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1. Introduction

Tagetes erecta L. is an herbaceous plant contains small 
leaves and flowers in comparison to other marigolds. 
Moreover, African marigold is a valuable crop for controlling 
parasitic nematodes (Dole and Wilkins, 2005). The essential 
oils in addition to lutein (carotenoids), which used in 
the food supplements, manufacture of soap, perfumes, 
cosmetics, and pharmaceutical industries were extracted 
from the aerial parts (Šivel et al., 2014).

Soil salinization and water irrigation in Saudi Arabia 
lands (arid and semi-arid areas) causes a serious abiotic 
stress including degradation of agricultural lands, especially 
that controlling the growth and yield (Hassan and Ali, 
2014). Further, salt stress changes an imbalance in the 
cytosolic ionic flow of cells and thus results in oxidative 
damage that affects the function of the lipid bilayer and 
the photosynthetic rate as well as the metabolism of cells 
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2. Materials and Methods

2.1. Experimental set-up

A potted greenhouse experiment was conducted at Taif 
University, Saudi Arabia through the seasons 2018 - 2019. 
Plant seeds were soaked in an aerated solution of CaSO4, 
1 mM for 1 day and then germinated in darkness at 28 °C for 
2 days between two layers of filter paper. After 4 days, the 
seedlings were placed in the soil in 25 cm size pots. Physical 
characteristics of the soils were (sand, 77.21%, silt 7.99%, 
clay 14.80%) and the chemical soil properties were (pH 7.98, 
EC 2.65 dSm-1, OM 0.14%, Na+ 3.12, SO4

-2 43.25, HCO3 2.75 and 
Cl- 0.42 meqL-1, total N+ 0.15% and PO4

3- 0.037%). Pots were 
placed in a growth chamber charged with a NPK mineral 
fertilizer (17:17:17) at 5 g per pot and at a temperature of 
26 °C /18 °C in light (200 W m-2) and dark period, respectively 
with relative humidity at 70%. Irrigation at intervals of 
2 days was applied to the plant. After the fourth true leaves 
appeared (21 days after planting), NaCl levels were gradually 
increased to 100 and 150 mM with or without 200 mM GB 
(Joushan et al., 2020) as foliar application. Glycinebetaine 
treatments were applied three-months after transplanting 
and for three times every 15 days. The shoots were sprayed 
until the drop of the spray solution.

2.2. Growth and flower characters

Shoot length in cm, branch number per plant, shoot 
and root fresh and dry weights (g/plant), flower number 
plant-1 and flower weight per plant (fresh and dry) taken 
in this experiment. Leaf number/plant and its area (cm2) 
were followed, leaf blade areas were established by a 
digital picture analysis as reported by O’Neal et al. (2002).

2.3. Chlorophyll and carotenoid assessment

Chlorophyll was determined as described by 
Shabala  et  al. (1998) utilizing the following equation: 
Chl = 12.7 A663 – 2.63 A645 with A663 and A645, the 
absorbance measured with UV/visible spectrophotometer 
(Beckman DU 640, USA) at 663 and 645, respectively. While 
total carotenoid concentrations (Cx+c) were estimated by 
methods of Lichtenthaler (1987).

2.4. Relative water content (RWC)

Methods of Weatherley (1950) were applied to measure 
Relative Water Content on the basis of the equations: 
(FW-DW) / (TW-DW) x 100, in which FW: fresh weight, 
TW: turgid weight when saturated with distilled water 
for 24 h at 4 °C, and DW: dry weight.

2.5. Membrane stability index (MSI)

Samples of leaves were collected from mid-plant for 
determining the ion leakage as reported by Sairam et al. 
(1997). Leaf samples were washed with deionized water 
to remove the adhered particles. The leaves were then 
cut into small disks of uniform size and placed in closed 
test tubes containing 10 mL of deionized water. The tubes 
containing leaf samples were then incubated at 25 °C for 
24 h and subsequently electrical conductivity (EC) of the 

(Suzuki et al., 2016). Salinity decreased the productivity 
in numerous medicinal plants (Ali and Hassan, 2014; 
Attia et al., 2020), and induces oxidative stress via increased 
ROS production which is related to tissue destruction 
(Bernstein  et  al., 2010). The two defense mechanisms 
against salt were detoxify ROS by stimulating ROS scavenger 
enzymes like catalases, superoxides dismutase and 
peroxidases activities (Abdel Latef and Chaoxing, 2011) 
and /or non-enzymatic antioxidants, i.e. osmoregulation 
GB, ascorbate, phenolics, tocopherol, reduced glutathione, 
and proline (Mansour and Salama, 2019).

Chen and Murata (2008) (reported that GB is a 
compatible solute, water-soluble and non-toxic at elevated 
levels has the roles of effective protection of plant cells 
against salinity stress through osmotic stress adjustment 
(Liang  et  al., 2009), protein stabilisation (Rubisco) 
(Hamani et al., 2020), protection of the photosynthetic 
machinery (Tian  et  al., 2017), and decrease of oxygen 
radical scavengers (Wei  et  al., 2017). Glycinebetaine 
accumulation in salt tolerant and salt sensitive lines of 
rice was stimulated by early salt exposure (Cha-um et al., 
2007). These authors reported that in salt-tolerant rice 
seedlings, the accumulation of GB immediately after initial 
exposure to salt stress may be useful in stabilizing the 
photosynthetic machinery leading to improved growth 
efficiency.

Tagetes erecta, currently known as tagetes/souci, 
has flowers of different colours (orange, yellow, 
mixed) and a bitter flavour resembling cloves (Mlcek 
and Rop, 2011) Marigold is an important ornamental 
plant from the family Compositae which is currently 
in environmental management and also evaluated 
as a flower cut (Riaz  et  al., 2013). Tagetes species 
are largely well documented for their flavonoid and 
terpene content (Munhoz et al., 2014). In consequence, 
they are reported to have antimicrobial (Gakuubi et al., 
2016), insecticidal (Fabrick  et  al., 2020), larvicidal 
(Giarratana et al., 2017) and antioxidant (Sadique et al., 
2021) properties and are used as traditional medicines 
in different countries as a treatment for colic, 
diarrhea, vomiting, fever, skin diseases and liver 
disorders (Jain et al., 2012). Among the ornamental 
flowering plants, marigold is reported to grow well 
in saline conditions (Escalona et al., 2012). A number 
of marigold cultivars used as flowering cuttings or as 
ornamental bedding plants in landscaping may be 
grown with maintained plant quality under salt stress 
with an ECw ≤8 dS-1 (Valdez-Aguilar et al., 2009). The 
tolerance to salinity of various ornamental plants 
used in landscaping is not well-known. In zones with 
problems of salinity, there is not sufficient information 
for environmental planners and ornamental plant 
producers to suggest adequate plant species. Thus, 
the object of this work was to investigate the impact 
of GB application on plant development, productivity 
and quality of cultivated marigold flowers grown in 
saline conditions, highlighting carotenoids production 
(lutein) as an important product for flowering of 
this plant.
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solution (C1) was recorded using an Acromet AR20 electrical 
conductivity meter (Fisher Scientific, Chicago, IL). The 
samples were then autoclaved at 120 °C for 20 min and 
the final EC (C2) was recorded after equilibrium at 25 °C. 
The ion leakage was determined as Membrane Stability 
Index according to the formula: MSI = (1 - (C1/C2)) × 100.

2.6. Total phenolics

Leaf powdered samples (1 g) were extracted in 
80% methanol and assaying the total phenolics using 
Folin-Ciocalteu reagent as described by McDonald et al. 
(2001), expressed as g GAE kg−1 DW.

2.7. Anti-oxidation enzymes assays

The determination of the anti-oxidant enzymes SOD, 
CAT and POX assay in leaf extract and the soluble protein 
levels were analyzed by Bradford’s (1976) method.

The activity of SOD (EC 1.15.1.1) was estimated by the 
determination of its capacity to inhibit photo-chemical 
degradation of tetrazolium nitroblue (NBT) as reported 
by Giannopolitis and Ries (1977).

The activity of CAT (EC 1.11.1.6) was measured 
spectrophotometrically according to Clairbone (1985).

The activity of POX (EC 1.11.1.7) was assayed as described 
by Shannon et al. (1966).

The expression of enzymatic activities was given in 
µmol min-1 mg-1 protein.

2.8. Potassium and sodium contents

Dried marigold leaf was wet digested to estimate 
potassium and sodium content as mentioned by Jackson 
(1978).

2.9. Statistical analysis

Experiments were carried out twice in four replicates 
and the ANOVA will be performed with the program 
MSTAT. Means were separated using Duncan’s multiple 
range tests at a significance level of 0.05.

3. Results and Discussion

3.1. Effect of NaCl stress and GB on growth and nutritional 
status of T. erecta

Analysis of variance (ANOVA) for the data on vegetative 
characters: height of plant, number of branch, number 
of secondary branch, FW and DW (g /plant) of African 
marigold shoot and root showed that salinity stress 
treatments (100 and 150 mM NaCl) significantly reduced 
these parameters (Table 1). The reduce in leaf number 
and leaf area was the response to the effect of salinity, 
described similar outcomes (Table 1). While, when GB at 
200 mM was applied exogenously, an improvement and 
enhancing of the previous parameters.

Similarly, flower attributes; i.e. flower number per plant, 
fresh and dry flower weight (g/flower) sharply reduced 
by salinity, while the application of 200 mM GB improved 
it especially at 100 mM NaCl (Table 1). Our findings are 
in agreement with Kausar et al. (2014) who showed that 
external application of glycinebetaine enhanced fresh and 
dry weight of maize roots and shoots under salt stress. 
The injure impacts of salinity causes disturbance in some 
metabolic, reduction of net photosynthesis, decline in water 
availability, imbalance of ionic, enlargement inhibition of 
cell or impairment of meristematic activity (Abdul Qados, 

Table 1. Effect of NaCl stress and glycinebetaine on biomass indicators and leaf sodium and potassium content of Tagetes erecta L.

Treatments Control NaCl, 100 mM NaCl, 150 mM
NaCl, 100 mM

+
GB, 200 mM

NaCl, 150 mM
+

GB, 200 mM

Parameters

Plant height, cm 65.56 ± 2.59 a 52.87 ± 2.3 c 48.68 ± 3.14 b 54.69 ± 2.15 bc 50.67 ± 3.65 bc

Main branch, number.plant-1 8.24 ± 0.29 a 6.25 ± 0.34 b 4.98 ± 0.28 c 7.99 ± 0.39 a 6.85 ± 0.43 b

Secondary branch, number.plant-1 25.02 ± 1.23 a 16.25 ± 1.36 c 15.12 ± 2.04 d 20.54 ± 1.58 b 19.92 ± 2.06 b

Leaf number, plant-1 280.25 ± 6.25 a 221.36 ± 5.32 c 198.57 ± 3.98 d 279.98 ± 4.85 a 242.15 ± 5.85 b

Leaf area, cm2 2.71 ± 0.06 a 1.87 ± 0.07 c 1.63 ± 0.06 d 2.64 ± 0.08 a 2.23 ± 0.05 b

Flower numbers, plant-1 7.92 ± 0.21 a 5.02 ± 0.15 c 3.24 ± 0.23 d 7.98 ±0.31 a 6.87 ± 0.24 b

Root FW, g.plant-1 9.36 ± 0.14 a 5.89 ± 0.12 d 5.12 ± 0.26 d 7.36 ± 0.31 b 6.99 ± 0.37 b

Root DW, g.plant-1 3.21 ± 0.08 a 2.12 ± 0.07 c 1.89 ± 0.09 d 2.86 ± 0.04 b 2.54 ± 0.06 c

Shoot FW, g.plant-1 154.56 ± 5.06 a 122.47 ± 6.25 d 119.14 ± 4.69 e 136.58 ± 8.69 b 133.56 ± 7.36 c

Shoot DW, g.plant-1 39.25 ± 1.41 a 26.05 ± 2.36 d 28.69 ± 1.89 c 29.58 ± 1.27 b 28.69 ± 1.89 c

Flower FW, g.flower-1 7.72 ± 0.28 a 5.25 ± 0.43 c 4.47 ± 0.42 d 7.04 ± 0.36 a 6.04 ± 0.39 b

Flower DW, g.flower-1 2.08 ± 0.06 b 1.56 ± 0.05 d 1.24 ± 0.04 e 2.98 ± 0.03 a 1.86 ± 0.07 c

Na+, mg.g-1 DW 2.31 ± 0.08 e 3.24 ± 0.07 b 4.52 ± 0.06 a 2.63 ± 0.05 d 2.76 ± 0.08 c

K+, mg.g-1 DW 2.34 ± 0.07 a 2.26 ± 0.08 b 2.21 ± 0.06 c 2.33 ± 0.07 a 2.38 ± 0.09 a

Sodium and potassium are the mean of six replicates. All the other parameters are means ± S.D (n=14). The means with the different letters are 
statistically different from the others based on Duncan’s multiple range test at P = 0.05.
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2015). Same results have already been mentioned by Ali 
and Hassan (2014) on Chamomile, and Mansour and Ali 
(2017) on Calendula officinalis L. Salinity decreases the 
osmotic potential of the soil solution and consequently 
reduces water uptake by the roots; cell turgidity is lowered 
leading to plasmolysis (Verslues et al., 2006). Some plants 
regulate their internal osmotic pressure by the synthesis of 
osmoprotectants, mainly soluble sugars and amino acids 
such as proline and glycinebetaine (Wani  et  al., 2013). 
Parvin et al. (2015) mentioned that, GB application was 
enhanced leaf numbers and reduced salinity. Glycinebetaine 
will reduce the effect of stress on the plant on the one 
hand, and provide a source of nitrogen and energy to the 
plant on the other. Proline and glycinebetaine improve the 
growth of cereals in the presence of various abiotic stresses 
(Ashraf and Foolad, 2007). Tagetes plants had a higher 
leaf Na concentration with the high NaCl concentration 
(150 mM) accompanied by a decrease in potassium 
supply. GB spraying significantly decreased Na+ levels 
while increasing potassium levels. Recently, Attia et al. 
(2020) recorded a decrease in damask rose by salt stress 
treatments may be due to nutrition imbalance statues 
and K, Ca and Mg reduction in the photosynthetic organs.

3.2. Effect of NaCl stress and GB on membrane stability 
index (MSI) and relative water content (RWC) of T. erecta 
leaves

Figure 1 shows the membrane stability index (MSI) and 
relative water content (RWC) in leaves of Tagetes plants 
grown in the absence or presence of NaCl and sprayed 
with GB. Generally, the MSI (%) reduced as the NaCl level 
was higher. Tagetes plants stressed with NaCl had 25-30% 
lower MSI than those not stressed, at 100 and 150 mM 
NaCl, respectively. The negative impact of high NaCl was 
mitigated by treating NaCl-stressed plants with GB; in 
fact, GB (200 mM) further increased MSI. RWC exhibited 
similar results to MSI with exposure of Tagetes plants to 
NaCl stress resulting in a significant reduction in RWC. 
Thus, the RWC values are 75 and 70% at 100 and 150 mM 
NaCl, respectively. GB enhanced RWC in Tagetes leaves 
in the presence of NaCl. NaCl stress not only reduces the 

growth and productivity dynamics of African marigold, but 
also affects MSI and RWC. Comparable results have already 
been reported for common bean (Bayuelo-Jiménez et al., 
2012). The adverse effect of NaCl on African marigold plants 
is mainly due to the high osmotic stress and ionic toxicity 
that results from long-term exposure to high levels of NaCl. 
Osmotic stress leads to water deficit and decreased nutrient 
uptake by plant roots in immediate feedback to the high 
osmolarity of the soil solution (El-Ramady et al., 2019). 
In addition, ion toxicity resulting from the high Na+ and 
Cl- accumulation in plant tissues induces early senescence. 
As a result, further impairment of plant development, cell 
division, elongation of cells, synthesis of proteins and the 
process of photosynthesis occurs in parallel with the rapid 
generation of ROS (El-Ramady et al., 2018). Glycinebetaine 
foliar application can enhance abiotic constraint tolerance 
of several plants and subsequently improve growth and 
productivity, so if applied to photosynthetic organs, it is 
well absorbed by foliar tissues localized in cytosol and 
translocate to chloroplasts (Kausar et al., 2014) and also 
taken up via roots (Hameed et al., 2010).

3.3. Effect of NaCl stress and GB on pigment content of 
T. erecta

Pigment data for total chlorophylls and carotenoids from 
T. erecta plants spray-treated with GB in the presence of 
high concentrations of NaCl were illustrated in Figure 2. 
We found that, in general, all chlorophyll pigment levels 
decreased when the plants were supplied with NaCl. 
Increasing the NaCl concentration resulted in a significant 
reduction in carotenoid levels. However, treatment of 
plants with GB by foliar application induced plant growth 
causing an increase in the content of these pigments. The 
highest increase was observed especially for carotenoids. 
Thus, the values recorded in plants grown in the presence 
of 100 mM NaCl and treated with GB are comparable to 
those of the control plants. Due to a disturbance in growth 
processes, hydration and potassium nutrition in T. erecta 
plants grown under NaCl stress, the photosynthetic 
process and its efficiency will be imperatively damaged 
and affected. Our present results are in agreement with 
this approach. It is well documented that plant species 
sensitive to salt are more affected by the negative effects 

Figure 1. Effect of NaCl stress and glycinebetaine on relative water 
content (RWC) and membrane stability index (MSI) in Tagetes erecta 
L leaves. C = control; S1 = NaCl, 100 mM; S2 = NaCl, 150 mM; GB = 
Glycinebetaine, 200 mM. Values are means ± S.D (n=6). The means 
with the different letters are statistically different from the others 
based on Duncan’s multiple range test at P = 0.05.

Figure 2. Effect of NaCl stress and glycinebetaine on chlorophyll 
and carotenoids contents in Tagetes erecta L leaves. C = control; 
S1 = NaCl, 100 mM; S2 = NaCl, 150 mM; GB = Glycinebetaine, 200 
mM. Values are means ± S.D (n=6). The means with the different 
letters are statistically different from the others based on Duncan’s 
multiple range test at P = 0.05.
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of salinity which leads to a decrease in chlorophyll 
levels (Attia et al., 2020). The decrease in photosynthetic 
pigments might be the consequence of a malfunction in 
their biosynthesis under salt stress (Attia  et  al., 2011). 
However, GB exhibited significant potential to improve 
photosynthetic pigment biosynthesis under salinity stress 
in mustard (Islam et al., 2021). Furthermore, beneficial 
effects of exogenous GB on net photosynthesis, stomatal 
conductance and the Photosystem II (PSII) efficiency have 
already been documented by Alasvandyaria and Mahdavia 
(2018) in salt-stressed safflower plants. Hoque et al. (2007) 
revealed that GB has an important role in protecting 
the photosynthetic machinery by maintaining protein 
reparation activity under salinity stress.

3.4. Effect of NaCl stress and GB on phenolics compounds 
of T. erecta leaves

In the light of the results of Polyphenol contents 
reported in Figure 3, it appears that T. erecta is poor in 
these compounds. These leaf contents increased with the 
concentration of NaCl in the medium. The GB treatment 
further enhanced these contents, which achieved much 
higher values than the control or salt-stressed plants. The 
mechanisms which protect membranes against excessive 
lipid peroxidation appear to differ according to the nature 
of the stress and the organ, and may be coupled with 
an increase in phenol accumulation or the activity of 
peroxidase (Tokarz et al., 2020). Most probably, phenols 

were involved in sodium chelation especially in the cell wall 
(Tokarz et al., 2020). A comparable elevation of phenols in 
NaCl-treated plants, compared to the control, suggested 
that phenolic compounds in T. erecta leaves functioned 
as osmoprotectors. It was reported previously that with 
salinity, a significant positive influence of exogenous 
glycinebetaine application on plant growth and secondary 
metabolite accumulation was observed. Furthermore, many 
researchers have reported that glycinebetaine has positive 
responses to salt stress in several plants such as ryegrass 
(Hu et al., 2012) and safflower (Kim et al., 2021). Our present 
results, in which the application of exogenous betaine 
affected the accumulation of phenolic compounds in 
marigold leaves, are in agreement with these. GB enhances 
the metabolism of phenolic compounds. Therefore, it is 
reasonable to conclude that the improvement of phenolics 
by GB treatment might be playing a beneficial role in 
the scavenging of reactive oxygen species, which help to 
protect the cell membrane from peroxidation and damage.

3.5. Effect of NaCl stress and GB on anti-oxidation enzymes 
of T. erecta leaves

Activity of all studied enzymes, CAT, POX and SOD, in 
marigold leaves decreased with increasing NaCl treatments 
(Table 2). The antioxidant activities increased significantly 
when applying GB treatment, which resulted in increased 
scavenging activity, which had an important protective 
role on the growth of African marigold and improved the 
ability of its leaves to photosynthesize against salt stress 
(Islam et al., 2021). Improving the systems of antioxidant 
defense in response GB treatment was scavenged ROS and 
enhanced the stability of membrane (Nahar et al., 2016). 
GB are able to proteins stabilizer, lipids of membrane, 
structures of cell, cell turgor maintenance, adjustment of 
osmotic pressure, nitrogen storage, and redox metabolism 
to ROS scavenging under salinity (Liang et al., 2009). Finally, 
the amino acid derivative GB is protective of higher plants 
from salt and osmotic stress in various ways: through 
osmotic adjustment (Liang et al., 2009), oxygen releasing 
stabilizer PS-II (Huang  et  al., 2020), membranes and 
protein quaternary structures (Tian et al., 2017), and the 
enzymes RUBISCO (Hamani et al., 2020). Glycinebetaine 
play a major role in protein synthesis, maintaining the 
association between tRNA and the ribosome during 
translation (Flowers and Colmer, 2008). The presence of 
such molecules allows a wide variety of living organisms 
to withstand extreme conditions such as temperature 
variations and high salinity (Smiatek  et  al., 2012), and 

Figure 3. Effect of NaCl stress and glycinebetaine on total phenols 
content in Tagetes erecta L leaves. C = control; S1 = NaCl, 100 mM; 
S2 = NaCl, 150 mM; GB = Glycinebetaine, 200 mM. Values are means 
± S.D (n=6). The means with the different letters are statistically 
different from the others based on Duncan’s multiple range test 
at P = 0.05.

Table 2. Effect of NaCl stress and glycinebetaine on antioxidant enzymes (unit mg-1 protein) in Tagetes erecta L leaves.

Treatments Control NaCl, 100 mM NaCl, 150 mM
NaCl, 100 mM

+
GB, 200 mM

NaCl, 150 mM
+

GB, 200 mM

SOD 2.37 ± 0.14 a 1.74 ± 0.16 c 1.91 ± 0.12 b 2.34 ± 0.09 a 2.35 ± 0.10 a

CAT 2.43 ± 0.06 a 1.61 ± 0.08 d 1.82 ± 0.06 c 2.37 ± 0.04 b 2.42 ± 0.05 a

POX 24.12 ± 1.09 a 16.08 ± 1.21 d 18.57 ± 1.57 c 22.18 ± 1.26 b 23.86 ± 1.21 a

Values are means ± S.D (n=6). The means with the different letters are statistically different from the others based on Duncan’s multiple range 
test at P = 0.05. SOD = superoxide dismutase; CAT = catalase; POX = guaiacol peroxidase.



Brazilian Journal of Biology, 2022, vol. 82, e2565026/8

Alamer, K. and Ali, E.F.

they play an essential role in stabilizing proteins and 
membranes during oxidative damage induced by ROS 
(Saxena et al., 2013).

4. Conclusion

Based on the obtained findings, a conclusion can 
be drawn the growth and flowering characters were 
significantly decreased by salt stress treatments, while 
GB application promoted the growth as well as flowering 
attributes in stressed plants. In the same context, RWC, 
MSI, pigments content and phenolics content were also 
improved due to GB treatment. Accordingly, the oxidative 
stress decreased and salt stress inhibitory impacts on 
African marigold were reduced as a result of GB treatment. 
This indicates that GB not only nullified the impact 
of salt stress, but also significantly improved growth, 
physio-biochemical parameters in addition to changes 
non-enzymatic and enzymatic antioxidants activities in 
plants of African marigold.
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