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Abstract - In this work we propose a new reduction method for phase equilibrium calculations using a 
general form of cubic equations of state (CEOS). The energy term in the CEOS is a quadratic form, which is 
diagonalized by applying a linear transformation. The number of the reduction parameters is related to the 

rank of the matrix C  with elements (1-Cij), where Cij denotes the binary interaction parameters (BIPs). The 
dimensionality of the problem depends only on the number of reduction parameters, and is independent of the 
number of components in the mixture. 
Keywords: Equation of state; Binary interaction parameters; Reduction method; Linear transformation. 

 
 
 

INTRODUCTION 
 
 For two-phase flash calculations, the algorithms 
used to ensure the convergence toward the solution 
iterates on nc (number of components in the mixture) 
independent variables (which can be mole fractions, 
number of moles or logarithms of equilibrium 
constants). In many petroleum and chemical 
engineering applications, which may require a 
considerable number of flash calculations, it is 
practically impossible to have an extended description 
of mixtures composition, because this imply solving 
large dimension problems.  Usually, individual 
components are lumped into pseudocomponents to 
reduce the problem dimensionality. An alternative way 
of reducing the dimensionality of the problem is the 
use of the so-called reduction methods. 
 In any reduction method, a quadratic form is 
replaced by the sum of a small number of scalar 

products. This leads to a system of a reduced number 
of equations, usually much less than nc. The number 
of independent variables is not dependent on the 
number of components in the mixture. 
 The first reduced flash model was presented by 
Michelsen (1986). Michelsen showed that the phase 
equilibrium problem can be solved using only three 
independent variables if all BIPs in the CEOS are 
zero. Michelsen’s three-equation flash is extremely 
efficient, but the restriction on BIPs may be 
unacceptable for many actual problems. Jensen and 
Fredenslund (1987) extended the Michelsen method, 
for nonzero BIPs of only one component in the 
mixture, by solving a system of only five equations. 
The reduction theorem introduced by Hendriks 
(1988) establish the conditions under which a 
reduced number of equations can be solved for flash 
calculations and phase stability. A set of independent 
variables for reduced flash using the spectral 
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decomposition (SD) was given by Hendriks and van 
Bergen (1992). If the matrix C  has only m nonzero 
eigenvalues, then the number of independent 
variables is m+2. A different reduction method, 
requiring 2c+3 (where c is the number of 
components with nonzero BIPs) independent 
variables was presented by Nichita and Minescu 
(1998, 2004). For an exact solution, the 2c+3 method 
needs the same number of independent variables as 
SD. However, SD provides good approximation of 
the solution if terms corresponding to small nonzero 
eigenvalues are neglected. Care must be taken when 
some nonzero eigenvalues are removed, because the 
one-diagonal condition is no more fulfilled, and 
proper scaling is required. More recently, the 
hypersphere decomposition of C  has been used to 
reduce dimensionality, even for full-ranked C  
matrices (Nichita, 2004b).  

For any reduction method, the reduction 
parameters are defined as (Hendriks, 1988) 
 

nc

i i
i 1

Q q x ; 1,mα α
=

= α =∑            (1) 

 
and 
 

nc

M i i
i 1

Q B B x
=

≡ =∑                  (2) 

 

where M=m+1, and iq ; 1,m;i 1,ncα α = = are  the 
elements of the reduction matrix (that depend on the 
reduction method used), with Mi iq B= . 

The vector of the M reduction parameters is 
 

( )T
1 2 mQ ,Q ,...,Q ,B=Q            (3) 

 
The key factor that allow to solve a system of 

equations of a reduced dimensionality for the flash 
problem is that the fugacity coefficient depends at 
given pressure and temperature only on the 
reduction parameters, and not on composition, 

( )i i p,T,ϕ = ϕ Q . 

The reduction method proved to be a useful tool 
for phase equilibrium calculation. We have solved 
different kinds of phase equilibrium problems: two-
phase flash calculations (Nichita and Minescu, 1998, 
2004, Nichita et al., 2003), phase stability analysis 
(Nichita et al., 2002), multiphase equilibrium 
calculations (Nichita et al., 2004), critical point 
calculation (Nichita, 2005, 2006), and phase 

envelope construction for mixtures with many 
components (Nichita, 2004a). 

This paper presents a new reduction method and 
illustrates the diversity of approaches suitable for 
reducing the dimensionality of the phase equilibrium 
problems. The proposed method is based on the 
procedure suggested by Tisza (1977) for quadratic 
forms diagonalization by using linear transformations. 
 
 

THE CUBIC EQUATION OF STATE 
 

In this work, a general form of two-parameter 
CEOS is used. It incorporates the Soave-Redlich-
Kwong (SRK, Soave, 1972) and Peng-Robinson 
(PR, Peng and Robinson, 1976) CEOS. However, it 
is worth noting that any EOS that observes the 
restrictions of the reduction theorem can be used. 
 

( )( )1 2

RT a
p

v b v b v b
= −

− + δ + δ
                     (4) 

 

For the SRK CEOS δ1=0 and δ2=1, and for the PR 

CEOS 1 21 2; 1 2δ = + δ = − . 
With, 2 2A ap / R T= , B bp / RT= , and Z pv / RT= , 

the implicit form of the CEOS is obtained 
 

( )

( ) ( )

( )

3 2
1 2

2
1 2 1 2

2
1 2

Z 1 B 1 Z

A B B B 1 Z

AB B B 1 0

+  δ + δ − −  + 

 + + δ δ − δ + δ + −
 

 − + δ δ + =
 

              (5) 

 
The van der Waals mixing rules are used for the 

energy, A, and for the volume, B, coefficients of the 
CEOS 
 

nc nc

i j ij
i 1 j 1

A x x A
= =

=∑∑                                      (6) 

 
nc

j j
j 1

B x B
=

=∑                                        (7) 

 
where: 
 

( )ij ji ij i jA A 1 C A A ;i, j 1,nc= = − =                (8) 

 

( ) 2
a ri

i i ri2
ri

p
A (1 m 1 T ;i 1,nc

T

Ω  = + − =
 

          (9) 
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b ri
i

ri

p
B ;i 1,nc

T

Ω= =                                        (10) 

  
In Eq. (9) and (10), aΩ , bΩ , and )( iim ω  are 

EOS dependent. Their particular values for  the SRK 
and the PR CEOS can be found for example in 
Michelsen (1986). 

The fugacity coefficients are given by 
 

( ) i
i

i i 1

2

B
ln Z 1 ln(Z B)

B

B Z BA
2 ln

B A B Z B

ϕ = − − − −

 ψ + δ − −   ∆ + δ   

; i=1,nc    (11) 

 
with: 
 

nc

i ij j
j 1

A x
=

ψ =∑ ; i=1,nc         (12) 

 

and 1 2∆ = δ − δ . 
 

 
THE PROPOSED REDUCTION METHOD 

 
The energy term in the CEOS given by the van 

der Waals mixing rules is a quadratic form 
 

( )
nc nc

ij i j i j
i 1 j 1

A 1 C x x
= =

= − α α∑∑                         (13) 

which can be written as 
 

nc nc

ij i j
i 1 j 1

A u
= =

= ξ ξ∑∑                                         (14) 

 

where i iAα = , 

 

i i ixξ = α                           (15) 
 
and 
 

( )ij jiu 1 C= −                 (16) 

 
Obviously, ij jiu u= . 

 
The key of the reduction method is to express the 

CEOS energy parameter A as 
 

nc
2

i i
i 1

A Q
=

= λ∑                 (17) 

 
that is, to diagonalize the quadratic form (14). 

Usually, the diagonalization is performed by 
spectral decomposition of the matrix ≡ CU  
(Hendriks and van Bergen, 1992). In this work we 
propose a different approach for diagonalization, by 
using a linear transformation (Tisza, 1977). 

The transformation connecting mole fractions 
(via ξi) to Qi is of the “triangular” form 

 
 
 

1 1 12 2 13 3 1nc nc

2 2 23 3 2nc nc

i i inc nc

nc nc

Q a a ... a

Q a ... a

... ... ... ... ... ... ... ... ... ... ...

Q ... a

... ... ... ... ... ... ... ... ... ... ...

Q

= ξ + ξ + ξ + + ξ
 = ξ + ξ + + ξ

 = ξ + + ξ



= ξ

                (18) 

 

 
where 
 

ij
ij

ii

u
a ;i, j 1,nc

u
= =                (19) 

 
Eq. (18) reads 

nc

i i ij j
j i 1

Q a ;i 1,nc
= +

= ξ + ξ =∑                 (20) 

 
and represents a linear transformation of the form 
 

=Q Tξ                                                                   (21) 
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that connects the reduction parameters to mole 
fractions via ξ. The elements of the matrix T are 
 

ij

ij

0 j i

t 1 j i

a j i

 <
= =
 >

                (22) 

 
The matrix U is singular in many cases, i.e., its 

rank r<nc. If the rank of U is r=nc-s, the last s 
diagonal elements in Eq. (17) are vanishing, 

r 1 nc... 0+λ = = λ = , therefore we have 
 

i
0;i 1,m

0;i m 1,nc

≠ =
λ = = +

          (23) 

 
The coefficients λi can be calculated by a step-by-

step construction of the linear transformation in a 
straightforward manner. However, a simple 
procedure suggested by Tisza (1977) can be used, 
starting from the observation that the linear 
transformation (18) is unimodular, hence the 
determinant of U is invariant 
 

1 2 nc nc... Dλ λ λ =                (24) 
 
with 
 

( )ncD det= U                 (25) 

 
Eq. (24) also holds for the principal minors Dk of Dnc 
 

1 2 k k... D ;k ncλ λ λ = <         
 (26) 
 
where 
 

11 12 1k

21 22 2k
k

k1 k2 kk

u u ... u

u u ... u
D

... ... ... ...

u u ... u

=         (27) 

 
If the matrix U is not full-ranked, r<nc, then 

kD 0≠ for k r≤ , and kD 0= for k r 1,nc= + . 
 From Eq. (26), we have 
 

k
k

k 1

D
;k r

D −
λ = ≤                (28) 

 

The first m reduction parameters are 
 

nc

j j
j 1

Q t ; 1,mα α
=

= ξ α =∑          (29) 

 
where m=r, and the last reduction parameter QM, for 
M=m+1 is given by Eq. (2). 
 

The elements of the matrix U can be written as 
 

m

ij i j
1

u t tα α α
α=

= λ∑                (30) 

 
The coefficient ψi in the CEOS is 

 

( )
nc nc

i ij i j j i ij j
j 1 j 1

1 C x u
= =

ψ = − α α = α ξ∑ ∑      (31) 

 
and combining Eq. (30) with Eq. (31), we obtain 
 

m

i i i
1

t Qα α α
α=

ψ = α λ∑           (32) 

 
Because 0=λα for ncr ,...,1+=α , the 

summation in Eq. (17) is only up to m=r, and the 
CEOS coefficient A is given by 
 

m
2

1

A Qα α
α=

= λ∑                (17’) 

  
Finally, at given pressure and temperature, the 

fugacity coefficients are function of the reduction 
parameters, and independent on composition 

  

( ) Mi
i M

M
m m

2Mi
i

M M1 1

1 M

2 M

t
ln ( ) Z( ) 1 ln(Z( ) Q )

Q

t1
2 t Q Q

Q Q

Z( ) Q
ln

Z( ) Q

α α α α α
α= α=

ϕ = − − − −

 
λ − λ 

 ∆  

 + δ
 + δ 

∑ ∑

Q Q Q

Q
Q

       
(33) 

 
where the compressibility factor depends at given p 
and T only on the reduced variables, Z Z( )= Q , if A 
from Eq. (6) is replaced in Eq. (5). The expression of 
the fugacity coefficients is exactly the same as used 
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by Nichita et al. (2003, 2004); here λα are those 
obtained from Eq. (28) instead of eigenvalues of U, 
and tαi are replacing the corresponding eigenvectors. 
Note that for all BIPs zero, the Michelsen’s three-
equation flash is obtained, by putting nc=λ1 , and 

1it 1/ nc;i 1,nc= = . 
The calculations proceed as follows: the minors 

Dk are calculated for increasing k, starting with 
D1=u11=1 (for convenience D0=1), and λk are 
calculated with Eq. (28); k is increased until Dk=0 
(more precisely Dk<ε). The last k giving a non-zero 
determinant is equal to the rank of U. Components 
must be properly ordered, the first c components 
being those with non-zero BIPs. If the BIPs between 
a component and two other consecutive components 
are equal ( ij i, j 1C C += ), and this leads to Dk=0 for 

some k<r, one of these BIPs is altered by a small 
perturbation (say 1%); this does not affect phase 
equilibrium results, but prevents computational 
problems. 

The structure of the matrix U is doubly bordered, 
the rank depending on the number of components 
having non-zero BIPs. For hydrocarbon mixtures this 
matrix is generally rank-deficient, i.e. singular. The 
proposed method requires usually only the 
calculation of low order determinants, up to r. For 
systems with many components, this avoids matrix 
operations for large dimensions (calculation of 
eigenvalues and eigenvectors). 

Implementation of the proposed reduction method 
requires only minor changes in the existing codes based 
on SD. The subroutine for eigenvalues and 
eigenvectors calculation is replaced with the subroutine 
based on the proposed method. None of the phase 
equilibrium routine needs any modification. Only 
different formal parameters are transferred to these 
routines, λk instead of eigenvalues, and tij from Eq. (29) 
instead of eigenvectors. 
 

APPLICATIONS 
 

A variety of phase equilibrium problem we have 
studied before has been addressed using the 
proposed reduction method. Applications for 
mixtures with nc ranging from 6 to 52, described in 
previous papers on two-phase flash (Nichita et al., 
2003, Nichita and Minescu, 2004), phase stability 
testing (Nichita et al., 2002), three-phase vapor-
liquid-liquid flash (Nichita et al., 2004), critical point 
calculation (Nichita, 2005, 2006), phase diagram 
construction (Nichita, 2004a), were reworked. 

For all situations, the results are reproduced using 
the proposed reduction method. Phase equilibrium 
calculations using the proposed reduction method 
and the SD reduction method requires approximately 
the same number of iterations, and thus the same 
computational effort. 
 
The MY10 Mixture 
 

The first exemplification is given here for the 
MY10 mixture, taken from Metcalfe and Yarborough 
(1979). The MY10 synthetic mixture contains 10 
normal-alkanes, with composition and BIPs of methane 
(taken from Firoozabadi and Pan, 2002) with the 
remaining components given in Table 1. 

The non-zero eigenvalues for SD and λk for the 
proposed method are shown in Table 2. The rank of 
U is r=3, giving 5 independent variables for two-
phase equilibrium calculations. 

The 11-component MY10/CO2 mixture is 
obtained by adding CO2 in different proportions to 
the MY10 mixture. Table 3 gives the non-zero 
eigenvalues for SD and λk for the proposed method 
in two cases: 
a) CO2 BIPs from Table 1 (r=5)  
b) All CO2 BIPs equals to 0.12 (r=4) 

Table 1: Composition and BIPs for MY10 mixture 
 

Component Composition CC1-j CCO2-j 

C1 0.35(*) - 0.093 
C2 0.03 0 0.128 
C3 0.04 0 0.123 
nC4 0.06 0.020 0.136 
nC5 0.04 0.020 0.125 
nC6 0.03 0.025 0.131 
nC7 0.05 0.025 0.120 
nC8 0.05 0.035 0.120 
nC10 0.30 0.045 0.120 
nC14 0.05 0.045 0.120 
CO2 (0…0.99)(*) 0.093 - 

 (*) components with non-zero BIPs 
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Table 2: Reduction for the MY10 mixture 

 
Non-zero λ Spectral 

decomposition 
Proposed 

reduction method 
λ1 9.957329  1 

λ2 0.070664  0.0396 

λ3 -0.027993  -2.50e-7 

 
 

Table 3: Reduction for the MY10/CO2 mixture 
 

 CO2 BIPs from Table 1 All CO2 BIPs equal to 0.12 

Non-zero λ 
Spectral 

decomposition 
Proposed 

reduction method 
Spectral 

decomposition 
Proposed 

reduction method 
λ1 10.748714 1 10.751442   1 
λ2 0.220662 0.177351  0.207342   0.225600 
λ3 0.064257 0.036115   0.069781 0.038227 
λ4 -0.032768 -0.000769 -0.028565 -2.62e-7 
λ5 -0.000864 -0.000603   0 0 

 
 

 
As can be seen from Tables 2 and 3, the number 

of non-zero λk in our reduction method is equal to 
the number of eigenvalues in the SD method. 
Therefore the number of reduction parameters 
(M=r+1) and of independent variables for phase 
equilibrium calculations (for example M+1=r+2 for 
a two-phase flash) is the same for the two 
approaches. 
 For case a, calculations are detailed below step-
by-step. The component ordering is: CO2, C1, nC4 to 
nC14, C2, C3. 

The determinant D for k=6 is  
 

6

k 2; k 3; k 4; k 5; k 6

1.000 0.907 0.864 0.875 0.869 0.880

0.907 1.000 0.980 0.978 0.975 0.975

0.864 0.980 1.000 1.000 1.000 1.000
D

0.875 0.979 1.000 1.000 1.000 1.000

0.869 0.975 1.000 1.000 1.000 1.000

0.880 0.975 1.000 1.000 1.000 1.0

= = = = =

=

00

 

 
We start with D1=1 (D0 is set to 1 for 

convenience) and λ1=1. For k=2, D2=0.177351 and 

2 2 1D / D 0.177351λ = = ; for k=3, D3=6.405e-3 and 

3 3 2D / D 0.036115λ = = ; for k=4, D4=-4.927e-6, 

giving 4 4 3D / D 0.000769λ = = − , then D5=2.97e-9 

for k=5 and 5 5 4D / D 0.000603λ = = − . For k=6 the 

determinant is zero, D6=0, and all other determinants 
Dk, k>6 are also zero, thus λk=0 for k=6, …,11, and 
we keep for λ  only the first five nonzero values 
listed in Table 3; The elements of the transformation 
matrix T are given by Eq. (22). This detailed 
calculation show clearly how easy to implement the 
proposed method is. 
 
A 52 Component Mixture 
 

The next example is for a natural occurring 
hydrocarbon mixture with many components. 
Sample C from Pedersen et al. (1985) is a heavy gas-
condensate for which a detailed description of the 
C7+ fraction is available, including the paraffin-
naphtene-aromatic distribution. The mixture has 52 
components, critical properties and acentric factors 
being calculated as described in Nichita (2005). The 
BIPs of methane with other hydrocarbon components 
are assigned according to Katz and Firoozabadi 
(1978), and BIPs of carbon dioxide and nitrogen 
with the hydrocarbon components are 

CO2 jC 0.12− = and N2 jC 0.1− = . 

The rank of matrix U is r=5. The five nonzero 
eigenvalues and nonzero values of λk obtained by the 
reduction method are given in Table 4. 

Note that only determinants up to order five are 
computed to complete the reduction for this 52 
component mixture. 
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Table 4: Reduction for Sample C 

 
Non-zero λ Spectral 

decomposition 
Proposed 

reduction method 
λ1 51.544350 1 
λ2 0.309915 0.190000 
λ3 0.103484 0.164211 
λ4 0.097295 0.001994 
λ5 -0.055045 -5.02e-6 

 
 

CONCLUSIONS 
 

A reduction method is proposed, based on 
diagonalization of quadratic forms by means of 
linear transformations. The number of reduction 
parameters is the same as for reduction method based 
on spectral decomposition. 

The codes for phase equilibrium calculation with 
the spectral decomposition reduction method can be 
used for the proposed reduction method without any 
modification of the phase equilibrium routines. Some 
previously addressed problems were reworked for 
the new reduction method. Results are identical and 
the number of iterations required for phase 
equilibrium calculation, and thus the computational 
effort is almost the same as for the spectral 
decomposition method. 

The proposed method requires usually only the 
calculation of low order determinants. For systems 
with many components, this avoids matrix 
operations for large dimensions (calculation of 
eigenvalues and eigenvectors). 
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NOMECLATURE 
 
Symbols 
 
A attractive parameter in the CEOS 
Ai  component parameter in CEOS 
Aij CEOS cross parameter 
a attractive parameter in the CEOS 
aij component CEOS coefficient 
B volume parameter in the CEOS 
Bi  component CEOS coefficient 
 

B covolume in the CEOS 
C  matrix with elements 1-Cij 
Cij binary interaction coefficients between 

components i and j 
Dnc determinant of the matrix U 
Dk principal minors of Dnc 
M number of reduction parameters 
m number of nonzero eigenvalues 
nc number of components 
p pressure 
Q vector of reduction parameters 
Qα reduction parameters 
qαi elements of the eigenvectors 
R universal gas constant 
r rank of matrix C  
T temperature 
T transformation matrix 
tij elements of T 
U identic with C  
uij elements of U 
v molar volume 
xi mole fraction, component i 
Z compressibility factor 
 
Greek Letters 
 
δ1, δ2  constants in CEOS 
∆ δ1-δ2 
ϕi  fugacity coefficients 
λ  eigenvalues 
ψi  component CEOS coefficient 
ξi  given by Eq. (15) 
Ωa, Ωb  coefficients in the CEOS 
ω  acentric factor 
 
Subscripts 
 
c  critical 
i,j,k component index 
r  reduced 
α reduction parameter index 
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