nectarivorous bats (phyllostomidae: glossophaginae) from the brazilian cerrado
Brazilian Journal of Biology = Revista Brasileira de Biologia
63
1
159
168
http://dx.doi.org/10.1590/S1519-69842003000100020
12914427.
ZORTÉA, M., 2003. Reproductive patterns and feeding habits of three nectarivorous bats (phyllostomidae: glossophaginae) from the brazilian cerrado. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 63, no. 1, pp. 159-168. http://dx.doi.org/10.1590/S1519-69842003000100020. PMid:12914427.
Autoria
T. S. Amaral
Laboratório de Biologia e Conservação de Morcegos, Departamento de Zoologia, Universidade de Brasília – UnB, Universitário Darcy Ribeiro, Asa Norte, CEP 70910-900, Brasília, DF, Brasil Universidade de BrasíliaBrasilBrasília, DF, Brasil Laboratório de Biologia e Conservação de Morcegos, Departamento de Zoologia, Universidade de Brasília – UnB, Universitário Darcy Ribeiro, Asa Norte, CEP 70910-900, Brasília, DF, Brasil
E. C. Pinheiro
Laboratório de Metabolismo, Departamento de Ciências Fisiológicas, Universidade de Brasília – UnB, Universitário Darcy Ribeiro, Asa Norte, CEP 70910-900, Brasília, DF, Brasil Universidade de BrasíliaBrasilBrasília, DF, Brasil Laboratório de Metabolismo, Departamento de Ciências Fisiológicas, Universidade de Brasília – UnB, Universitário Darcy Ribeiro, Asa Norte, CEP 70910-900, Brasília, DF, Brasil
M. B. Freitas ** e-mail: mfreitas@ufv.br
Laboratório de Ecofisiologia de Quirópteros, Departamento de Biologia Animal, Universidade Federal de Viçosa – UFV, Campus UFV, Av. P.H. Rolfs, CEP 36570-000, Viçosa, MG, Brasil Universidade Federal de Viçosa BrasilViçosa, MG, Brasil Laboratório de Ecofisiologia de Quirópteros, Departamento de Biologia Animal, Universidade Federal de Viçosa – UFV, Campus UFV, Av. P.H. Rolfs, CEP 36570-000, Viçosa, MG, Brasil
L. M. S. Aguiar
Laboratório de Biologia e Conservação de Morcegos, Departamento de Zoologia, Universidade de Brasília – UnB, Universitário Darcy Ribeiro, Asa Norte, CEP 70910-900, Brasília, DF, Brasil Universidade de BrasíliaBrasilBrasília, DF, Brasil Laboratório de Biologia e Conservação de Morcegos, Departamento de Zoologia, Universidade de Brasília – UnB, Universitário Darcy Ribeiro, Asa Norte, CEP 70910-900, Brasília, DF, Brasil
Laboratório de Biologia e Conservação de Morcegos, Departamento de Zoologia, Universidade de Brasília – UnB, Universitário Darcy Ribeiro, Asa Norte, CEP 70910-900, Brasília, DF, Brasil Universidade de BrasíliaBrasilBrasília, DF, Brasil Laboratório de Biologia e Conservação de Morcegos, Departamento de Zoologia, Universidade de Brasília – UnB, Universitário Darcy Ribeiro, Asa Norte, CEP 70910-900, Brasília, DF, Brasil
Laboratório de Metabolismo, Departamento de Ciências Fisiológicas, Universidade de Brasília – UnB, Universitário Darcy Ribeiro, Asa Norte, CEP 70910-900, Brasília, DF, Brasil Universidade de BrasíliaBrasilBrasília, DF, Brasil Laboratório de Metabolismo, Departamento de Ciências Fisiológicas, Universidade de Brasília – UnB, Universitário Darcy Ribeiro, Asa Norte, CEP 70910-900, Brasília, DF, Brasil
Laboratório de Ecofisiologia de Quirópteros, Departamento de Biologia Animal, Universidade Federal de Viçosa – UFV, Campus UFV, Av. P.H. Rolfs, CEP 36570-000, Viçosa, MG, Brasil Universidade Federal de Viçosa BrasilViçosa, MG, Brasil Laboratório de Ecofisiologia de Quirópteros, Departamento de Biologia Animal, Universidade Federal de Viçosa – UFV, Campus UFV, Av. P.H. Rolfs, CEP 36570-000, Viçosa, MG, Brasil
Table 1
Metabolic parameters in fed nectar-feeding bats and following 12 (F12) and 18 (F18) hours of fasting.
table_chartTable 1
Metabolic parameters in fed nectar-feeding bats and following 12 (F12) and 18 (F18) hours of fasting.
FED
F12
F18
Blood glucose (mmol.L-1)
5.5 ± 0.54a
4.15 ± 0.38a
3.3 ± 0.21b
Liver glycogen (µmol-1glicosil- units/g)
485.92 ± 50.47a
358.26 ± 71.08a
221.56 ± 14.36b
Breast muscle glycogen (µmol-1glicosil- units/g)
148.55 ± 13.37a
124.71 ± 9.14b
114.98 ± 7.41b
Breast muscle lipids (g.100g-1)
17.91 ± 4.21a
36.21 ± 7.96a
8.58 ± 1.05b
Adipose tissue lipids (g.100g-1)
29.18 ± 4.89a
37.88 ± 11.79a
12.80 ± 0.87b
Carcass fatty acids (g.100g-1)
2.22 ± 0.15a
2.63 ± 0.69a
1.29 ± 0.08b
Como citar
Amaral, T. S. et al. Baixas reservas energéticas corporais estão associadas à susceptibilidade ao jejum da espécie|Glossophaga soricina. Brazilian Journal of Biology [online]. 2019, v. 79, n. 2 [Acessado 16 Abril 2025], pp. 165-168. Disponível em: <https://doi.org/10.1590/1519-6984.169674>. Epub 20 Ago 2018. ISSN 1678-4375. https://doi.org/10.1590/1519-6984.169674.
Instituto Internacional de EcologiaR. Bento Carlos, 750, 13560-660 São Carlos SP - Brasil, Tel. e Fax: (55 16) 3362-5400 -
São Carlos -
SP -
Brazil E-mail: bjb@bjb.com.br
rss_feed
Acompanhe os números deste periódico no seu leitor de RSS
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.