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Abstract - This work investigates the use of artificial neural networks in modeling an industrial fermentation 
process of Pleuromutilin produced by Pleurotus mutilus in a fed-batch mode. Three feed-forward neural 
network models characterized by a similar structure (five neurons in the input layer, one hidden layer and one 
neuron in the output layer) are constructed and optimized with the aim to predict the evolution of three main 
bioprocess variables: biomass, substrate and product. Results show a good fit between the predicted and 
experimental values for each model (the root mean squared errors were 0.4624% - 0.1234 g/L and 0.0016 mg/g 
respectively). Furthermore, the comparison between the optimized models and the unstructured kinetic 
models in terms of simulation results shows that neural network models gave more significant results. These 
results encourage further studies to integrate the mathematical formulae extracted from these models into an 
industrial control loop of the process. 
Keywords: Modeling; Pleuromutilin; Fermentation; Feed-forward neural networks. 

 
 
 

INTRODUCTION 
 

In an increasingly competitive worldwide 
antibiotic market faced with economic, environ-
mental and safety constraints, the industrialists have 
to increase their antibiotic production quantitatively 
and qualitatively, and reduce their costs and their 
energy consumption. Moreover, due to the complexity 
and non-linearity of the phenomena (Potocnik and 
Grabec, 1999), a modeling of antibiotic production, 
which remains a challenging problem, is required. 

Kinetic models, known as a white box strategy, 
provide an analytical expression relating the key 
characteristics of the physical system to its dynamic 
behavior. These models have been and are still 
extensively applied in fermentation processes 
(Benkortbi et al., 2007; Cruz et al., 1999; Paul and 
Thomas, 1996; Zangirolami et al., 1997). However, 

in some cases, those models do not apply, due to the 
inherent non-linearity of the system, lack of 
experimental information, experimental inaccuracy, 
or deviations from ideal conditions (Feyo de Azevedo 
et al., 1997; Silva et al., 2008; Saraceno et al., 2009). 

Artificial neural networks (ANN) have gained a 
great popularity in the last decade as an attractive 
alternative to the previous approach due to their high 
parallelism, robustness (Basheer and Hajmeer, 2000) 
and, more interestingly, their inherent ability to 
extract from experimental data the highly non-linear 
and complex relationships between the variables of 
the problem (Si-Moussa et al., 2008) without any 
detailed knowledge of the system (Bryjak et al., 2004). 

Several authors have investigated the use of ANN 
as a black or white box in fermentation. Di Massimo 
et al. (1992) built ANN-based biomass and product 
estimators for on-line application to industrial 
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penicillin fermentation. In the work of Shene et al. 
(1999), two different neural networks (a feed-
forward black box neural network and a hybrid gray 
box neural network) were designed to predict the 
state variables in ethanol batch fermentation taking 
into account the effect of medium composition and 
temperature. Kovarova-Kovar et al. (2000) presented 
the use of a combination of predictive control and an 
ANN-model to optimize the industrial fed-batch 
process for commercial production of riboflavin 
(vitamin B2). However, in the paper of Huang et al. 
(2002), an auto-associative neural network model 
was presented for on-line fault detection in 
Virginiamycin production. Saraceno et al. (2009) 
simulated the fermentation of ricotta cheese whey for 
the production of ethanol by means of a multiple 
hybrid neural model (HNM), obtained by coupling a 
multilayer perceptron neural network to mass 
balance equations for lactose, ethanol and biomass. 

This work is a part of research on modeling the 
diterpene antibiotic Pleuromutilin, which is a natural 
product, obtained by fermentation of Pleurotus 
mutilus, an edible mushroom. This compound is 
active against a variety of gram-positive bacteria and 
mycoplasmas and is an inhibitor of bacterial protein 
synthesis (Kavanagh et al., 1951; Egger and Reinshagen, 
1976).  

On the other hand, Pleuromutilin served as a lead 
structure in the development of several commercial 
antibiotics such as tiamulin and valnemulin used in 
veterinary medicine (Hannan et al., 1997) and 
retapamulin approved for the treatment of human 
skin infections (Hirokawa et al., 2008).  

In this paper, we developed three feed-forward 
ANN models, in order to assess the difficult-to-
measure quantities, such as concentrations of biomass, 
substrate and product, from easily measurable 
variables in a fed-batch mode. This would be very 
interesting for further applications to digital control 
of the process, or measurement devices, and thus 
improve the reproducibility of the process and 
increase the Pleuromutilin productivity. 
 
 

MATERIALS AND METHODS 
 
Data Collection, Pretreatment and Analysis 
 

Nineteen complete sets of data were provided by 
Antibiotical, a subsidiary of the Algerian pharma-
ceutical company Saidal, containing data on: 
biomass concentration (X), glucose consumption (S), 
Pleuromutilin concentration (P), pH evolution, and 
refractive index of the fermentation broth (RI).  

The collected experimental data were interpolated 
using a cubic spline function when necessary and 
smoothed with a moving average digital filter. 
Without smoothing, the ANN tends to capture the 
noise in the system rather than the fundamental 
mechanisms of the underlying process (Laursen   
et al., 2007) which results in a lower efficiency and 
a longer time to train the ANN. 
 
ANN Development Procedure 
 
Models Description 
 

A neural network (NN) is a computational 
framework that is inspired by biological neural 
systems. It consists of a number of interconnected 
simple processing units called artificial neurons. One 
of the most popular neural network paradigms 
applied to the modeling of a wide range of nonlinear 
systems, especially chemical and biological engi-
neering processes, is the feed-forward back 
propagation neural network (FFNN) (Lee and Park, 
1999; Silva et al., 2000), which has been used 
throughout this paper with forecasting horizon and 
supervised learning. 

The proposed FFNN consists of three models that 
are characterized by the same general structure 
including an input layer, one or two hidden layers 
and an output layer for the prediction of biomass, 
glucose and Pleuromutilin concentration profiles 
during fermentation.  

A set of input variables was identified for each 
model: pH, refractive index (RI), initial glucose 
concentration (S0), initial inoculum concentration (X0) 
and fermentation time (t). A preliminary analysis 
based on the improved stepwise methods used for 
testing the contributions of NN inputs revealed that 
these variables exhibited the highest influence on 
process performance; more details on this technique 
can be found in Gevrey et al. (2003). 

The statistical analysis of input and output data is 
shown in Table 1. 

 
Table 1: Statistical analysis of input and output 
data. 
 
 STD Mean 

t (h) 
pH 
RI 
X0 (%) 
S0 (g/l) 
X  (%) 
S  (g/l) 

P (mg of product/g of biomass) 

83,7 
0,3 
0,9 
1,7 
2,8 

15,7 
4,3 
1,3 

140 
7 

2,9 
4 

24,8 
45,1 
15,1 

1,7 
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Models Development 
 

In this study, a procedure based on the development 
and optimization of the architecture of a feed-forward 

network is advanced. It is based, as described in 
Figure 1, on the design of four FFNN sub-models which 
differ by the type of transfer function and the type of 
learning algorithm commonly used in biotechnology. 

 

 
Figure 1: Flow diagram for feed-forward neural network development. 
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In order to make the training of the four sub-
models more efficient by preventing the transfer 
function from becoming saturated and making the 
training of the networks very fast, all inputs and 
outputs were scaled in the range (SR) 0 to 1 and -1 to 
1 depending on the hidden transfer function (HTF) 
used (log-sigmoid or hyperbolic tangent sigmoid, 
respectively), using the following scaling equation: 
 

min
N max min min

max min

x xx (y y )* y
x x

⎛ ⎞−
= − +⎜ ⎟−⎝ ⎠

     (1) 

 
where Nx  is the normalized value of the parameter x 
(t, pH, RI, 0X , 0S , X, S or P); maxx  and minx  are the 
maximum and minimum values of x, respectively; 

maxy  and miny can take the values 0 and 1 or -1 and 1. 
For all sub-models, the linear transfer function was 
attributed to the output layer. 

Depending on the most successful and commonly 
used back propagation training algorithm, two 
enhancement generalization techniques were used. 
Over-fitting or poor generalization capability occurs 
when a neural network over learns during the 
training period. As a result, such a too well-trained 
model may not perform well on an unseen data set 
due to its lack of generalization capability. To 
overcome this problem, early stopping and Bayesian 
regularization methods were applied with the most 
successful Levenberg-Marquardt (MATLAB code 
trainlm) and Bayesian regulation (MATLAB code 
trainbr) back propagation training algorithms, 
respectively (The Mathworks Inc., 2010).  

The early stopping technique is a very common 
practice in neural network training and often 
produces networks that generalize well. This 
technique is based on the division of data sets into 
three parts: training, validation, and test sets. The 
network is trained using the training set to minimize 
the error and checked with the validation set after 
each iteration to prevent over learning for the 
training set and loss of ability to generalize (Bishop, 
1995; Pigram and MacDonald, 2000). As a final 
check, the test set is used on the network to make 
sure that the network performs and generalizes well 
(Hirschen and Schafer, 2006; Hagan et al., 1996; 
Asensio-Cuesta et al., 2010).  

The Bayesian regularization is a more sophisticated 
approach to improve generalization. It was first used 
by MacKay (1991). This method not only minimizes 
a linear combination of squared errors and weights, 
rather than simply the squared errors, but also 

modifies the linear combination so that, at the end   
of the training, the resulting network has good 
generalization qualities (MacKay, 1991; Danaher    
et al., 2004; Hagan et al., 1996; The Mathworks Inc., 
2010).  

In our work, the available data (551 samples) 
were randomly split into three distinct subsets, 
reserving 60% of the data (385 samples) for the 
training phase, 20% (83 samples) for the validation 
phase and the remaining 20% (83 samples) for the 
test phase.When early stopping was applied, the 
training and validation sets were used for the 
purposes described previously, whereas with Bayesian 
regularization the validation set was added to the 
training set to train the models. The test set for both 
techniques was used to test the generalization of the 
trained FFNN sub models. 

In order to optimize the architecture for each sub-
model, thus determining the number of hidden layers 
and the number of nodes in each layer, a trial-and-
error procedure was implemented as described in 
Figure 1. The number of hidden layers (L) varied 
from 1 to 2 layers and the number of hidden neurons 
(N) in each layer varied from 3 to 30 neurons 
according to the forward method (Heaton, 2005). 

The performances of various sub-models were 
evaluated in terms of the root mean squared error 
(RMSE) criterion. The RMSE was calculated using 
the following equation: 
 

( )2cal exp
1RMSE y y
N

= −           (2) 

 
where N is the total number of data; ycal represents 
the predicted output from the neural network model 
for a given input, while yexp is the experimental 
value. 

The development procedure of the FFNN 
described above was carried out by elaborating a 
MATLAB program under MATLAB Neural Network 
Toolbox ver.7.10 (The Mathworks Inc., 2010). It was 
used to optimize the architecture of the three models 
utilized to predict the concentration profiles of 
biomass, glucose and product, respectively. 
 
Comparison with Unstructured Kinetic Models 
 

The fed-batch culture of Pleuromutilin is 
implemented initially in a batch mode and is then fed 
with a concentrated solution of the limiting substrate 
(undiluted form), resulting in an insignificant 
increase in volume. The fixed volume fed-batch 
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culture can be described by the following mass 
balance equations: 
 
dX FX X
dt V

= μ −              (3) 

 

( )0 S
X S P S

dS F 1 dX 1 dPS S m X
dt V Y dt Y dt

= − − − −     (4) 

 
dP FX P
dt V

= π −               (5) 

 
where X, S and P are the concentrations of biomass, 
substrate and Pleuromutilin respectively; t is the 
current fermentation time; μ is the specific growth 
rate of biomass; π is the specific rate of product 
formation; V is the industrial bioreactor (culture) 
volume; S0 and F are the substrate concentration and 
feed rate of the medium added to the bioreactor, 
respectively; mS is the maintenance coefficient; YX/S is 
the yield of biomass per unit mass of substrate, and 
YP/S is the yield of product per unit mass of substrate. 

As the volume V of the bioreactor used in the 
industrial production of Pleuromutilin is very large 
compared to the feed F, the term F/V is neglected 
and therefore the equations become (Pirt, 1979; 
Stanbury et al., 1999):  
 
dX X
dt

= μ                 (6) 

 

S
X S P S

dS 1 dX 1 dP m X
dt Y dt Y dt

= − − −         (7) 

 
dP X
dt

= π                 (8) 

 
 The specific rates of growth and Pleuromutilin 
formation were modeled by the following equations 
(Patnaik, 2001): 
 

max

S

S
k X S
μ

μ =
+

              (9) 

 
max

2
S i

S
k S S k

π
π =

+ +
            (10) 

 
where kS is the Monod constant; ki is the inhibition 
constant, and μmax and πmax are the maximum values

of μ and π respectively. 
Kinetic simulations were carried out by 

developing a MATLAB program based on four 
stages (Cutlip and Shacham, 2008; The Mathworks 
Inc., 2010): (a) give initial fixed values to the kinetic 
parameters and then integrate the differential 
equations using the ode45 MATLAB function in 
order to obtain the calculated dependent variable 
values; (b) calculation of the sum of squares of the 
difference between the calculated and experimental 
values of the dependent variables; (c) application of 
an optimization program based on the MATLAB 
function “fminsearch", which modifies the kinetic 
parameter values so as to obtain the minimum of the 
sum of squares; (d) re-integrating the differential 
equations by using the optimal kinetic parameter 
values. 

The calculated dependent variable values were 
then compared to those obtained by the optimized 
FFNN models. 
 
 

RESULTS AND DISCUSSION 
 
Model Performances 
 

According to the previous discussion, three neural 
network models were developed with the aim of 
predicting biomass, glucose and Pleuromutilin 
concentration profiles during fed-batch fermentation. 
In order to optimize their structure, four sub-models 
depending on the training algorithms and the transfer 
functions used, were developed for each NN model. 

Table 2 summarizes the performances of the sub-
models in terms of root mean squared error (RMSE) 
for each NN model and their corresponding sub-
models. The resulting structures of the optimized NN 
models are depicted in Table 3. One hidden layer 
was sufficient to predict with enough accuracy the 
biomass, substrate and product concentration profiles. 
It has been proven that the Bayesian regularization 
back propagation training algorithm coupled with its 
corresponding generalization enhancement technique 
train more successfully. 

Figure 2 shows the comparison between experi-
mental values and calculated values obtained by the 
simulation of the optimized NN models. It was proven 
that the proposed approach gives satisfactory results 
with agreement vector values approaching the ideal 
[i.e. α=1 (slope), β=0 (y intercept), R=1 (correlation 
coefficient)] in fitting biomass, glucose, and 
Pleuromutilin profiles.  
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Table 2: NN models and their respective sub-model performances for the test set. 
 

NN1 NN2 NN3 Sub 
models Hidden neurons 

number RMSE* Hidden neurons 
number RMSE* Hidden neurons  

number RMSE* 

Sm1 24 1.1046 21 0.2351 23 0.0054 
Sm2 29 0.4826 25 0.1234 21 0.0018 
Sm3 29 0.4624 18 0.1305 27 0.0016 
Sm4 26 1.1572 27 0.2757 20 0.0060 

*RMSE: Root Mean Squared Error 

 
Table 3: Structure of the optimized NN models. 

 
Input layer Hidden layer Output layer 

NN models Training  
algorithm Neurons  

number 
Neurons  
number 

Activation  
function 

Neurons  
number 

Activation 
function 

NN1 trainbr 5 29 logsig 1 purelin 
NN2 trainbr 5 25 tansig 1 purelin 
NN3 trainbr 5 27 logsig 1 purelin 

 

  
(a) (b) 

 
(c) 

Figure 2: Comparison between experimental and calculated values for the whole data set: (a) biomass, (b) 
glucose, (c) product. 
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From the optimized NN2, represented in Figure 3, 
we can express substrate uptake by a mathematical 
model that incorporates all inputs Ei (time, pH, RI, 
X0, S0) within it as follows: 

The instance outputs Zj of the hidden layer:  
 

5
I H

j H ji i j
i 1

5 5
I H I H
ji i j ji i j

i 1 i 1
5 5

I H I H
ji i j ji i j

i 1 i 1

Z f w E b

exp( w E b ) exp( w E b )

exp( w E b ) exp( w E b )

=

= =

= =

⎡ ⎤
= + =⎢ ⎥

⎢ ⎥⎣ ⎦

+ − − +

+ + − +

∑

∑ ∑

∑ ∑

   (11) 

 
j=1, 2, … , 25 
 
The output S: 
 

25 25
H O H O

0 1j j 1 1j j 1
j 1 j 1

S f w Z b w Z b
= =

⎡ ⎤
⎢ ⎥= + = +
⎢ ⎥⎣ ⎦
∑ ∑         (12) 

 
The combination of equations 11 and 12 leads to 

the mathematical formula for substrate uptake taking 
into account all the inputs Ei (time, pH, RI, X0, S0): 
 

5
I H
ji i j

i 1
5

I H
ji i j25

H i 1 O
1j 15

j 1 I H
ji i j

i 1
5

I H
ji i j

i 1

exp w E b

exp w E b

S w b

exp w E b

exp w E b

=

=

=

=

=

⎡ ⎤⎛ ⎞
⎢ + ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠
⎢ ⎥⎛ ⎞
⎢ ⎥− − +⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥= +

⎛ ⎞⎢ ⎥
+⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠

⎢ ⎥⎛ ⎞
⎢ ⎥+ − +⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑

∑
∑

∑

∑

        (13) 

 
Similarly, biomass and Pleuromutilin concentra-

tions can be expressed by the mathematical 

equations extracted from the optimized NN1 and 
NN3 as follows: 
 

29
H O
1j 15

I Hj 1
ji i j

i 1

1X w b
1 exp( w E b )=

=

⎡ ⎤
⎢ ⎥
⎢ ⎥= +⎢ ⎥
⎢ ⎥+ − +
⎢ ⎥⎣ ⎦

∑
∑

      (14) 

 

27
H O
1j 15

I Hj 1
ji i j

i 1

1P w b
1 exp( w E b )=

=

⎡ ⎤
⎢ ⎥
⎢ ⎥= +⎢ ⎥
⎢ ⎥+ − +
⎢ ⎥⎣ ⎦

∑
∑

       (15) 

 
It is obvious that these FFNN mathematical 

equations for sugar uptake, biomass, and Pleuromutilin 
concentrations contain just the required degree of 
complexity, include the important relevant features 
that are operating conditions and initial conditions, 
and thus can readily be applied in control systems. 
 
Comparison with Unstructured Kinetic Models 
 

In order to establish the developed FFNN models 
as a plausible alternative to the unstructured kinetic 
models, a comparison between the two approaches 
was made in terms of simulation results, which is 
shown in Figure 4.  

It is shown that the developed FFNN models 
outperform the unstructured kinetic models in 
predicting biomass, glucose, and Pleuromutilin 
concentration profiles. 

The proposed forms of the specific rates of 
growth and product formation were suitable for some 
data sets and unsuitable for others. This is due to the 
behavior change of Pleurotus mutilus from one data 
set to another. This will probably require a change in 
the equations of the specific rates from one data set 
to another, thus making difficult their incorporation 
into a control-loop of the process. 

 
 

 
 

Figure 3: Schematic representation of the optimized NN2. 
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(a) 

 
(b) 

 
(c) 
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(d) 

Figure 4: Simulation results: (a) data set 2, (b) data set 4, (c) data set 9, (d) 
data set 17. (The experimental data (symbols) for biomass ( ), glucose ( ) 
and Pleuromutilin ( ); FFNN modeling results are represented by solid lines 
and kinetic modeling results are presented by long dashed lines) 

 
Interpolation Performances 
 

To check the accuracy of the three FFNN models 
previously developed and optimized, two types of 
interpolation databases were used. The first database 
contains a set of intermediate points between the 
experimental points of data set number 6, which was 
part of the learning and testing phases (data set 
number 6 was chosen randomly). The second data-
base was two complete data sets never exploited 
during the learning and the test phases: (a) X0=4% 
and S0=26.6g/L; (b) X0=3% and S0=23.5g/L. The 
results of interpolation performances in terms of root 

mean squared error (RMSE) and in terms of the 
correlation coefficient (R) are summarized in Table 4. 
The quality of fit of the first interpolation data set     
is depicted in Figure 5. An excellent fit to the 
experimental values of biomass, sugar and product 
can be noted. 

The modeling results of the second interpolation 
database derived from the three optimized FFNN 
models are plotted in Figure 6. It can be observed 
that both NN1 and NN3 were able to capture      
the process dynamics very well; however, NN2 
results fitted only fairly the experimental glucose 
concentrations. 

 

 
Figure 5: Simulation results of the first interpolation database (the 
interpolated experimental data (symbols) for biomass ( ), glucose ( ) and 
Pleuromutilin ( ); FFNN modeling results are represented by solid lines) 
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Table 4: Interpolation results in terms of root mean squared error 
(RMSE) and correlation coefficient (R). 

 
1st interpolation database 2nd interpolation database 

 RMSE R RMSE R 
NN1 0.1565 0.9997 1.7100 0.9988 
NN2 0.0531 0.9991 2.1810 0.9508 
NN3 0.0006 0.9999 0.0797 0.9995 

 

 
(a) 

 
(b) 

Figure 6: Simulation results of the second interpolation: (a) X0=4% and 
S0=26.6g/L; (b) X0=3% and S0=23.5g/L. (The interpolated experimental data 
(symbols) for biomass ( ), glucose ( ) and Pleuromutilin ( ); FFNN 
modeling results are represented by solid lines) 

 
 
Although the accuracy of the FFNN models was 

moderately satisfactory, in particular for NN2, more 
historical data covering the whole field of interest 
should be added to the training phase in order to 
increase more and more the predictive quality of the 
FFNN models. 

CONCLUSION 
 

This paper has given one more reason for the 
widespread use of the feed-forward artificial neural 
networks in modeling the fermentation of antibiotics. 
The purpose of the current study was to develop 
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three feed-forward neural network models able to 
assess the three key bioprocess variables (biomass, 
substrate consumption and product) in the industrial 
fermentation of Pleuromutilin produced in a fed-
batch mode. One of the more significant findings to 
emerge from this study is that, unlike the 
unstructured kinetic models, the optimized FFNN 
models could predict with enough accuracy the 
profiles of concentrations for all data sets. 

In addition, mathematical formulae obtained from 
the optimized models not only include the important 
elements of the process, but they are also less 
complex, making their integration into an industrial 
control of the process easier. 

However, artificial neural network modeling 
cannot replace kinetic modeling when trying to 
understand the phenomenon of fermentation. 
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