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Abstract - Natural convection in superimposed layers of fluids heated from below is commonly observed in 
many industrial and natural situations, such as crystal growth, co-extrusion processes and atmospheric flow. 
The stability analysis of this system reveals a complex dynamic behavior, including the potential multiplicity 
of stationary states and occurrence of periodic regimes. In this study, a linear stability analysis (LSA) was 
performed to determine the onset of natural convection as a function of imposed boundary conditions, 
geometrical configuration and specific perturbations. To investigate the effects of the non-linear terms neglected 
in LSA, a direct simulation of the full nonlinear problem was performed using computational fluid dynamics 
(CFD) techniques. The numerical simulation results show an excellent agreement with the LSA results near the 
onset of convection and an increase in the deviation as the Rayleigh number increases above the critical value. 
Keywords: Hydrodynamic Stability; Natural Convection; Multiphase Flow. 

 
 
 

INTRODUCTION 
 

Single layer Rayleigh-Bénard (RB) convection is 
one of the most widely studied systems in the field of 
transport phenomena, mainly due to the large number 
of applications and the relative simplicity of the gov-
erning equations. This system represents a natural 
convection condition occurring in a horizontal layer 
of fluid where energy is added from below and 
removed from above, giving rise to cellular structures 
called Bénard cells (or convective cells) when the 
buoyancy forces are sufficiently stronger than the 
viscous forces. Even though it has been investigated 
for more than a century, the RB problem has been the 
subject of a large number of studies in recent years, 

involving, in particular, modifications of the classical 
RB system. For example, the problem of natural and 
mixed convection in enclosures is very important in 
the study of the cooling of electronic devices and ther-
mal comfort (Fontana et al., 2015; An et al., 2013; 
Mariani and Coelho, 2007). 

The theoretical framework for Rayleigh-Bénard 
convection was presented by Lord Rayleigh in 1916, 
based on experimental results obtained by Bénard 16 
years earlier. Rayleigh showed that the system stabil-
ity is governed by a dimensionless parameter, later 
known as the Rayleigh number ( Ra  ), which repre-
sents precisely the ratio between buoyancy and vis-
cous forces. Whenever the Rayleigh number is below 
a certain critical value, the heat transfer will occur 
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basically by conduction. However, when this critical 
value is exceeded the system becomes unstable and 
evolves to a different equilibrium state where natural 
convection is the main heat transfer mechanism. In 
bifurcation theory terminology, under this condition a 
bifurcation occurs and the critical point corresponds 
to a bifurcation point.  

Different methods can be applied to investigate the 
RB system stability, and linear stability analysis (LSA) 
one of the most commonly used. Although the basics 
of LSA were first described more than a century ago, 
this method is still a very useful and powerful tool 
which is widely used in the study of fluid dynamics 
systems (e.g., Sahu and Matar, 2010; Fontana et al., 
2015a; Sahu and Govindarajan, 2012; Travnikov et 
al., 2015). Due to a rapid increase in the data pro-
cessing capacity, LSA studies are reaching a new 
frontier where the stability of more complex systems 
can be analyzed in a short amount of time. However, 
there are drawbacks associated with LSA, especially 
due to the non-linear terms neglected in this method 
of analysis. The main objective of this study was to 
compare the LSA results with CFD simulations car-
ried out using state-of-the-art software packages 
where the full non-linear form of the governing equa-
tions is considered.  

Through linear stability analysis it is possible to 
define the critical Rayleigh values ( )cRa  as well as 

the wavenumber associated with the perturbation that 
first makes the RB system unstable ( ).c   As de-
scribed by Pellew and Southwell (1940), for unbound 
two-dimensional systems with Newtonian fluids, the 
critical parameters are governed only by the boundary 
conditions applied to the velocity vectors at both 
horizontal boundaries, which can be treated as rigid 
walls or free surfaces. The values obtained consider-
ing the possible combinations, summarized in Table 1, 
show that the presence of a rigid wall significantly in-
creases the critical parameters, stabilizing the system. 
In the CFD simulations, the change in the steady-state 
condition can be observed by a sudden increase in the 
Nusselt number as the Rayleigh number is increased. 
When conduction is the only heat transfer mechanism, 
the Nusselt number is constant, while the presence of 
convective motion causes an increase in the Nusselt 
number.  

The presence of a second fluid layer significantly 
increases the system complexity and can affect the 
stability in many ways, for example, through competi-
tion between convective modes in each layer, control 
of the flow in one layer over the flow in the other, 
interface deformation and unstable convective modes 
controlled by interfacial tension gradients. Several 

important aspects of the stability of multi-layer fluid 
systems have been known for decades, for example, 
those related to the Kelvin-Helmholtz and Rayleigh-
Taylor instabilities (Chandrasekhar, 1961). Neverthe-
less, due to the complex dynamic behavior and the 
large number of governing parameters, stability analy-
sis of the flow involving superimposed layers of fluids 
has been studied by several authors in recent years 
(Mishra et al., 2012; Kushnir et al., 2014; Sahu and 
Govindarajan, 2011; Redapangu et al., 2012) and is 
still an ongoing topic in the field of fluid dynamics.  
 
Table 1: Critical parameters for single layer Ray-
leigh-Bénard convection (Pellew and Southwell, 
1940). 
 

Boundary condition cRa  c  

Rigid – rigid 1707.8 3.117 
Rigid – free 1100.7 2.682 
Free – free 657.5 2.221 

 
Besides the theoretical importance in the field of 

stability analysis, the study of the stability of natural 
convection in multi-layer systems plays an important 
role in several practical applications, as noted by 
Anderek et al. (1998). Systems where stratification 
occurs due to differences in density or thermal proper-
ties are fairly common in the analysis of geophysical 
systems, atmospheric flow, astrophysics and indus-
trial processes. The study of these systems was origi-
nally motivated by the hypothesis that the Earth’s 
mantle is stratified as a result of a seismic discontinu-
ity observed at a depth of approximately 660 km 
(Ogawa, 2008). In recent decades the study of double-
layer natural convection was extended to several tech-
nological applications of significant interest in the 
chemical engineering field, such as liquid encapsu-
lated techniques for crystal growth (Li et al., 2009), 
the processing of glass and dispersion materials 
(Prakash, 1997), micro-channel chemical reactors 
(Fudym et al., 2007) and the processing of electronic 
materials under micro-gravity conditions (Gupta et 
al., 2007). 

In the stability analysis of double-layer RB con-
vection several mechanisms that can make the system 
unstable need to be considered, and in most cases 
these mechanisms are associated with different time 
and length scales, particularly when the difference in 
the depth of each layer or in the physical properties of 
the fluids in each layer is significant. Therefore, a 
global analysis considering all of the possible mecha-
nisms cannot be easily carried out using a single 
method. As previously mentioned, LSA is among the 
most commonly used methods of hydrodynamic 
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stability analysis due to its relative simplicity and 
flexibility. However, this method has intrinsic limita-
tions derived from the fact that high-order terms are 
neglected in the linearization process. In this study, 
direct simulation of the full non-linear set of govern-
ing equations using modern computational fluid 
dynamics (CFD)-based techniques was performed 
and the results compared with those obtained through 
linear stability analysis (LSA) in order to evaluate the 
comparative performance of each method. 
 
 

MATHEMATICAL MODEL 
 

A scheme of the geometrical configuration con-
sidered is shown in Figure 1. The system consists of 
two layers of immiscible fluids confined between 
horizontal rigid walls. The system is assumed to be 
unbound in the z and x directions; however, perturba-
tions in these directions are also included in the model. 
The thickness of the lower layer, 1d  , is used as the 
length scale with the bottom wall placed at the dimen-
sionless position 1 y  and the upper wall placed at 

2 1 0/ y d d d  , where 2d   represents the height of 
the upper layer. The temperatures of these two walls 
are considered to be constant and the analysis was 
limited to the case H CT T  where HT  is the tempera-

ture of the bottom wall and CT  the temperature of the 
top wall. The non-deformed interface is positioned at 

0y   and the interface deformation is evaluated 

using the function ( , , ) x z t  . 
 

 
Figure 1: Physical domain. 

 
Each layer has its own set of governing equations, 

these equations being linked by the boundary condi-
tions at the interface. It is assumed that the flow in 
both layers is incompressible, the fluids have Newto-
nian behavior and the Boussinesq approximation is 
valid for the entire range of conditions evaluated. 
Under these conditions the governing equations are 
the standard Navier-Stokes and energy and mass 
conservation equations. No-slip and no-penetration 
boundary conditions are applied to the velocity vector 
at the solid walls ( 1 y   and 0y d  ), while fixed 

temperatures are defined at the same locations. At the 
interface ( y  ), conditions of normal and tangential 

velocity continuity, as well as the shear and normal 
stress balance, are used to determine the velocity field, 
while for the energy conservation equation conditions 
of temperature and heat flux continuity are assumed. 

In order to characterize the stability properties of a 
given base state through linear stability analysis, the 
variables in the set of governing equations are ex-
pressed as the sum of the base state and an infinitesi-
mal perturbation, and thus the dynamic behavior of 
these perturbations can be used to define the state 
stability: if the perturbations decrease over time and 
eventually disappear the system will be stable, other-
wise it will be unstable. In LSA only infinitesimal 
perturbations are considered and thus all of the high-
order terms can be neglected. Moreover, non-dimen-
sional variables will be introduced by using 1d  as the 

length scale, 1 1/ d  as the scale for the perturbation 

velocity, 2
1 1 1 1/ d   for the pressure and 1 1d  as the 

scale for the temperature, where 1  , 1   and 1   are, 
respectively, the thermal diffusivity, density and kine-
matic viscosity of the lower layer and 1  is the static 
temperature gradient between the non-deformed inter-
face and the bottom wall. 

The base state represents a solution for the set of 
governing equations and the related boundary condi-
tions. In this case, the base state is associated with the 
horizontal velocity ,1 ,2,( )B BU U   and temperature 

,1 ,2, )B B(T T  in the lower (1) and upper (2) layers. To 

determine the onset of natural convection in a double-
layer RB convection system, the base state corre-
sponds to the stationary fluid ,1 ,2( 0) B BU U  with 

a linear temperature profile associated with heat 
transfer only by conduction, given by: 
 

,1 1( 1)  B HT T ψ y             (1) 

 

,2 2 0( )  B CT T ψ y d            (2) 

 
where 2  is the static temperature gradient between 
the top wall and the non-deformed interface. 

For an equilibrium point to be considered stable it 
needs to be stable with respect to any possible 
infinitesimal perturbation, otherwise it is unstable. As 
described by Chandrasekhar (1961), one way to 
analyze the influence of any possible perturbation is 
to express the perturbed variables in terms of normal 
modes. For example, a generic variable  can be ex-
pressed as: 
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( )( , , , ) ( )   i x z ts x y z t s y e             (3) 
 

where ( )s y  is the eigenfunction associated with the 
original variable,   and   are wavenumbers in the x 

and z directions, respectively, and  r ii    is the 

wave velocity, where r  is the phase velocity and i  
the temporal growth rate of the perturbation. A condi-
tion where 0i   represents a damped perturbation 

and a stable system, while in cases where 0i  the 
perturbation will grow and the base state will be un-
stable. The condition 0i  is called neutral stability 
and represents a bifurcation point where the change in 
the steady-state solution occurs. The main objective 
of LSA is to obtain the values for the parameters 
where this bifurcation point occurs. In this study, we 
limit our analysis to temporal instabilities. Thus, the 
wavenumbers    and    are real values, which are 
used as parameters to find the critical Rayleigh number.  

After some manipulation, the pressure can be elimi-
nated and the equations governing the system stability 
in the lower layer can be expressed as (see Fontana 
(2014) and Fontana et al. (2015a) for details):  
 

2 4 2
21 1 1

12 4 2

4 2
1 1

2
Pr


    

 

 

i d d d
k k

dy dy dy

k k Ra

   

 
       (4) 

 
2

21
1 1 12

   
d

i k
dy

              (5) 

 

where 1  and 1  represent the perturbation of the ver-

tical velocity and temperature, respectively, 2k  is de-

fined as 2 2 2 k    and the Prandtl and Rayleigh 
numbers are given by:  
 

4
1 1 1 1

1 1 1

Pr  
g d

Ra
  
  

         (6) 

 

where 1  is the coefficient of thermal expansivity of 

the lower layer and g is the gravitational acceleration. 
The equations for the upper layer (denoted by the 
subscript 2) can be expressed as: 
 

2
22

22

4 2
2 4 22 2

0 2 0 24 2

Pr

2


   

 


    

 

i d
k

dy

d d
k k k Ra

dy dy

  

    

     (7) 

2
22

2 0 2 0 22


     

 

d
i k

dy

             (8) 

 
where the subscript 0 denotes the relation between the 
parameter evaluated at the upper and at the lower 
layer.  

As demonstrated by Hesla et al. (1986), when the 
fluids are considered incompressible, homogeneous, 
immiscible and with constant interfacial tension, 
Squire’s theorem is valid and only two-dimensional 
perturbations need to be considered to determine the 
lowest Rayleigh value where the system becomes 
unstable. Therefore, the condition 0  will be used 
to determine the system stability, which implies that 

2 2k  . 
The no-penetration condition applied at the solid 

walls ( 1 y  and 0y d ) can be expressed as:  
 

1 2 0                  (9) 
 
while the no-slip conditions gives: 
 

1 2 0 
d d

dy dy

 
            (10) 

 
At the non-deformed interface ( 0),y  the conti-

nuity of normal and tangential velocities, respectively, 
is given by: 
 

1 2                (11) 
 

1 2 0 
d d

dy dy

 
            (12) 

 
The continuity of shear stress at the interface 

(neglecting the thermocapillary effect) results in: 
 

2 2
2 2 21 2

1 2 02 2

  
        

  

d d
k m k k

dy dy

        (13) 

 
where m is the relation between the dynamic viscosity 
in the upper and lower layers and 0   is the dimen-
sionless interface deformation expressed in terms of 
normal modes. Using the kinematic condition, 0  can 
be expressed as:  
 

1
0

(0)


i




             (14) 

 
The last boundary condition for Equations (4) and 
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(7) is the balance of normal stress at the interface, 
given by: 
 

3
21 1 1

3

3
22 2 2

3
0

2 2
0

3
Pr

3
Pr

( )


   

 


    

 

 

d d d
k

dy dydy

d d d
m k

dy dydy

k Ra k S

   

   




      (15) 

 
where the interfacial tension-based Schmidt ( )S  
number and a Rayleigh number based on the density 
difference between the upper and lower layers ( )Ra  

are defined as: 
 

2
1 1 1

1 1 1 1 1 1

3
1 2

1 1 1

1

  


  

 

d d d
Ma S

dT

gd
Ra

  
     


  

   (16) 

 
where   is the interfacial tension and T  is the tem-
perature. 

The conditions of fixed temperature at the solid 
walls ( 1 y  and 0y d ) are expressed as: 
 

1 2 0                (17) 
 
while the conditions of continuity of temperature and 
heat flux at the interface give, respectively: 
 

1 2 0 0(1 )                (18) 

 

1 2
0

d d
k

dy dy

 
            (19) 

 
To solve the generalized eigenvalue problem ob-

tained, a pseudo-spectral method using Chebyshev 
polynomials was applied (see Canuto et al. (2006) for 
further details). For example, the perturbation in the 
temperature of the bottom layer, 1 , is expressed as: 

 
1

1
0

( )
 



 
k N

k
k

k

T y             (20) 

 
where kT  is the Chebyshev polynomial of order k  and 

1
k   is the coefficient associated with .kT   To validate 

the resolution methodology, stability curves obtained 
with the proposed method were compared with results 
reported by Cardin et al. (1991), as seen in Figure 2. 
An excellent agreement between the results can be 
observed, even considering the existence of a periodic 
state. The two branches of solution observed in this 
figure correspond to the two most unstable modes and 
the merging of these branches through a Hopf bifurca-
tion gives rise to the periodic state.  
 

 
Figure 2: Comparison between the stability curves 
presented by Cardin et al. (1991) (lines) and those 
obtained with the proposed methodology (points). These 
results correpond to the case 0 0.76,d   0 0.54,k  

0 0.77, 0 1.27, 0 0.67, 0 1.92, Pr 8400,

0S  and 1 0 Ra . 

 
Direct simulation analysis based on CFD tech-

niques was performed using the ANSYS Fluent 14.0 
software, where the set of governing equations is dis-
cretized through a multigrid finite volume approach. 
The ANSYS-CFD package is widely used to solve 
natural convection problems with high accuracy (see 
Fontana et al. (2011, 2013a) and Ghalambaz et al. 
(2014), for example). The hypothesis applied, the 
governing equations and the boundary conditions 
applied at the solid walls used in the CFD simulation 
are the same as those previously described for the 
LSA. To evaluate the interface deformation, the vol-
ume of fluid (VOF) method was used. This method 
computes the interface position based on the velocity 
and pressure fields and therefore it is not necessary to 
specify the interface shape or even the boundary 
conditions at the interface, since these are directly 
obtained by the method. Further details regarding the 
VOF method can be found in Fontana et al. (2013) 
and Mancusi et al. (2014). A grid convergence test 
was performed and we found that a mesh with around 
105 elements is sufficient to keep the solution stable 
and provide the desired convergence criteria of 10-6. A 



 
 
 
 

612                                          É. Fontana, E. Mancusi, A. A. Ulson De Souza and S. M. A. Guelli U. Souza 
 

 
Brazilian Journal of Chemical Engineering 

 
 
 
 

non-uniform elements distribution was used, with a 
greater concentration of elements close to the inter-
face and the solid walls, where more intense gradients 
in the field variables are expected. To define the time-
steps used, the Courant number was set to one. This 
condition resulted in time-steps of the order of 
seconds, depending on the intensity of the convective 
motion. 
 
 

RESULTS 
 

The physical properties were chosen so that the 
Rayleigh numbers for the two layers were the same 
when 0 1.0d   ( 0 1  , 0 1  , 0 1  , 0 1   and 

0 1k  ). Unless otherwise stated, these values were 

used to obtain all results discussed below. Moreover, 

the conditions Pr 1  and 510Ra  are considered. 

This Ra  value corresponds to a common value found 

in the laboratory experiments. As noted by Go-
vindarajan and Sahu (2014), one of the most im-
portant parameters in double-layer convection is the 
viscosity difference in each layer. Thus, several au-
thors have investigated the effect of a viscosity 
difference in double-layer Rayleigh-Bénard convec-
tion (see Rasenat et al. (1988) and Cardin et al. 
(1991), for example). In this paper, we also assume 
that 1m   in order to investigate the effect of the 
other parameters, in particular the relation between 
the thickness of each layer.  

Figure 3 shows the stability limit curve obtained 
through LSA, where the critical Rayleigh number is 
presented as a function of the depth of the upper layer 

0( ).d  The points obtained by CFD simulation for 

several 0d  values are also reported in Figure 3. These 
points are classified as stable or unstable, depending 
on the presence or not of convective motion. 

As can be seen in Figure 3, the limits defined by 

the linear stability analysis are in excellent agreement 
with the results of the CFD simulations, with only one 
stable point appearing in the unstable region. How-
ever, around the critical value, the onset of convection 
is not easily defined in the CFD simulations, since a 
theoretically infinite time would be necessary for a 
stationary convective state to be developed. It should 
be noted that the cRa   values obtained in the cases 

0 0.0d  and 0 1.0d  correspond exactly to the values 
for the critical Rayleigh number for single layer RB 
convection when, respectively, rigid-rigid walls and 
rigid wall-free surface conditions are considered (see 
Table 1). This indicates complete consistency 
between the double and single-layer models.  

Besides the onset of convection, the LSA allows 
the spatial distribution of the velocity and temperature 
fields to be obtained through eigenfunctions. A com-
parison between these eigenfunctions and the actual 
velocity and temperature profiles (deviation from the 
base state) obtained from the CFD simulations is 
shown in Figure 4 for 0 0.8d  and Ra  close to the 

critical value. 
The profiles obtained from the LSA and the CFD 

simulation of the full nonlinear problem show ex-
cellent agreement, in particular in relation to the ve-
locity profiles. Despite a small deviation in the mag-
nitude in comparison with the CFD results, the LSA 
eigenfunctions of the temperature deviation show the 
same tendency. A small change in the Rayleigh 
number does not affect significantly the profiles in 
any of the cases. A consistency in the eigenfunctions 
can also be observed for different 0d  values, as re-

ported in Figure 5. The Rayleigh values adopted for 
each case correspond to the unstable point closest to 
the critical point in Figure 3. These results show that, 
despite all of the simplifications and approximations 
made in the linearization process, LSA is able to 
describe very well the system behavior near the 
critical point.  

 

 
Figure 3: Comparison between stability limits obtained through LSA (line) and DNS (points). 
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Figure 4: Comparison between eigenfunctions obtained through LSA and velocity and temperature 
profiles obtained with CFD simulations for 0 0.8d . 

 

 
Figure 5: Comparison between eigenfunctions obtained through LSA and velocity and temperature 
profiles obtained with CFD simulations 0d =1.0, 0.6 and 0.4. 

 
 
One of the most restrictive hypothesis of the LSA 

using normal modes is that the interface deformation 
is not strong enough for the high-order terms to be 
neglected. In other words, this condition can be ex-
pressed as 1 d . On the other hand, the main ad-
vantage of using the VOF method to investigate 
double-layer convection is that it is possible to track 
the interface position at each point as a function of the 
velocity and temperature fields. The interface defor-
mation is controlled by the normal stress balance, in 
particular by the value of .Ra   If this value is not 

high enough to keep the interface stable, surface 
waves will emerge and eventually the system will 

shift to an unstable state. The condition 0Ra  will 

not be considered since it represents, by definition, a 
Rayleigh-Taylor instability condition.  

The vertical velocity and temperature deviation 
profiles, obtained through CFD simulations, are shown 

in Figure 6 for 310Ra  and 0 1.0d , together with 

the interface position for several values of . cRa Ra

To facilitate the visualization of the results, allowing 
the use of a single legend, the values for 1425Ra  
were multiplied by a scale, as indicated in the figure 
for each case.  

For 310Ra  the critical Rayleigh number is 
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approximately 1163 and therefore the results shown in 
Figure 6(a) are very close to the critical value. In this 
case, the interface deformation can be neglected and 
the velocity and temperature profiles are similar to 
those obtained at higher Ra values. For 1234Ra  

(Figure 6(b)), a small deformation in the interface po-
sition can be observed; however, the condition 

1 d  still holds true and the velocity and tempera-

ture profiles are very similar to 1163Ra . 
 

 

Figure 6: Influence of interface deformation on ve-

locity and temperature fields for 310Ra .  

 
Even though the interface deformation is negligi-

ble when  is close to the critical value, as the Ray-
leigh number increases it becomes stronger, as seen in 
Figure 6. For 1371Ra   (Figure 6(c)) the velocity 
profiles are significantly different and the convective 
cells become distorted. The interface acquires a wavy 
shape, with the maximum points (crest) appearing in 
the region where the fluid ascends, and the vertical 
velocity in the lower layer is positive near the inter-
face and the minimum points appear in the descending 
region. For 1425Ra   the deformations further in-
crease and the deviation from the linearized model is 
more significant.  
 
 

CONCLUSIONS 
 

In this paper a comparison between linear stability 
analysis using normal modes and numerical simula-
tion (with CFD techniques) of double-layer Rayleigh-
Bénard convection has been presented. LSA tech-
niques allow the determination of the critical value at 
which the convection starts; however, the lineariza-
tion process neglects high-order terms and this can 
lead to deviations from the actual system behavior. 

The CFD simulations, on the other hand, solve the full 
non-linear system of governing equations, but they are 
much more computationally expensive. The results 
show that the performance of LSA is excellent near 
the critical point and thus it can be used to define the 
critical values. Moreover, at this limit the velocity and 
temperature profiles obtained with LSA accurately 
describe the system behavior. However, as the inten-
sity of the convective motion increases, the deviations 
from the linearized model increase and the velocity 
and temperature profiles given by the LSA are no 
longer consistent. In particular, a higher velocity at the 
interface leads to the development of interfacial 
waves, causing a strong deformation in the tempera-
ture and velocity fields. 
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NOMENCLATURE 
 
d  Fluid layer thickness (m) 
g Acceleration of gravity (m/s2) 
Pr Prandtl number (–) 
Ra  Rayleigh number (–) 
Ra  Density-based Rayleigh number (–) 

S  Interfacial tension-based Schmidt number 
(–) 

T Temperature (K) 

CT  Temperature of the upper wall (cold) (K) 

HT  Temperature of the bottom wall (hot) (K) 

kT  Chebyshev Polynomial of order k (–) 

U  Horizontal velocity (m/s) 
x Dimensionless horizontal direction (–)
y Dimensionless vertical direction (–) 
z Dimensionless transversal direction (–) 
 
Greek Letters 
 
 Perturbation wavenumber in the x direction 

(–) 
  Perturbation wavenumber in the z direction 

(–) 

i  Thermal expansion coefficient of the i-fluid 
(1/K) 

 Interfacial tension (N/m) 
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  Interface deformation (m) 
  Perturbation of the temperature (–) 
  Thermal diffusivity (m2/s) 
  Kinematic viscosity (m2/s) 
  Fluid density (kg/m3) 
  Perturbation of the vertical velocity (–) 
  Static temperature gradient (K) 
  Wave velocity/eigenvalue (–) 
 
Subscripts 
 
B  Base state 
c  Critical value 
0  Ratio between upper and lower layer 
1 Lower layer 
2  Upper layer 
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