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Abstract - A common problem in dynamic systems is to determine parameters in an equation used to 
represent experimental data. The goal is to determine the values of model parameters that provide the best fit 
to measured data, generally based on some type of least squares or maximum likelihood criterion. In the most 
general case, this requires the solution of a nonlinear and frequently non-convex optimization problem. Some 
of the available software lack in generality, while others do not provide ease of use. A user-interactive 
parameter estimation software was needed for identifying kinetic parameters. In this work we developed an 
integration based optimization approach to provide a solution to such problems. For easy implementation of 
the technique, a parameter estimation software (PARES) has been developed in MATLAB environment. 
When tested with extensive example problems from literature, the suggested approach is proven to provide 
good agreement between predicted and observed data within relatively less computing time and iterations. 
Keywords: Parameter estimation; Dynamic simulation. 

 
 
 

INTRODUCTION 
 

Parameter estimation is a common problem in 
many areas of process modeling, both in ‘on-line’ 
applications such as real time optimization and in 
‘off-line’ applications such as the modeling of 
reaction kinetics and phase equilibrium. The goal is 
to determine the values of model parameters that 
provide the best fit to measured data, generally based 
on some type of least squares or maximum 
likelihood criterion. The estimation of parameters in 
kinetic expressions from time series data is essential 
for the design, optimization, and control of many 
chemical systems. The models that describe the 
kinetics take the form of a set of differential 
algebraic equations. The statistics and formulation of 
this parameter estimation problem are well studied 
(Bard, 1974). In the most general case, this requires 

the solution of a nonlinear and frequently non-convex 
optimization problem, which can be approached by 
dynamic programming (with substantial programming 
effort and computer time), Pontryagin’s maximum 
principle (that requires solution of adjoint vector 
whose initial values creating extra problems) or 
nonlinear programming techniques. 

Nonlinear programming may be pursued through 
discretization of all variables by finite difference 
approximations or orthogonal collocation. However, 
inclusion of the collocation variables immensely 
increases the size of the optimization domain and the 
degree of polynomial used has a significant impact 
on the error. The other option is to use the 
integration approach without transforming the 
differential equations into a fully algebraic NLP. 
Pontryagin’s two theorems provide continuity and 
differentiability of the input-output (parameters - 
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state variables) map with respect to the parameters. 
This method requires calculation of the sensitivities 
by integrating an extra set of differential equations at 
the expense of computation time. Esposito and 
Floudas (2000) provided an underestimating 
formulation for this method. In their work, two 
deterministic global optimization methods are 
introduced for the parameter estimation of models 
that involve differential algebraic systems. Parameter 
estimation in dynamic models has been studied and 
discussed by several workers (Tjoa and 
Biegler,1991, Albuquerque and Biegler, 1996; Arora 
and Biegler, 2001, Neumann et al., 2007) 

Vassiliadis et al.’s (1994) control vector 
parameterization method in the same direction, 
although carries out the optimization in the space of 
decision variables, uses Lagrange polynomials for 
expressing control variables and again converts the 
problem into a finite dimensional NLP with added 
complexity in the algorithm. 

From the perspective of existing software for 
dynamic model calibration, there are a number of 
programs available commercially, some of them being 
accessible via Internet. However, most of them cannot 
fit some needs of the studied system satisfactorily even 
though they excel in other fields. For example the 
OPTKIN software supports large scale sets of 
equations with many parameters, but little 
customizability of these equations is allowed 
(Huybrechts and Van Assche, 1998). Therefore it is 
quite an efficient tool for the treatment of large sets of 
first order reactions (e.g. various radical mechanisms) 
but it does not allow application on some more 
complicated models. There are also limited possibilities 
for more detailed analysis of reliability and significance 
of parameters. The only generally applicable types of 
programs are the academic and semi-academic ones 
(Stewart et. al., 1992) but they are supplied as source 
code and provide poor user interface and require 
programming skills. Although ERA software package 
developed by Zamostny and Belohlav (1999) is a 
useful regression analysis tool, its input data matrix is 
limited to 20 independent variables and 20 responses, 
with up to 256 experimental points in each response 
and the number of model parameters is restricted to 15. 
Therefore, the floor seems to be open for further 
developments. 

In this work, we have developed an integration 
based efficient algorithm, and a software for 
implementation, for parameter estimation in dynamic 
models without requiring calculation of sensitivity 
equations. The results obtained for some problems 
from the literature are compared, and its 
effectiveness is demonstrated. 

OPTIMIZATION OVERVIEW 
 

Optimization techniques are used to find a set of 
design parameters, x= {x

1
, x

2
, x

3
,….., x

n
}, that can in 

some way be defined as optimal. The objective 
function, f(x), to be minimized or maximized, may 
be subject to constraints in the form of equality 
constraints, inequality constraints and parameter 
bounds. 

General problem may be defined as 
 

( )
nx

min f x
∈ ℜ

,   [ ]T n
1 2 nx x , x , , x= ∈ℜ      (1) 

 
subject to the constraints 
 

( )

( )

j

j

l u

g x 0 j 1, 2,..., m

h x 0 j 1,2, ..., r

x x x

= =

≤ =

≤ ≤

                 (2) 

 
where ( )f x , ( )jg x  and ( )jh x  are scalar functions 
of the real column vector x . m  and r  are the 
number of inequality and equality constraints. ( )jg x  

and ( )jh x  return the values of the equality and 
inequality constraints evaluated at x , l and u 
denoting lower and upper parameter bounds. The 
optimum vector x  that solves problem (Eq.1) is 
denoted by *x  with corresponding optimum function 
value ( )*f x . 

Dynamic optimization problem is generally 
defined as Eq. 3. 
 
Min     J = ψ (x) 
 

s.t.  ( )dx f x,u,p, t
dt

=    

 
( )0 0x t x=   [ ]ft t , t∈             (3) 

 
h (x)  =  0, g (x)  <  0                
 
x: state variables vector, u: control (optimization) 
parameters, f: vector function,  , h, and g arbitrary 
functions, p: model parameters, t: time 
The fact that dynamic optimization problems are 

inherently difficult to solve in the first place makes 
the problem even more challenging. In the solution 
of dynamic optimization problems the following 
methods can be used: 
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 Pontryagin’s Maximum Principle 
 Dynamic programming 
 Converting into a non-linear programming 

problem (NLP).  
The use of maximum principle, which converts 

the problem into a two-point boundary value 
problem, poses difficulties in terms of satisfying the 
constraints represented by the differential equations. 
Solution by dynamic programming is somewhat 
problem specific and requires extensive 
programming effort and time. 

Although a wide spectrum of methods exists for 
unconstrained optimization, methods can be broadly 
classified whether the derivative information is used 
or not. Search methods that use only function 
evaluations (e.g. Nelder-Mead simplex search) are 
most suitable for problems that are very nonlinear or 
have a number of discontinuities. Gradient methods 
are generally more efficient when the function to be 
minimized is continuous in its first derivative. 
Higher order methods, such as Newton's method, are 
only really suitable when the second order 
information is readily and easily calculated, because 
calculation of second order information, using 
numerical differentiation, is computationally 
expensive (The Mathworks, 2003). 
 
Constrained Optimization 

 
In constrained optimization, the general aim is to 

transform the problem into an easier subproblem that 
can then be solved and used as the basis of an 
iterative process. A characteristic of a large class of 
early methods is the translation of the constrained 
problem to a basic unconstrained problem by using a 
penalty function for constraints that are near or 
beyond the constraint boundary. In this way the 
constrained problem is solved using a sequence of 
parameterized unconstrained optimizations, which in 
the limit of the sequence converge to the constrained 
problem. These methods are now considered 
relatively inefficient and have been replaced by 
methods that have focused on the solution of the 
Kuhn-Tucker (KT) equations. 

SQP methods represent the state of the art in 
nonlinear programming methods. At each major 
iteration, an approximation is made to the Hessian of 
the Lagrangian function using a Quasi-Newton 
updating method. This is then used to generate a QP 
subproblem whose solution is used to form a search 
direction for a line search procedure. SQP has been 
extensively described and discussed by several 
workers (Powell, 1978; Fukushima, 1986, Fletcher, 
1987; Boggs and Tolle, 1995), often for large-scale 
problems, due to their efficiency and robustness. 
Such a view was based on strong convergence 

properties of such algorithms, and reinforced in the 
comparative testing experiments of Hock and 
Schittkowski (1981). 
 
 
PROBLEM FORMULATION AND SOLUTION 

ALGORITHM 
 

The mathematical formulation of chemical 
reaction mechanisms, taken as exemplary systems to 
demonstrate the optimization algorithm, is given by a 
coupled system of stiff nonlinear differential 
equations 
 

( ) ( )0 0 0 fdy f t, y,p , y t y , t t t
dt

= = ≤ ≤        (4) 

 
where y is the state vector of the system, p is the 
model parameters. 

In the present work we propose an approach 
based on converting the dynamic optimization 
problem into a finite dimensional nonlinear program 
through discretization of decision variables, like in 
the method of ‘control vector parameterization’. In 
this case, it is necessary to discretize only the control 
variables. For given control variables and values of 
the other variables, it becomes possible to integrate 
the underlying differential algebraic equation (DAE) 
system using standard integration algorithms so as to 
evaluate the objective function and other constraints 
that have to be satisfied by the solution. 

The proposed optimization technique brings some 
advantages such as ease of implementation, and is 
effective in the sense that it eliminates any need to 
evaluate the sensitivity functions, which is an 
essential part of the computation in optimization 
strategies based on NLP method. 

A control vector parameterization like approach 
for integration has been suggested such that the 
search space is discretized in time. By assuming a 
piecewise constant control, we have been able to 
integrate the model equations so that the objective 
function can be evaluated. Running a numerical 
constrained/unconstrained optimization technique on 
top of this space allowed us to obtain the values of 
decision variables, i.e. parameters in the kinetic 
models, after a reasonable set of iterations to satisfy 
a stopping criterion. Since no approximation 
polynomials or sensitivity functions were required, 
the calculations were substantially simplified. 

Figure 1 shows the logic flow diagram for the 
parameter estimation algorithm developed, which 
has been extensively tested before with a number of 
different problems (Agun, 2002). Employing this 
approach, 33 parameters of water quality model have 
been identified for a river (Yuceer et al., 2007).  
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Figure 1: Basic iteration routine for parameter estimation 

 
The algorithm offers the possibility of employing 

different numerical optimization routines with ease 
to estimate the updated p in order to satisfy the 
particular needs of the model employed. 

Model parameters were estimated by Quasi-
Newton (QN), Nelder-Mead Simplex (NMS), Gauss-
Newton (GN), Levenberg-Marquardt (LM), 
Sequential Quadratic Programming (SQP) 
algorithms by minimizing the objective function, 
which is the sum of squares of errors between the 
predicted and measured values for all of the state 
variables for a dynamic run as follows; 
 

( )
n m 2

ij o,ij
i 1 j 1

J x x
= =

= −∑∑            (5) 

 
where  x: computed value, x0

 
: observed value,  n: 

total number of state variables and m: total number 
of observations. MATLAB 6.5 software package 
and a 2.4 GHz Pentium 4 processor having 512 MB 
RAM were used for all computations. 
 
 

PARES SOFTWARE 
 

Software PARES (PARameter EStimation), 
coded in MATLAB

TM
 6.5 has been developed to 

implement the suggested parameter estimation 
technique. PARES is an interactive software system 
to identify parameters in differential algebraic 
equation system models. The program has ability to 
make parameter estimation with different 
optimization methods. For unconstraint optimization 

problems, Gauss-Newton, Nelder-Mead Simplex, 
Levenberg-Marquardt or Quasi-Newton methods can 
be optionally used whereas sequential quadratic 
programming needs to be used for constraint 
optimization problems. 

The program requires the input data in six main 
steps described as follows: 
  
1. Model equations (user can enter any model, on the 
window provided as an M-file) 
  

 
 
2. Number of model parameters 
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3. Initial, lower and upper bounds of the parameters 
 

 
 
4. Starting, final and sampling times for experimental 
data 
 

 
  

5. Number of state variables 
 

 
 
6. Experimental measurements of state variables 
 

 
 

The software, whose graphical user interface is 
shown in Figure 2, has also the ability to choose 
different objective functions (i.e. least square error, 
absolute error or standardized absolute error). It shows 
optimum model parameters, CPU time, objective 
function and the fit between experimental and predicted 
values of each state variable graphically. Contrary to 
the ERA software package, there is no limit on the 
number of parameters and state variables. 

 

 
 

Figure 2: Opening menu of PARES software 
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EXAMPLE PROBLEMS AND RESULTS 
 

Although many linear and nonlinear models with 
varying degree of kinetic complexity have been 
tested, three examples are included here briefly to 
demonstrate the validity of the obtained results with 
literature for comparison reasons. 

Example 1 represents a first-order reversible 
chain reaction in series, and was presented by 
Esposito and Floudas (2000).  The reaction kinetic is 
expressed as, 
 

31

2 4

kk

k k

A B C⇔ ⇔                              (6) 

 
All of the components are supposed to be 

measured, and therefore their concentrations are 
included in the model used. The dynamic model is 
written as 
 

( )

[ ] [ ]

1
1 1 2 2

2
1 1 2 3 2 4 3

3
3 2 4 3 0

dx p x p x ,
dt

dx p x p p x p x
dt

dx
p x p x , x 1, 0, 0 t 0, 1

dt

= − +

= − + +

= − = ∈

   (7) 

 
where the state vector, x, is defined as [A, B, C], and 
parameter vector, p, is defined as [k1, k2, k3, k4]. 

Figure 3 depicted that the comparison of 
experimental and observed data using SQP for 
Example 1. The results were summarized in Table 1. 

Example 2 tackles catalytic hydrogenation of 
cinnamaldehyde, which was previously investigated 
by Zamostny and Belohlav (1999). Reactions 
occurring in the system are indicated in the scheme 
as follows. The experiment was carried out in an 
isothermal, isobaric, stirred semi-batch reactor, the 
mass balance of which is given by the following 
equations. 
 

1 1 A 4 2 A

3 3 B 4 4 C

A B
1 2 1 3

C D
2 4 3 4

r k r k

r k r k

dC dCr r , r r ,
dt dt

dC dCr r , r r
dt dt

= θ = θ

= θ = θ

= − − = −

= − = +

   (8)

 
where r : reaction rate, k :  rate constant, t : time, and 
θi : catalyst surface coverage for i-th compound. The 
parameter estimation problem was solved using 
different optimization routines. 

Figure 4 shows that the predicted data fits, in a 
good agreement, with the experimental 
measurements. By increasing the complexity of the 
problem, SQP method becomes more effective than 
compared to those other methods. The results were 
summarized in Table 2.  
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Figure 3: Comparison of experimental and observed data using SQP for Example 1 
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Table 1: Optimization results for Example 1. 
 

Parameters Method Po Iter. Obj. Func. CPU(s) 
P1 P2 P3 P4 

P01 135 2.1125e-4 249.4 4.004 2.003 38.431 19.205 LM P02 554 8.9698e-4 1321 4.003 1.997 38.571 19.331 
P01 310 1.8897e-7 116.8 4.000 2.000 40.012 20.006 NM P02 469 1.8897e-7 203.7 4.000 2.000 40.012 20.006 
P01 13 1.9003e-7 22.2 4.000 2.000 40.000 20.000 QN P02 27 0.0037 55.2 3.8947 1.877 194.521 100.18 
P01 21 1.9012e-7 22.2 4.000 2.000 40.020 20.010 SQP P02 71 1.8893e-7 97.9 4.000 2.000 40.007 20.003 

EspositoandFloudas1a (2000) 338 3.367e-7 549.07 4.001 2.001 39.80 19.90 
EspositoandFloudas1b (2000) 280 1.890e-7 1546.05 4.000 2.000 40.01 20.01 
Optimum 4 2 40 20 
Lower Bounds 0 0 10 10 
Upper Bounds 10 10 50 50 

1a  Collocation approximation  
1b Integration approximation  
Initial parameter set-1: P01  = 10 10 30 30 
Initial parameter set-2: P02  = 50 50 150 150 

 
Table 2: Optimization results for Example 2 

 
Parameters Method P0 Iter. Obj. Func. Cpu (s) P1 P2 P3 P4 P5 P6 P7 

P01 12 0.3057672 17.9 0.078803 0.007757 0.015791 0.495315 1.287831 0.009937 0.001029 GN P02 137 0.0187441 173.2 0.071800 0.006386 0.017744 3.970547 1.170721 3.968018 0.202995 
P01 40 0.2520338 72.2 0.078583 0.006451 0.015966 0.500007 1.300065 0.010394 0.001072 LM P02 57 0.0191650 57.1 0.079678 0.006379 0.017648 5.006390 1.475823 5.003202 0.255591 
P01 802 0.0085128 211.2 0.073564 0.013398 0.013082 0.570624 1.525325 0.121945 0.032142 NMS P02 1044 0.0145595 179 0.085655 0.005271 0.016290 11.72104 1.750016 0.000090 0.012230 
P01 17 0.0069060 16.2 0.073912 0.009529 0.017131 0.453575 1.317102 0.075348 0.250904 QN P02 - - - - - - - - - - 
P01 16 0.0069062 12.5 0.074040 0.009552 0.017094 0.472567 1.324329 0.072420 0.250316 SQP P02 40 0.0069 27.5 0.073907 0.009568 0.017012 1.951910 1.325603 0.017675 0.249440 

2a 0.0069454 - 0.074280 0.009840 0.017650 0.472100 1.305290 0.061976 0.271790 
Optimum 0.073720 0.009190 0.017440 0.481300 1.294000 0.065660 0.260070 
Lower Bounds 0.061708 0.006265 0.013372 0.178260 0.937730 0.000405 4.83e-17 
Upper Bounds 0.090377 0.013552 0.022540 10.01100 2.014500 10.00600 0.511800 

2aModified adaptive random search algorithm (Zamonstny and Belohlav (1999)) 
Initial parameter set-1: P01 = 0.08 0.009 0.018 0.5 1.3 0.01 0.001  
Initial parameter set-2: P02 = 0.40 0.045 0.09 2.5 6.5 0.05 0.005  
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Figure 4: Comparison of experimental and observed data using SQP for Example 2 
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Example 3 The kinetic is a first-order irreversible 
chain reaction as presented by Esposito and Floudas 
(2000).  
 

1 2k k
A B C→ →   
 

Only the concentrations of components A and B 
were measured; therefore, component C did not 
appear in the model used for estimation. The 
differential equation model takes the form  
 

1 2
1 1 1 1 2 2

dx dxp x , p x p x ,
dt dt

= − = −                   (9)  

[ ] [ ]0x 1, 0 t 0, 1= ∈  
 
where the state vector, x, is defined as [A, B], and 
parameter vector, p, is defined as [k1, k2]. The data 
used in the study was generated with the p values of 
[5, 1].   

The parameter estimation problem was solved 
using different optimization methods. Figure 5 
shows that the observed data fits the experimental 
measurements very well. The results were 
summarized in Table 3. According to these results, 
the number of iteration and CPU time of SQP 
method are much better than the other methods.   

 
 

Table 3: Optimization results for Example 3 
 

Method NMS SQP GN LM Esposito and 
   Floudas (2000) 

Initial values p
1

0
=10                    p

2

0
=15 

p
1
 5.0002 5.0002 4.9997 5.0003 5.0035 

p
2
 1.000 1.000 1.000 1.000 1.000 

Cpu (s) 16.11 6.688 139.422 53.6250 10.77 
Obj. fun.  
value 1.1774e-8 1.1774e-8 2.6122e-7 5.6467e-7 1.185e-6 

Iteration 95 16 247 94 38 
Optimum p

1
=5.000                 p

2
=1.000 
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Figure 5: Comparison of experimental and observed data using SQP for Example 3 
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CONCLUSIONS 
 

As reflected by the results, solution to such 
difficult dynamic optimization problems for 
parameter estimation seems to be effectively 
achieved by suggested approach. Particularly, Table 
1 reveals that PARES software, which is capable of 
accomplishing the task with much less iterations and 
CPU time than previously published techniques, and 
furthermore the SQP method appears to be 
favourable to other numerical optimization routines. 
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