Acessibilidade / Reportar erro

Mathematical modeling of dispersion polymerizations study of the styrene polymerization in ethanol

A mathematical model for prediction of monomer conversion, of particle number and of the evolution of the particle size distribution (PSD) in dispersion polymerization is developed. Despite being completed very early during the polymerization process (monomer conversion <1%), nucleation of new particles is the most important factor affecting the PSD. In order to describe the particle nucleation phenomena, the mechanism of homogeneous coagulative nucleation is considered. According to this mechanism, polymer chain aggregates can either coagulate and grow, to give birth to new polymer particles (particle nucleation), or be captured by existing polymer particles. Two sets of population balance equations are used: one for the aggregates, and a second one for the stable polymer particles. It is shown that the model is able to describe the dispersion polymerization of styrene in ethanol and the formation of micron-size monodisperse polymer particles.

Dispersion polymerization; particle size distribution; population balance


Brazilian Society of Chemical Engineering Rua Líbero Badaró, 152 , 11. and., 01008-903 São Paulo SP Brazil, Tel.: +55 11 3107-8747, Fax.: +55 11 3104-4649, Fax: +55 11 3104-4649 - São Paulo - SP - Brazil
E-mail: rgiudici@usp.br