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Abstract  -  The present study addresses the novel application of the simulated annealing algorithm (SAA) 
to optimize the pressure-swing distillation (PSD) process for anhydrous ethanol purification. Three different 
softwares (Aspen Plus®, Excel® and Matlab®) were integrated to simultaneously optimize seven design and 
operational variables. The configuration with the best TAC represented a 40.2% saving per year in comparison 
to the non-optimized PSD. Such reduction was achieved by using the higher acceptance probability and 
the slower temperature decrement. This saving is mainly related to operational cost reductions, a fact that 
evidences the viability of using the herein described optimization methodology to improve the PSD design.
Keywords: Optimization; Simulated annealing; Pressure-swing distillation; Anhydrous ethanol.

INTRODUCTION

Great efforts have been made to find efficient and 
less environmentally harmful alternatives to oil-based 
fossil fuels. Ethanol is one of the most promising 
biofuels within the renewable energy group in 
production nowadays. In properly designed systems, 
ethanol has low carbon potential and is considered an 
excellent clean-alternative to gasoline (Kumar et al., 
2010; Malhotra and Das, 2003). In the Brazilian market, 
light duty vehicles could be fueled with gasohol (18 up 
to 27.5% v/v of anhydrous ethanol in gasoline) and/or 
hydrous ethanol. However, to be mixed with gasoline, 
ethanol must be in anhydrous form, since the presence 
of water in the mixture can cause phase separation 
problems and engine damage (Belincanta et al., 2016). 
As a result, it is necessary to dehydrate the ethanol in 

the last step of its production process via a biological 
route, which is still the most widely used process. This, 
however, is not an easy separation technique due to the 
formation of a homogeneous minimum boiling point 
azeotrope formed between water and ethanol (Kiran 
and Jana, 2015). 

The azeotropic phenomenon is present in a large 
number of chemical systems and occurs due to 
non-ideal behaviors. If chemical components are 
dissimilar and the repulsion forces are strong, the 
activity coefficients are higher than unity, leading to 
the formation of a minimum boiling point azeotrope, 
as in the ethanol-water mixture case. If chemical 
components are attractive, the activity coefficients 
are lower than unity and may lead to the formation 
of maximum boiling point azeotropes (Luyben, 2012). 
The ethanol-water system forms an azeotrope having 
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a composition of 87.2% mol of ethanol at 1.0 atm. 
Therefore, producing ethanol in the high-purity degree 
required for its use in engines is no longer possible 
by conventional distillation, since this composition is 
unaltered by partial boiling. In this case, the mixture 
behaves like a pure component with a fixed boiling 
point, producing vapor with the same concentration 
as the original liquid solution, eliminating the 
concentration gradient required for the mass transfer 
of the ethanol to the vapor phase (Balat et al., 2008; 
Kumar et al., 2010).

The separation of azeotropic mixtures is of great 
industrial interest and numerous special distillation 
processes have been developed and optimized, 
including extractive distillation (Kiss and Suszwalak, 
2012; Luo et al., 2014; Muñoz et al., 2006; Quijada-
Maldonado et al., 2014), azeotropic distillation 
(Kunnakorn et al., 2013; Luyben, 2008a; Pla-Franco 
et al., 2014), membrane distillation (Tsuyumoto et 
al., 1997) and pressure-swing distillation (PSD) (Li et 
al., 2015; Luo et al., 2014; Luyben, 2008b; Zhu et al., 
2015). There are also studies showing the possibility 
of using a combination of different configurations 
to obtain an optimal flowsheet. Alcántara-Avila et 
al. (2012) demonstrated that a combination of a 
conventional column with external heat integration 
and an extractive column with ethylene glycol as 
entrainer showed better economic performance in 
obtaining anhydrous ethanol. Although extractive 
distillation presents relatively high energy costs, it 
is still the option of choice in the case of large-scale 
production of bioethanol fuel – being preferred over 
membrane distillation, pressure-swing distillation, 
azeotropic distillation, or hybrid methods combining 
these options (Kiss, 2013).

PSD has attracted special attention from researchers 
because it has the great advantage of not requiring any 
additional solvent to be introduced into the process. 
Due to this advantage, PSD is often mentioned as an 
alternative method to generally applied azeotropic or 
extractive distillation (Fulgueras et al., 2016). The 
concept of PSD is based on the fact that component 
mixing needs to exhibit sensitivity to pressure 
variation, which means that a simple increase or 
decrease in pressure can alter the relative volatilities 
of the components of the mixture with close boiling 
points or form an azeotrope (Kumar et al., 2010). 
In a typical chemical plant, distillation columns and 
their support facilities can account for approximately 
one third of the total capital cost and for more than 
half of the total energy consumption (Lladosa et al., 
2011). Consequently, process design and optimization 
can have a significant impact on the overall process 
economy. Due to its operational complexity, the 
optimization of a distillation column can generate 
savings of 20% to 50% in the total energy consumption 
(Kiss et al., 2012). 

Based on an objective function and considering the 
operational and economic constraints, engineers try 
to manipulate the design and the process variables in 
such a way that the optimal point is reached, that is, 
where the column presents the maximum performance 
with the lowest operational cost. From an economic 
point of view, the objective function to be minimized 
in a distillation process is usually the total annual cost 
(TAC). In order to obtain a minimum TAC, the PSD 
process can be optimized through several design and 
operational variables such as number of total trays 
(NT), feed tray location (NF), recycle tray location 
(NR), and reflux ratio (RR) (Liang et al., 2017).

The sequential iterative and the heuristic 
optimization are the methods most commonly adopted 
to optimize the PSD process described in the open 
literature. Li et al. (2015) optimized a PSD with partial 
heat integration to separate the maximum boiling 
point azeotrope ethylenediamine-water through 
the sequential iterative method. Wang et al. (2014) 
performed a rigorous steady-state simulation based 
on minimizing the total annual cost of the partial 
and total heat integration pressure-swing distillation 
processes implemented in Aspen Plus following the 
sequential iterative optimization method. Zhu et al. 
(2016) studied the separation of the ternary system 
acetonitrile/methanol/benzene via a triple column 
pressure-swing distillation (TCPSD). On the basis 
of minimum total annual cost, several operating 
parameters were optimized by the sequential iterative 
procedure. The authors were the first to optimize this 
complex process, and they demonstrated the most 
optimum column sequence to separate this ternary 
azeotropic system.

The heuristic optimization method was explored 
in two studies conducted by Luyben (2014 and 2013). 
One of these studies reported the azeotropic separation 
of the maximum boiling point azeotrope methanol-
trimethoxysilane, whereas the other compared the 
extractive distillation to the pressure-swing distillation 
applied to separate the acetone-chloroform binary 
system, which forms a minimum boiling point 
azeotrope. One disadvantage of the interactive 
method lies in the fact that one variable is changed at 
each time to minimize the objective function. As the 
dimensionality of the design variables increases, the 
sequential approach imposes a heavy computational 
load, especially for coupled distillation processes with 
more than one column operating simultaneously. In 
this sense, numerical optimization algorithms become 
an attractive alternative to improve computational 
efficiency in the search for the global optimum in high 
complexity processes (Cheng et al., 2009).

Moreover, approaches based on deterministic 
optimization are somewhat limited if one takes 
into account the complexity of industrially relevant 
reaction/separation model systems, since the resulting 
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performance will probably not be located in the global 
optimum domain. Given this shortfall, the alternative 
optimization approaches involving stochastic 
techniques have shown to be promising. They have been 
extensively studied in the literature for optimization 
of chemical and industrial processes involving highly 
non-linear functions. Non-derivative methods are 
preferred for solving non-convex problems such as 
the simulated annealing algorithm (SAA), genetic 
algorithm (GA) and particle swarm (PS) (Linke and 
Kokossis, 2003). Among these, SAA has the advantage 
of being relatively easy to code, even for complex 
problems, and being able to offer a good quality 
solution in an acceptable computing time. The SAA 
is based on the simulation of a thermodynamic system 
that begins with the selection of an initial random point 
at a high temperature and moves to a new neighborhood 
point that improves the objective function value. The 
differential characteristic of SAA lies in its ability to 
accept a point with a higher objective function value, 
which is based on a certain probabilistic measure that 
reduces the chances of converging to a local minimum 
(Šibalija and Majstorović, 2016). Several studies have 
proposed the application of this method to optimize 
industrial chemical processes, such as heat exchanger 
networks (Chaudhuri et al., 1997; Dolan et al., 1990 
and 1989), process synthesis (Chaudhuri and Diwekar, 
1997 and 1996), reactive distillation (Cardoso et al., 
2000; Cheng et al., 2009), batch distillation (Hanke 
and Li, 2000), azeotropic distillation (Gutiérrez-
Antonio et al., 2014) and extractive distillation 
(García-Herreros et al., 2011). A recent study done by 
Wang et al., (2016) used the SAA method to design and 
optimize the PSD process in two case studies, for the 
methanol-chloroform and acetone-methanol systems. 
The authors showed the feasibility of applying the 
SAA method in the optimization of the PSD process, 
which deals with continuous and discrete variables 
simultaneously.

The most recent literature review related to 
pressure-swing distillation was performed by Liang et 
al., (2017). They found no published study involving 
the optimization of the PSD process using the water-
ethanol mixture. Encouraged by this, the aim of the 
present study was to apply the SAA technique to 
simultaneously optimize seven design and operation 
variables of the PSD process in order to obtain fuel 
grade anhydrous ethanol by taking into consideration 
the influence on the objective function to minimize the 
total annual cost. The solution was achieved through 
a communication routine set between the rigorous 
distillation process model implemented in Aspen Plus 
combined with the optimization technique in Matlab. 
Data transfer between software was done by Excel, 
with a programming interface in Visual Basic language 
(VBA). Different SAA convergence parameters were 

investigated in order to find the closest proximity to 
the global minimum optimum, until the most suitable 
parameters for this specific case were found.

PROCESS DESIGN

The first step in the purification process of the 
anhydrous ethanol produced by fermentation is often 
the recovery of the ethanol produced by microorganisms 
in the bioreactors through a distillation column, called 
“beer column”, where most of the water content 
is retained with the solid part. The product output 
from this process, whose ethanol concentration is 
approximately 37-50% (w/w) (19-28% mol), is then 
concentrated in a rectification column until reaching 
the azeotropic concentration that generates hydrated 
ethanol. Finally, some additional process such as the 
azeotropic, extractive or pressure-swing distillation is 
required to produce anhydrous ethanol (Balat et al., 
2008).

Mulia-Soto and Flores-Tlacuahuac (2011) 
performed a systematic comparison between several 
azeotropic separation techniques and they proposed a 
very attractive PSD process for ethanol dehydration. 
The product of the recovery process where the 
fermentation broth solids are removed and the ethanol 
is slightly concentrated, is considered as the feed stream 
for the PSD process. Thus, the same process conditions 
considered by Mulia-Soto and Flores-Tlacuahuac 
were adopted in the current study. These conditions 
worked as the base case for the optimization of the 
design and operational variables, which are of primary 
importance to the pressure-swing distillation process. 
The fresh feed stream consisted of 100 kmol/h of 20% 
mol ethanol at 90ºC, under atmospheric pressure. This 
temperature was selected because, according to the 
reference works, in industrial plants the fresh feed of 
the distillation column goes through a preheating in 
heat exchangers as a form of energy integration until 
reaching the temperature of 90°C. Ethanol must be of 
high purity content and meet the criteria established in 
the legislation in order to be used in the transportation 
sector. Therefore, according to design requirements, 
the ethanol mole fraction in the product should be ≥ 
0.995 (Kumar et al., 2010). 

Figure 1 shows the typical PSD process flowsheet 
diagram indicating the streams and design conditions 
taken into account in the base case for this study. The 
PSD process consists of two columns, in which one 
column operates at a relatively higher pressure (HPC) 
and the other one operates at lower pressure (LPC). 
The pressure-swing has the purpose of bypassing the 
azeotropic point. For systems that form minimum 
boiling point azeotropes, as in the case of water-ethanol, 
the high-purity product stream is withdrawn from the 
bottom of one of the columns and the distillate stream 
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is recycled by passing through a valve that regulates 
the pressure (Luyben, 2013). 

Although the ethanol-water azeotrope does not have 
high sensitivity to pressure change, several studies 
show that it is possible to carry out the dehydration 
using the pressure-swing distillation scheme (Kiran 
and Jana, 2015). As shown in Figure 2, the azeotropic 
composition of ethanol-water changes from 87.2% mol 
of ethanol at 1.0atm to 79.4% mol% of ethanol at 10atm 
(the results shown in this figure were calculated using 
the thermodynamic model described in the Vapor-liquid 
equilibrium section). Thus, it is clear that this range of 

variation is large enough to bypass the azeotropic point, 
and high-purity degree ethanol can be produced.

Vapor-liquid equilibrium (VLE)
It is of primary relevance to accurately predict VLE 

data using an appropriate thermodynamic model in 
simulation software. According to Liang et al. (2017), 
the phase equilibrium constant K (for component i and 
component j) determines the relative volatility (αij) 
of a binary system. It is a critical property for design 
and optimization of the distillation process, defined by 
Equation (1).

Figure 1. PSD process flowsheet diagram for anhydrous ethanol purification.

Figure 2. T-xy diagrams of the ethanol-water system. Azeotropes in (a) 1.0atm and in (b) 10atm.
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wherein y is the vapor phase composition, x is the 
liquid phase composition, P is the pressure, fv is the 
fugacity coefficient of the vapor phase, f0L is the liquid 
fugacity in the standard state, and gL is the activity 
coefficient. The activity coefficient gL characterizes 
the nonlinearity degree of the system; thus, precise 
simulated results are strongly dependent on the quality 
of the binary parameters of the liquid phase activity 
coefficient models (Lladosa et al., 2011). At the 
azeotropic point, the relative volatility (αij) reaches 
the unit value, which characterizes that physically the 
system cannot be further separated by conventional 
distillation.

Iqbal and Ahmad (2016) have tested several 
thermodynamic property models to predict the VLE 
data of the ethanol-water system. The authors have 
concluded that the WILSON-RK model is the most 
adequate to correctly predict the VLE data of the 
ethanol-water system, presenting a minimum error 
of 1.94% for the vapor phase composition and 0.33% 
for the phase temperature, so this model was chosen 
in this work. This thermodynamic package uses the 
Wilson activity coefficient model in the liquid phase 
and the Redlich-Kwong state equation in the vapor 
phase. Figure 3 shows the x-y diagram for the ethanol-
water binary system at pressures of 1.0 atm and 10 
atm provided by the WILSON-RK model available in 
Aspen Plus. Such pressure variation produces a change 
in the azeotropic ethanol composition from 87.2% mol 
to 79.4% mol, and it indicates the thermodynamic 
feasibility of using the pressure-swing distillation 
system within this specific range.

Steady state simulation
The process flowsheet diagram shown in Figure 

1 was implemented in Aspen Plus software using the 
RADFRAC block for rigorous distillation and the 
WILSON-RK thermodynamic package was used to 
predict the vapor-liquid equilibrium data. For a binary 
mixture having a pressure sensitive minimum boiling 
point azeotrope, the separation sequence is composed 
of two columns operating at different pressures (Muñoz 
et al., 2006). The feed (F1) enters the LPC operating at 
atmospheric pressure and the distillate resulting from this 
column (D1) presents ethanol composition approaching 
the minimum boiling point azeotrope (≥ 0.85 mol). This 
distillate is the feed stream (F2) of the HPC operating at 
high pressure (10atm). The distillate from this column 
(D2) has a composition close to the azeotrope of the 
low-pressure column and is recycled to the LPC. The 
high-purity ethanol (≥ 0.995 mol) is withdrawn in the 
bottom stream of the high-pressure column (B2), which 
for economic viability needs to recover at least 98% of 
the ethanol that is fed into the process.

The ethanol purity specifications were ≥ 0.85 mol 
in the LPC, and ≥ 0.995 mol in the HPC. These targets 
were reached by using the “Design Spec/Vary” function 
in Aspen Plus by adjusting as the manipulated variable 
the distillate flow rate in the low-pressure column (D1) 
and the flow rate of the bottom product in the high-
pressure column (B2). The degrees of freedom analysis 
in the steady state leads to the following hypotheses: 
(a) binary mixture; (b) total number of trays known; (c) 
the location of the feed streams and the recycle stream 
are known; (d) the operating pressures in each column 
are fixed and known. Once these conditions are met, the 
model convergence in the steady state is feasible. 

The operating pressure in the LPC was set at 1.0 
atm to enable using cool water (at 305.15 K) in the 
condenser. The operating pressure of the HPC shall 
be designed to ensure at least a 5% mol change, or 
more, in the azeotropic composition of the mixture 
(Seader and Henley, 1998). Therefore, the choice was 
made to operate the HPC at 10 atm in order to assure 
the minimum feasible margin for an operationally 
viable azeotropic concentration oscillation, as shown 
in Figure 3. The pressure swing from 1.0 atm to 10 
atm was enough to bypass the azeotrope formation 
and to reach the desired purity, because the ethanol 
concentration in the LPC distillate was approximately 
0.85 mol and the HPC distillate was close to 0.8 mol. 
The number of stages is counted from the top and the 
reflux drum is considered the first stage, whereas the 
reboiler was set as the last stage in the column. 

OPTIMIZATION METHODOLOGY

Once the steady state process was established, the 
selected variables were optimized in order to minimize 
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Figure 3. Binary x-y diagram for ethanol-water system 
at pressures of 1.0 atm and 10 atm estimated by the 
WILSON-RK thermodynamic model.
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the total annual cost (TAC). Therefore, seven variables 
were selected, namely: the number of low-pressure 
column trays (NT1), the location of the low-pressure 
column feed tray (NF1); the recycle tray location (NR); 
the reflux ratio of the low-pressure column (RR1); 
the number of high-pressure column trays (NT2); the 
location of the high-pressure column feed tray (NF2); 
and the reflux ratio of the high-pressure column (RR2). 
The optimization interval for these variables was 
set according to results of preliminary convergence 
tests conducted in Aspen Plus, aiming at generating 
physically compatible results. The optimization 
within the constraint range of the design variables was 
obtained using the Simulated Annealing Algorithm 
(SAA) available in Matlab, whose objective function 
based on the economic analysis was to minimize the 
TAC. The integration between the process modeled in 
Aspen Plus and the optimization algorithm in Matlab 
was done by a VBA code implemented in Excel to 
transfer data between software. Different SAA setting 
parameter configurations were studied to determine the 
particular conditions to find the closest results to the 
global optimum of the function within the reasonable 
convergence time of the algorithm.

Economic analysis
The PSD process is often optimized by minimizing 

the total annual cost (TAC), which is one of the 
indices most frequently used to measure the economic 
viability and profitability of a production process. The 
TAC is the objective function to be minimized by the 
SAA algorithm, and can be expressed as follows.

(Chemical Engineering Plant Cost Index). Other 
additional costs such as pumps, valves and pipelines 
may be ignored for calculations because their costs are 
much lower than those described above and would not 
significantly impact the TAC (Zhu et al., 2015). The 
economic assessments and the sizing relations were 
provided by Douglas (1988) and may be written as 
follows.

(I) Column vessel cost ($/year):

TAC ($/year)  annual capital cost
payback period

annual op= + eerating cost

Capital cost collum vessel cost(C ) plate cost(C )
        

1 2= +
           heat exchangers cost(C )3+

Operating cost annual steam cost(C )
                      

4=
++ annual cooling water cost(C )5

The capital cost of the PSD process includes 
column vessels, trays and heat exchangers (reboilers 
and condensers). The design parameters and the sieve 
trays of the column were determined by the “Tray 
sizing” function available in Aspen Plus, considering 
the reflux vessel as the first stage and the reboiler as 
the last stage. The heat transfer coefficients of the 
reboiler and the condenser were 0.852 kW/(m2.K) 
and 0.568 kW/(m2.K), respectively (Luyben, 2006a). 
The operating time of the distillation system was set 
at 8000 h/year (Cao et al., 2016). A 3-year payback 
period was assumed and the M&S index used was 
1625.9 for the year of 2016, according to the CEPCI 

C M&S
280

937.636 D H (2.18 Fc)1
1.066 0.802= ⋅ ⋅ ⋅ ⋅ +

wherein Fc = 3.67 . Fp, Fp = 1.00 (LPC) and Fp = 
1.15 (HPC). D is the column diameter (m) and H is 
the column height (m) when NT is the number of total 
trays, which is expressed as: 

H 0.61
N

0.75
3 6T= ⋅ −






 +

(II) Plate cost ($/year):

C M&S
280

97.243 D H H 2.72
1.55 0.802= ⋅ ⋅ ⋅ ⋅ ⋅

(III) Heat exchangers cost ($/year):

C M&S
280

474.668 A (2.29 Fc)3
0.65= ⋅ ⋅ ⋅ +

wherein Fc = (Fd + Fp) . 3.75, Fd = 1.35 (kettle reboiler) 
and Fd = 0.8 (fixed tubesheet heat exchanger), Fp = 0 
(LPC) and Fp = 0.52 (HPC).

(IV) Annual steam cost ($/year):

C
c

453.515
Q

8000 36004
s R

v

= ⋅








 ⋅ ⋅

λ

wherein QR is the reboiler duty (kW), lv is the latent 
heat of vaporization (kJ/kg); cs is the steam price, 
being 7.72 $/GJ for low-pressure steam (433 K), 8.22 
$/GJ for medium-pressure steam (457 K), and 9.88 $/
GJ for high-pressure steam (527 K) (Zhu et al., 2015). 

(V) Annual cooling water ($/year):

C c
Q

T c 1000
8000 36005 w

C

w p

= ⋅
⋅ ⋅









 ⋅ ⋅

∆

wherein cw is the cooling water price (0.03$/1000gal), 
DTw is the temperature differential (design for 10°C), 
and cp is the specific heat of water (4.183 kJ/kg.K).

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)
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Simulated Annealing Algorithm 
The simulated Annealing Algorithm (SAA) is a well-

established optimization method and considered one 
of the techniques with greater variety of applications 
in problems coming from different research fields 
(Rangaiah, 2010). By analogy to thermodynamics, the 
concept of SAA is based on simulating the annealing 
phenomenon in solid materials. Kirkpatrick et al. 
(1983) were the pioneers to demonstrate that the 
statistical mechanics model used to simulate annealing 
processes, initially proposed by Metropolis et al. 
(1953), could be also adopted to solve optimization 
problems in general. 

Physically, the annealing process is done by heating 
a solid, for example, to its melting point followed by 
gradual cooling, until its solidification is achieved 
again. In this process, slow cooling is essential to 
maintain a thermal equilibrium in which the atoms 
will find sufficient time to reorganize into a uniform 
crystalline structure with minimal energy. If the solid 
is cooled suddenly, its atoms will form an irregular 
and weak structure, with high energy, as a result of the 
internal effort expended. For each temperature level, 
considering that the temperature is reduced sufficiently 
slowly, it is assumed that the solid state reaches the 
thermal equilibrium, which is characterized by the 
Boltzmann distribution, Equation 11. 

higher ΔE leads to lower acceptance probability. This 
feature of the SAA of accepting points with higher 
energy based on a certain probabilistic measure 
reduces the chances of the method converging to a 
local minimum. In terms of process optimization with 
a set of design variables (d), the energy state (E) is 
equivalent to the objective function to be minimized. 
That is, E(d) will be reduced as the annealing begins. 
Initially a random vector of design variables (di) will be 
chosen, the initial temperature of the system (T0), the 
final temperature (Tf), the criteria for thermodynamic 
equilibrium (maximum number of interactions for T), 
and the cooling schedule (α). The SAA operation steps 
implemented in Matlab are shown in the flowchart 
presented in Figure 4.

SAA can be used to solve multivariable problems 
with continuous and/or discrete process parameters. 
Besides being easy to implement, it often provides an 
optimal overall solution to combinatorial nonlinear 
optimization problems, because SAA does not 
require gradient computation for its search–direction 
setting. The stochastic nature and guided probabilistic 
movements of the algorithm are two of its key aspects 
when it comes to the multimodal response function. 
It is worth determining the parameters affecting the 
algorithm convergence and the computational time 

P E,T exp E
k Tb

( ) = −










wherein P represents the probability, E represents 
the energy, kb is the Boltzmann constant and T is the 
temperature. The algorithm developed by Metropolis 
et al. (1953) calculates new energy values in each 
step and compares them with current energy values. 
If the new energy value found is lower, this new state 
is accepted. If the new energy value is greater than 
the current value, the state is not completely rejected, 
but is accepted on the basis of a probability having 
an inverse relationship with the energy difference 
(Rangaiah, 2010). The algorithm available in the 
Matlab optimization toolbox uses as the acceptance 
probability function for any temperature T the 
expression showed by Equation 12.

P E,T 1

1 exp E
max T

∆
∆

( ) =
+

( )










where ΔE is the energy difference between the new and 
the old solution. Since both ΔE and T are positive, the 
probability of accepting a new solution is between 0 and 
½ (MathWorks, 2016), thus the lower the temperature, 
the lower the acceptance probability. In addition, Figure 4. SAA operation flowchart.

(11)

(12)
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required (CPU time) in order to get its best performance 
(Šibalija and Majstorović, 2016).

Generation of design variables
First, the algorithm generates a set of random 

variables within the imposed constraint limits. 
Thus, according to the aforementioned, the PSD 
configuration used in the present study demands the 
optimization of seven variables, two continuous and 
five discrete ones. The optimization range to be used 
was established in preliminary tests that took into 
consideration the physical limitations of the separation 
and the satisfactory convergence of the process 
model implemented in the Aspen Plus simulator. 
The optimization range limits of the variables were 
determined as follows: number of total LPC trays 
(25 ≤ NT1 ≤ 50), LPC reflux ratio (0.1 ≤ RR1 ≤ 5), 
location of the LPC feed tray (15 ≤ NF1 ≤ 24), location 
of the LPC recycle tray (10 ≤ NR ≤ 14), total number 
of HPC trays (25 ≤ NT2 ≤ 50), HPC reflux ratio (0.1 
≤ RR2 ≤ 5), location of the HPC feed tray (10 ≤ NF2 
≤ 20). The generation of a new point in the internal 
algorithm of Matlab for the next iteration is defined 
through the annealing function. The algorithm chooses 
the distance between the next test point and the 
current point through a probabilistic distribution with 
a scale that depends on the current temperature. The 
function used to generate the new iteration points was 
defined as the ‘annealingfast’ function (MathWorks, 
2016), wherein the step length is equal to the current 
temperature, and the direction is uniformly random. 
The generation of the discrete variable values (number 
of trays, feed locations and recycle tray location) were 
truncated by a codification function set for the discrete 
values. This codification function rounds numbers to 
the nearest integer based on the value of the fractional 
part of the number, which have physical consistency 
to work as input in the flowsheet process developed in 
Aspen Plus. 

Initial temperature (T0)
The initial temperature is one of the most important 

SAA parameters, because it determines the probability 
of accepting, or not, an objective function solution 
worse than the previous one (Ben-Ameur, 2004). The 
temperature parameter T0 must be sufficiently large for 
the global optimum to be found; however, high initial 
temperatures result in long computational time. It is 
known that appropriate T0 values change from problem 
to problem, so the choice for the appropriate initial 
temperature value should essentially take into account 
the acceptance probability of the new solutions 
based on the Metropolis criterion. The acceptance 
ratio, which is the ratio of the accepted configuration 
numbers to the total number of new configurations, 
decreases as temperature decreases.

According to Equation 12, the acceptance 
probability function used in the algorithm lies 
between 0 and ½. When the probability is close to 
0, the acceptance of a new point will be essentially 
deterministic, i.e., the probability of the algorithm 
to accept a solution presenting value higher than the 
previous one is practically zero. It can impoverish the 
search for the global optimum, because it would be 
subject to the easy conversion into a local minimum 
point. However, when the probability is close to ½, 
the algorithm will possibly accept a solution of lower 
character, and it would enrich the chance to find the 
global optimum and to deviate from local minima. 
Another point to be considered is the computational 
effort, as higher initial temperatures will require longer 
convergence times, often making the optimization 
feature unfeasible. 

By considering these principles, a methodology 
was adopted to obtain a suitable initial temperature for 
the proposed problem. Based on Equation 12, ΔE was 
assumed to be equal to the standard deviation (ΔE0 = 
σ) of the converged solutions of the objective function 
(TAC), by considering the evaluation of 300 random 
points within the research range. Next, the initial 
temperature was considered to be the β coefficient 
multiplied by the standard deviation of the obtained 
solutions, as shown in Equation 13. Finally, the β 
coefficient could be obtained by substituting Equation 
13 in Equation 12 and by isolating β, according to 
Equation 14. It was then proposed that it is possible 
to obtain an initial temperature for each desired 
acceptance probability (P) of any desired between 0 
and ½. 

T E0 0= ⋅β ∆

β =
−








1

ln 1
P

1

In order to evaluate the influence of the acceptance 
probability (P) on the global optimum solution result, 
in this study three acceptability probabilities (P = 0.1; 
P = 0.25 and P = 0.4) were evaluated, resulting in three 
initial temperatures (T0), obtaining the approximate 
values of 250,000, 500,000 and 1,500,000, respectively, 
as presented in Table 1. Although the variable is related 
to temperature, these values do not necessarily have 
physical significance, since the criterion that defines 
the dimension of the T0 parameter is directly related to 
the dimension of the variation of the objective function. 
In this case, as verified by the random evaluation 
performed, TAC is in the dimension range of 1x106, 
which leads to the explanation about the dimension of 
the initial temperature values in the range of 1x105.

(13)

(14)
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Cooling schedule
The cooling schedule is responsible for 

systematically reducing the temperature and internally 
storing the best point so far (Nourani and Andresen 
(1999). The annealing program is controlled by the 
parameter “Temperature Function” and it specifies 
the type of function that the algorithm uses to update 
the temperature. A slower temperature rate decrease is 
favorable to obtain the optimal global solution, but it 
extends the algorithm execution computational time. 
As the temperature decreases, the algorithm reduces 
the length of its search to converge into a minimum. 
For the present study, the exponential temperature 
function was used to reduce the temperature at each 
iteration, according to Equation 15.

for each subcase studied by the variation of SAA 
parameters. The results of the number of evaluations 
needed to achieve the “freezing” point were then set in 
the algorithm as a termination criterion. 

Matlab-Excel-Aspen Plus Interface
The present optimization study was developed by 

an integration methodology between the Aspen Plus 
(version 7.1) simulator and the Matlab (R2015a) 
software, which was programmed through Visual 
Basic (VBA) language implemented in Microsoft 
Excel (2007), whose structure was presented by 
Claumann et al. (2015). The simultaneous use of 
these softwares brings benefits in face of exploring 
the best resources of each program. As an example, 
the Aspen Plus simulator has a great library of models 
for the implementation of processes from a graphical 
user-friendly interface. In terms of programming, the 
Matlab vector language represents an expressive time 
savings when one thinks of the amount of calculations 
that need to be performed in the optimization of a 
complex function. Matlab also has a collection of 
functions in the library (toolboxes), which are a set 
of functions already implemented in several areas 
of expertise, such as the optimization toolbox in 
which the SAA is inserted. Excel was only used for 
communication purposes in order to allow data transit 
between softwares.

The configuration of the optimization structure 
implemented in the current study is presented in Figure 
5. The procedure that leads to the optimization of the 
process consists of the following steps: initially, a set 
of design variables is randomly generated in Matlab 
within the imposed constraints and then passed, 
through Excel, to Aspen Plus as design and operation 
variables. The steady state simulation is performed 
in Aspen Plus. After the convergence of the model is 
completed, the results of the variables necessary to 
calculate the objective function (TAC), such as the 
heat in the reboilers and condensers, temperatures 
and dimensions of the columns, are transferred back 
to Matlab, in which SAA is implemented. Thus, it 
can calculate the energy state of the current cost 
function and update the project variables according 

T Tn 1 n
k

+ = ⋅α

wherein α is the temperature decrement factor, 
generally within the range 0.8 ≤ α ≤ 0.99, and n is 
the temperature counter. The k is considered to be 
the annealing parameter, in this case, it is the same as 
the iteration number until reannealing. Reannealing 
raises the temperature in each dimension, depending 
on the sensitivity information. Then, the search is 
resumed with the new temperature value that is 
higher than the previous one. This feature allows the 
algorithm to avoid getting caught at a local minimum 
(Šibalija and Majstorović, 2016). Three temperature 
decrement factors (α) will be analyzed in order to 
verify its influence on the attainment of a satisfactory 
global optimal result in reasonable time, for variation 
purposes. After preliminary tests α = 0.95, α = 0.97 
and α = 0.99 were selected as shown in Table 1.

Termination criterion
The SAA termination criteria most generally used 

are: when the number of iterations exceeds the specified 
maximum number; when the best objective function 
value is lower than or equal to a specified tolerance; 
when the maximum execution time is reached; or 
when there is no change in the adjustment value of 
the objective function, i.e., the system “freezes” 
(Šibalija and Majstorović, 2016). The termination 
criterion used in the current study was based on the 
freezing temperature (Tf), i.e., during the annealing 
process the temperature approaches a value of zero as 
the algorithm progresses, so that practically no worse 
configuration would be accepted according to the 
Metropolis criteria. It was observed that at the freezing 
temperature of 0.000001, there are no changes in the 
objective function improving the optimization result, 
which is enough to obtain an optimal solution within 
a viable computation time. Therefore, the freezing 
temperature of 0.000001 was used to calculate how 
many objective function evaluations would be required 

Figure 5. Integration and communication interface 
between software.

(15)
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to the algorithm parameters. The steps are repeated 
until the minimum energy state is reached. As a final 
result, we have the values of the seven optimal design 
variables that provide the minimum TAC. In order 
that the ongoing SAA optimization process was not 
affected, the non-converged solutions in Aspen Plus 
were discarded through a conditional statement in the 
Matlab algorithm, and the simulator was then restored 
to a standard condition after being fed with new inputs.

It is worth highlighting here a relevant difference 
of this work and the study made by Wang et al. (2016). 
They performed the optimization in Excel through 
VBA interface integration with Aspen Plus. In our 
study, the optimization is carried out in Matlab, which 
has the advantage of performing calculations faster, 
giving greater computational agility. Excel, as has been 
already said, is used only for communication between 
Aspen and Matlab. In addition, the process is the 
water-ethanol system, which had not been optimized 
by the SAA technique yet.

RESULTS AND DISCUSSION

The effective SAA performance is strongly 
dependent on the proper definition of the internal 
parameters of the algorithm. As was already mentioned, 
one of the most important SAA properties is its ability 
to “escape” from the local minimums. It is achieved 
by accepting some increasing movements in the cost 
function (Dolan et al., 1989). It can be established 
that the most important SAA parameters are the 
initial temperature (T0), the final temperature (Tf), the 
temperature decrement factor (α) and the number of 
interactions performed at each temperature. These 
factors directly affect the convergence of the algorithm 
and the required execution time (CPU time). Table 1 
shows the different parameters tested herein and their 
influence on convergence and CPU times.

Regarding the acceptance probability, it is strongly 
dependent on the temperature. Thus, it is necessary to 
carefully calculate the initial temperature for the SAA 
to find good solutions (Ben-Ameur (2004). When 
the probabilistic effect tends to zero, the algorithm 
behaves only as a deterministic search, which ends 

up impoverishing the result, because it can be easily 
deceived and taken to a local minimum. However, the 
lower the acceptance probability, the lower the initial 
temperature and, consequently, the algorithm will 
present faster convergence, as observed in the CPU 
time values shown in Table 1. When the acceptance 
probability tends to ½, i.e., when the initial temperature 
is increased, the algorithm is able to initially accept 
a larger number of solutions with worse TAC, thus 
increasing the capacity to find a global optimal solution, 
but also increasing the execution time for convergence. 
It was observed that the increase in the initial 
temperature caused by the increase in the acceptance 
probability has the effect of increasing the quantity of 
the objective function evaluations, as the consequence 
of an increase in the execution time. However, this 
increase does not become an unfeasible factor for the 
optimization time. Regarding the cooling schedule, the 
exponential temperature function update was used, and 
three temperature decrement factors (α) were studied. 
It is clear that this factor has much greater influence on 
the execution time of the algorithm, thus leading to a 
significant increase in the number of objective function 
evaluations, as can be seen in Table 1. 

As termination criterion, the final temperature 
(Tf) was set to 0.000001, since in all cases this was 
shown to be sufficient to reach the tolerance of 1.0x10-

4 in the evaluation of the error between the new 
and the old objective function. Under this level of 
tolerance, it can be affirmed that there is no significant 
improvement in the new value for the TAC, so it is 
enough to represent the optimal solution obtained for 
each case. It was observed that the calculated initial 
temperature (T0) values were quite high, particularly 
in this case, due to the methodology used in this work, 
as previously described in the item Initial temperature 
(T0). According to Cheng et al. (2009) energy (E) and 
temperature (T) have the same unit because of the 
combination shown in Equation 11 for the Boltzmann 
distribution. In our case, since energy is represented 
by the TAC and its order of magnitude is near 1.0x106, 
we reached initial temperature values on the order of 
approximately 250,000 for P = 0.1; 500,000 for P = 
0.2; and 1,500,000 for P = 0.4. 

a Microprocessor: Intel® CoreTM i5-5200U CPU @ 2.20 GHz.

Table 1. Parameters and time estimation for different configurations used in the SAA.
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Once the convergence parameters of the SAA 
algorithm were defined, the simulations were 
performed to optimize the TAC in the PSD system 
of the water-ethanol mixture. For each of the tested 
combination parameters, five runs were performed 
(quintuplicate simulations), which, in the end, totaled 
45 runs for the determination of the minimum TAC. 
Table 2 presents the optimization results of all 45 
runs performed through the different tested SAA 
parameters.

As can be observed, the minimum TAC value 
obtained was 1,910,238.3 $/year, which resulted from 
the use of the slower temperature decrement factor (α = 
0.99) and of the higher initial temperature 1,500,000 (P 
= 0.4). The calculated deviation from the best obtained 
TAC shows that this TAC can be considered a good 
estimation of the optimal global solution since, for the 
quintuplicates, the obtained values were very similar. 
This configuration demonstrates that the slower and 
gradual lowering of the temperature improves the SAA 
performance in the search for the global optimum. The 
use of a higher initial temperature leads to a greater 
acceptability of bad solutions at the beginning, which 
gives the algorithm a chance to escape from local 
minima with greater aptitude.

When fixing the temperature decrement factor 
α = 0.99, for example, and by reducing the value 
of the acceptance probability from P = 0.4 to P = 
0.1, it was observed that the deviation between the 
optimal solutions reached 7.58‰. When the initial 
temperature is set to an acceptance probability P = 0.1, 

for example, and the temperature decrement factor α = 
0.99 is reduced to α = 0.95, it can be observed that the 
discrepancy can reach 209.41‰, a fact that indicates 
that the factor α has a very significant influence on 
the attainment of the global optimal solution. The 
time required for execution in the case of the best 
obtained TAC solution was 1.83 h, on average, which 
is a reasonably acceptable value when one works with 
multivariate and non-linear functions as in the case of 
this particular one.

If the specific SAA convergence parameters are not 
correctly designed for the case under study, it is easier 
for the algorithm to be trapped in a local minimum and 
to converge into a non-optimized global solution. For 
comparative visualization purposes, it was chosen to 
present the graphs of some configurations, as shown 
in Figure 6. 

It was observed that all the configurations tended 
to an optimum point; however, the faster runs, i.e., 
those that reached the “freezing” temperature within 
a smaller number of objective function evaluations, 
are far from reaching the global optimum, which is 
represented by graphs (e) and (f). Initially, when the 
temperature is high, there is a great dispersion in the 
points, which is the consequence of the probabilistic 
characteristic of SAA. As the temperature is reduced, 
the dispersion is reduced and the TAC value tends to 
a minimum until the final temperature is reached. The 
graphs corroborate the results in Table 1, which shows 
the number of total evaluations for each case until the 
termination criterion is reached, approximately 510 

a Deviation calculated based on the best TAC obtained (best TAC = 1,910,238.3 $/year).

Table 2. Optimization results of PSD using different convergence parameters for SAA.
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Figure 6. Optimization results for the ethanol-water system by the SAA: TAC values as the system is cooling (a) P 
= 0.1 and α = 0.95; (c) P = 0.25 and α = 0.97; (e) P = 0.4 and α = 0.99; and the best TAC obtained as the system is 
cooling (b) P = 0.1 and α = 0.95; (d) P = 0.25 and α = 0.97; (f) P = 0.4 and α = 0.99.

for the first case (P = 0.1 and α = 0.95), 887 for the 
second case (P = 0.25 and α = 0.97) and 2785 for the 
third case (P = 0.4 and α = 0.99), on average.

The values of the design and operational variables 
for the optimal configuration that reached the best 
TAC are considered the optimum global minimum 
point and are presented in Table 3. The comparison 

between the PSD process studied by Mulia-Soto and 
Flores-Tlacuahuac (2011) and that of the present 
study demonstrated that it is possible to reach the 
same desired ethanol purity, while reducing energy 
consumption and the total annual cost. The study made 
by Mulia-Soto and Flores-Tlacuahuac (2011) did not 
calculate the TAC values. Therefore, for comparison 
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TAC decayed from 4.725 to 2.126 in the LPC. The 
reduction in the reflux ratio in the LPC leads to reduction 
in the heat load of the reboiler, which, consequently, is 
related to the reduction in the total annual operating 
cost. But, when the HPC was observed, the reflux ratio 
increased from 0.435 to 1.669. Even with this increase, 
there was a reduction in the heat load of the reboiler 
in this column. This fact is related to the other design 
variables that were optimized, mainly to the total 
number of trays. The optimized HPC presented a 12-
tray increase in comparison to the non-optimized PSD, 
which means that the stripping section is less required 
in the process since a larger number of trays leads to 
higher rectification. Thus, this increase in the number 
of trays would compensate the heat load in the reboiler 
to obtain the same purity as the required one. 

The calculated TAC, for the non-optimized PSD 
system, was $ 3,197,625.3 per year, whereas the 
TAC obtained by the optimized configuration was 
$ 1,910,238.3 per year, which would represent a 
significant saving of 40.2% per year. The major 
difference in cost was observed through the reduction 
in operating cost, which decayed from $ 2,536,443.7 
per year in the non-optimized PSD to $ 1,406,112.6 
per year in the optimized PSD. This operating cost is 
mainly related to the energy expended in the reboilers 
and condensers. It indicates that, even if a column with 
more trays is required, its rectification is improved and 
its cost-effectiveness is offset by the reduction in the 
energy demand along peripherals that operate at lower 
loads and, consequently, reduce energy consumption. 
The feed and recycle streams had no great influence 
in terms of TAC minimization within the imposed 
constrains, since the feeding and recycling stages were 
practically unchanged in the comparison between 
optimized and non-optimized systems. 

The liquid and vapor phase composition profiles 
for the SAA-optimized distillation columns that 
exhibited the global minimum TAC are shown in 
Figure 7 (a) and (b). The temperature profiles along 
the column stages are shown in Figure 7 (c) and (d) 
for the LPC and HPC, respectively. Large temperature 
variation from tray to tray indicates the region where 
the compositions (water or ethanol) are changing 
significantly (Luyben, 2006b). There is a noticeable 
increase in temperature near the bottom of the LPC as 
the water is being concentrated near 100°C. In stage 
23, a temperature peak is also observed, which is due 
to the fresh feed stream that is entering in a superheated 
state, a fact that increases the vapor flow rate in 
the rectification section. In the HPC, the minimum 
boiling point azeotrope is withdrawn at the top of the 
column, as the purified anhydrous ethanol has higher 
temperature than the azeotropic mixture and exits at 
the bottom of the column. This temperature increase 
in the HPC stripping section is also evident, as there 

Table 3. Comparison between the optimized and non-
optimized PSD processes.

a Mulia-Soto and Flores-Tlacuahuac (2011).
b Excluding the reboiler and condenser.
c 3-year payback period.
d Calculated by the methodology described in the item Economic analysis.

purposes, the values were calculated through the 
methodology described in the item Economic analysis. 
It is evident, based on Table 3, that the purification 
system by the optimized PSD assures the production 
of an ethanol with purity higher than 99.5% mol, 
which is the recommended limit for its use in the 
transportation sector. In addition, from the bottom of 
the LPC, a water-rich stream is produced, i.e., less than 
0.0048 molar ethanol is lost, thus showing that, under 
these conditions, 98.41% mol of all the fed ethanol is 
recovered. Thus, it indicates that there is a successful 
and efficient separation of both components of the 
mixture and recovery viability. 

According to Hosgor et al. (2014), the increase in 
the reflux ratio improves the purity of the distillate, but 
also increases the heat load at the bottom. Therefore, 
under the precondition of assuring the distillate purity 
and minimizing the heat load in the reboiler, there is an 
optimal reflux ratio, which minimizes the TAC, as is 
also the case of other design parameters. By comparing 
the design variables of the optimized PSD to the non-
optimized PSD studied by Mulia-Soto and Flores-
Tlacuahuac (2011), the reflux ratio that minimized the 



Rodrigo Battisti et al.

Brazilian Journal of Chemical Engineering

466

Figure 7. Composition profile in each stage for the ethanol-water system in the optimal configuration in (a) LPC and 
(b) HPC; Temperature profile in each stage along the columns (c) LPC and (d) HPC.

is the tendency to purify the anhydrous ethanol at the 
bottom of the column.

Accordingly, it can be observed that the separation 
of the azeotrope happened as expected and that the 
optimization method allowed gains without detriment 
to the separation efficiency. The optimized PSD design 
revealed potential savings in terms of total annual 
cost when it was compared to the non-optimized 
process, thus proving the feasibility of the unpublished 
optimization methodology for this specific process, 
whose objective was to make the process more 
economically competitive for the industrial sector.

CONCLUSION

The main contribution of the current study is the 
application of the SAA optimization method in the 
anhydrous ethanol purification process by the PSD 
process. The major emphasis was the use of three 
different softwares, which were integrated by a 
programming methodology through VBA language 
for their application in the optimization solution of 
the design variables. It was possible to obtain the 

configuration that minimized the TAC of the process 
through this methodology. The results made it clear that 
the use of SAA, although it cannot assure a globally 
optimized design in all runs, was shown to have 
advantages as a good probability of obtaining the global 
optimum in a reasonable algorithm execution time. 

The optimized design of the pressure-swing 
distillation for anhydrous ethanol purification through 
the use of SAA had not been explored in the literature 
and presents itself as an unprecedented application 
for this process. The obtained design variables mainly 
minimized energy costs, and represented an expressive 
savings of approximately 40.2% per year in comparison 
to the non-optimized PSD used as comparison in the 
literature. It reinforces the feasibility of applying 
the SAA optimization method to obtain optimized 
engineering design in complex processes such as the 
pressure-swing distillation.

ACKNOWLEDGMENTS

The authors gratefully thank CAPES (Coordination 
for Improvement of Higher Education Personnel) for 



Optimization of Pressure-Swing Distillation for Anhydrous Ethanol Purification by the Simulated Annealing Algorithm

Brazilian Journal of Chemical Engineering, Vol. 36, No. 01,  pp. 453 - 469,  January - March,  2019

467

the financial support and UFSC (Federal University of 
Santa Catarina) for the technological support granted.

REFERENCES

Alcántara-Avila, J.R., Kano, M., and Hasebe, S., 
Environmental and economic optimization of 
distillation structures to produce anhydrous ethanol, 
in: Computer Aided Chemical Engineering, 30, 
712-716 (2012). https://doi.org/10.1016/B978-0-
444-59520-1.50001-4

Balat, M., Balat, H., and Öz, C., Progress in bioethanol 
processing. Progress in Energy and Combustion 
Science, 34, 551–573 (2008). https://doi.
org/10.1016/j.pecs.2007.11.001

Belincanta, J., Alchorne, J.A., and Teixeira da Silva, 
M., The Brazilian experience with ethanol fuel: 
aspects of production, use, quality and distribution 
logistics. Brazilian Journal of Chemical 
Engineering, 33, 1091–1102 (2016). https://doi.
org/10.1590/0104-6632.20160334s20150088

Ben-Ameur, W., Computing the initial temperature of 
simulated annealing. Computational Optimization 
and Applications, 29, 369–385 (2004). https://doi.
org/10.1023/B:COAP.0000044187.23143.bd

Cao, Y., Li, M., Wang, Y., Zhao, T., Li, X., Zhu, Z., 
and Wang, Y., Effect of feed temperature on 
economics and controllability of pressure-swing 
distillation for separating binary azeotrope. 
Chemical Engineering and Processing: Process 
Intensification, 110, 160–171 (2016). https://doi.
org/10.1016/j.cep.2016.10.011

Cardoso, M.F., Salcedo, R.L., De Azevedo, S.F., and 
Barbosa, D., Optimization of reactive distillation 
processes with simulated annealing. Chemical 
Engineering Science, 55, 5059–5078 (2000). 
https://doi.org/10.1016/S0009-2509(00)00119-6

Chaudhuri, P.D., and Diwekar, U.M., Synthesis 
under uncertainty with simulators. Computers & 
Chemical Engineering, 21, 733–738 (1997). https://
doi.org/10.1016/S0098-1354(96)00306-7

Chaudhuri, P.D., and Diwekar, U.M., Process synthesis 
under uncertainty: A penalty function approach. 
AIChE Journal, 42, 742–752 (1996). https://doi.
org/10.1002/aic.690420314

Chaudhuri, P.D., Diwekar, U.M., and Logsdon, J.S., An 
automated approach for the optimal design of heat 
exchangers. Industrial & Engineering Chemistry 
Research, 36, 3685–3693 (1997). https://doi.
org/10.1021/ie970010h

Cheng, J.K., Lee, H.Y., Huang, H.P., and Yu, C.C., 
Optimal steady-state design of reactive distillation 
processes using simulated annealing. Journal 
of the Taiwan Institute of Chemical Engineers, 
40, 188–196 (2009). https://doi.org/10.1016/j.
jtice.2008.10.003

Claumann, C.A., Peruzzo, T., Felice, V. De, Marangoni, 
C., and Machado, R.A.F., Modeling and process 
optimization: an approach using aspen plus and 
matlab in the energy integration study of distillation 
columns, in: VIII Congreso Argentino de Ingeniería 
Química Y 3 JASP, Buenos Aires (2015).

Dolan, W.B., Cummings, P.T., and Le Van, M.D., 
Process Optimization via Simulated Annealing: 
Application to Network Design. American 
Institution of Chemical Engineers, 35, 725–736 
(1989). https://doi.org/10.1002/aic.690350504

Dolan, W.B., Cummings, P.T., and Le Van, M.D., 
Algorithmic efficiency of simulated annealing 
for heat exchanger network design. Computers & 
Chemical Engineering, 14(10), 1039–1050 (1990).

Douglas, J., Conceptual Design of Chemical Processes. 
McGraw-Hill Book Company, Singapore (1988).

Fulgueras, A.M., Poudel, J., Kim, D.S., and Cho, J., 
Optimization study of pressure-swing distillation 
for the separation process of a maximum-boiling 
azeotropic system of water-ethylenediamine. Korean 
Journal of Chemical Engineering, 33, 46–56 (2016). 
https://doi.org/10.1007/s11814-015-0100-4

García-Herreros, P., Gómez, J.M., Gil, I.D., and 
Rodríguez, G., Optimization of the design and 
operation of an extractive distillation system for 
the production of fuel grade ethanol using glycerol 
as entrainer. Industrial and Engineering Chemistry 
Research, 50, 3977–3985 (2011). https://doi.
org/10.1021/ie101845j

Gutiérrez-Antonio, C., Ojeda-Gasca, A., Bonilla-
Petriciolet, A., Segovia-Hernández, J.G., and 
Briones-Ramírez, A., Effect of using adjusted 
parameters, local and global optimums, for 
phase equilibrium prediction on the synthesis of 
azeotropic distillation Columns. Industrial and 
Engineering Chemistry Research, 53, 1489–1502 
(2014). https://doi.org/10.1021/ie4019885

Hanke, M., and Li, P., Simulated annealing for the 
optimization of batch distillation processes. Computers 
and Chemical Engineering, 24, 1–8 (2000). https://
doi.org/10.1016/S0098-1354(00)00317-3

Hosgor, E., Kucuk, T., Oksal, I.N., and Kaymak, D.B., 
Design and control of distillation processes for 
methanol – chloroform separation. Computers and 
Chemical Engineering, 67, 166–177 (2014). https://
doi.org/10.1016/j.compchemeng.2014.03.026

Iqbal, A., and Ahmad, S.A., Pressure swing distillation 
of azeotropic mixture – A simulation study. 
Perspectives in Science, 8, 4–6 (2016). https://doi.
org/10.1016/j.pisc.2016.01.001

Kiran, B., and Jana, A.K., A hybrid heat integration 
scheme for bioethanol separation through pressure-
swing distillation route. Separation and Purification 
Technology, 142, 307–315 (2015). https://doi.
org/10.1016/j.seppur.2015.01.003



Rodrigo Battisti et al.

Brazilian Journal of Chemical Engineering

468

Kirkpatrick, S., Gelatt, C.D., and Vecch, M.P., 
Optimization by Simulated Annealing. Science, 
220, 671–680 (1983). https://doi.org/10.1126/
science.220.4598.671

Kiss, A.A., Distillation technology – still young and 
full of breakthrough opportunities. Journal of 
Chemical Technology & Biotechnology, 89, 479–
498 (2013). https://doi.org/10.1002/jctb.4262

Kiss, A.A., Landaeta, S.J.F., and Ferreira, C.A.I., 
Towards energy efficient distillation technologies - 
Making the right choice. Energy, 47, 531–542 (2012). 
https://doi.org/10.1016/j.energy.2012.09.038

Kiss, A.A., and Suszwalak, D.J.P.C., Enhanced 
bioethanol dehydration by extractive and azeotropic 
distillation in dividing-wall columns. Separation 
and Purification Technology, 86, 70–78 (2012). 
https://doi.org/10.1016/j.seppur.2011.10.022

Kumar, S., Singh, N., and Prasad, R., Anhydrous 
ethanol: A renewable source of energy. Renewable 
and Sustainable Energy Reviews, 14, 1830–1844 
(2010). https://doi.org/10.1016/j.rser.2010.03.015

Kunnakorn, D., Rirksomboon, T., Siemanond, 
K., Aungkavattana, P., Kuanchertchoo, N., 
Chuntanalerg, P., Hemra, K., Kulprathipanja, 
S., James, R.B., and Wongkasemjit, S., Techno-
economic comparison of energy usage between 
azeotropic distillation and hybrid system for 
water-ethanol separation. Renewable Energy, 
51, 310–316 (2013). https://doi.org/10.1016/j.
renene.2012.09.055

Li, R., Ye, Q., Suo, X., Dai, X., and Yu, H., Heat-
Integrated Pressure-Swing Distillation Process 
for Separation of a Maximum-Boiling Azeotrope 
Ethylenediamine/Water. Chemical Engineering 
Research and Design, 5, 1–15 (2015). https://doi.
org/10.1016/j.cherd.2015.10.038

Liang, S., Cao, Y., Liu, X., Li, X., Zhao, Y., Wang, 
Y., and Wang, Y., Insight into pressure-swing 
distillation from azeotropic phenomenon to 
dynamic control. Chemical Engineering Research 
and Design, 117, 318–335 (2017). https://doi.
org/10.1016/j.cherd.2016.10.040

Linke, P., and Kokossis, A., On the robust application 
of stochastic optimization technology for the 
synthesis of reaction/separation systems Computers 
and Chemical Engineering, 27, 733–758 (2003). 
https://doi.org/10.1016/S0098-1354(02)00253-3

Lladosa, E., Montón, J.B., and Burguet, M., 
Separation of di-n-propyl ether and n-propyl 
alcohol by extractive distillation and pressure-
swing distillation: Computer simulation and 
economic optimization. Chemical Engineering and 
Processing: Process Intensification, 50, 1266–1274 
(2011). https://doi.org/10.1016/j.cep.2011.07.010

Luo, H., Liang, K., Li, W., Li, Y., Xia, M., and Xu, 
C., Comparison of pressure-swing distillation 

and extractive distillation methods for isopropyl 
alcohol/diisopropyl ether separation. Industrial 
and Engineering Chemistry Research, 53, 15167–
15182 (2014). https://doi.org/10.1021/ie502735g

Luyben, W.L., Methanol/Trimethoxysilane Azeotrope 
Separation Using Pressure- Swing Distillation. 
Industrial and Engineering Chemistry Research, 53, 
5590−5597 (2014). https://doi.org/10.1021/ie500043c

Luyben, W.L., Comparison of extractive distillation 
and pressure-swing distillation for acetone/
chloroform separation. Computers and Chemical 
Engineering, 50, 1–7 (2013). https://doi.
org/10.1016/j.compchemeng.2012.10.014

Luyben, W.L., Pressure-swing distillation for 
minimum- and maximum-boiling homogeneous 
azeotropes. Industrial and Engineering Chemistry 
Research, 51, 10881–10886 (2012). https://doi.
org/10.1021/ie3002414

Luyben, W.L., Control of the Heterogeneous 
Azeotropic n-Butanol/Water Distillation System. 
Energy & Fuels, 22, 4249–4258 (2008a). https://
doi.org/10.1021/ef8004064

Luyben, W.L., Design and control of a fully heat-
integrated pressure-swing azeotropic distillation 
system. Industrial and Engineering Chemistry 
Research, 47, 2681–2685 (2008b). https://doi.
org/10.1021/ie071366o

Luyben, W.L., Distillation Economic Optimization, 
in: Distillation Design and Control Using AspenTM 
Simulation. Wiley-Blackwell, pp. 85–97, chapter 4 
(2006a). https://doi.org/10.1002/0471785253.ch4

Luyben, W.L., Evaluation of criteria for selecting 
temperature control trays in distillation columns. 
Journal of Process Control, 16, 115–134 (2006b). 
https://doi.org/10.1016/j.jprocont.2005.05.004

Malhotra, R.K., and Das, L.M., Biofuels as blending 
components for motor gasoline and diesel fuels. 
Journal of Scientific and Industrial Research, 62, 
90–96 (2003). https://doi.org/10.4271/2003-26-
0011

MathWorks, Global Optimization Toolbox: User’s 
Guide (r2016b). URL http://www.mathworks.com/
help/pdf_doc/gads/gads_tb.pdf (2016)

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., 
Teller, A.H., and Teller, E., Equation of state 
calculations by fast computing machines. Journal 
of Chemical Physics, 21, 1087–1092 (1953). 
https://doi.org/10.1063/1.1699114

Mulia-Soto, J.F., and Flores-Tlacuahuac, A., 
Modeling, simulation and control of an internally 
heat integrated pressure-swing distillation process 
for bioethanol separation. Computers and Chemical 
Engineering, 35, 1532–1546 (2011). https://doi.
org/10.1016/j.compchemeng.2011.03.011

Muñoz, R., Montón, J.B., Burguet, M.C., and de la 
Torre, J., Separation of isobutyl alcohol and isobutyl 



Optimization of Pressure-Swing Distillation for Anhydrous Ethanol Purification by the Simulated Annealing Algorithm

Brazilian Journal of Chemical Engineering, Vol. 36, No. 01,  pp. 453 - 469,  January - March,  2019

469

acetate by extractive distillation and pressure-
swing distillation: Simulation and optimization. 
Separation and Purification Technology, 50, 
175–183 (2006). https://doi.org/10.1016/j.
seppur.2005.11.022

Nourani, Y., and Andresen, B., A comparison of 
simulated annealing cooling strategies. Journal 
of Physics A: Mathematical and General, 31, 
8373–8385 (1999). https://doi.org/10.1088/0305-
4470/31/41/011

Pla-Franco, J., Lladosa, E., Loras, S., and Montón, J.B., 
Thermodynamic Analysis and Process Simulation 
of Ethanol Dehydration via Heterogeneous 
Azeotropic Distillation. Industrial and Engineering 
Chemistry Research, 53, 6084–6093 (2014). 
https://doi.org/10.1021/ie403988c

Quijada-Maldonado, E., Meindersma, G.W., and de 
Haan, A.B., Ionic liquid effects on mass transfer 
efficiency in extractive distillation of water–ethanol 
mixtures. Computers and Chemical Engineering, 
71, 210–219 (2014). https://doi.org/10.1016/j.
compchemeng.2014.08.002

Rangaiah, G.P., Stochastic Global 
Optimization:Techniques and Applications in 
Chemical Engineering. World Scientific, Singapore 
(2010). https://doi.org/10.1142/7669

Seader, J.D., and Henley, E.J., Separation process 
principles. Wiley, Hoboken (1998).

Šibalija, T. V., and Majstorović, V.D., Advanced 
Multiresponse Process Optimisation: An Intelligent 
and Integrated Approach. Springer International 

Publishing, Switzerland (2016). https://doi.
org/10.1007/978-3-319-19255-0

Tsuyumoto, M., Teramoto, A., and Meares, P., 
Dehydration of ethanol on a pilot-plant scale, using 
a new type of hollow-fiber membrane. Journal of 
Membrane Science, 133, 83–94 (1997). https://doi.
org/10.1016/S0376-7388(97)00090-2

Wang, Y., Bu, G., Wang, Y., Zhao, T., Zhang, Z.,and 
Zhu, Z., Application of a simulated annealing 
algorithm to design and optimize a pressure-swing 
distillation process. Computers and Chemical 
Engineering, 95, 97–107 (2016). https://doi.
org/10.1016/j.compchemeng.2016.09.014

Wang, Y., Cui, P., and Zhang, Z., Heat-Integrated 
Pressure-Swing-Distillation Process for Separation 
of Tetrahydrofuran/Methanol with Different 
Feed Compositions. Industrial and Engineering 
Chemistry Research, 53, 7186–7194 (2014). 
https://doi.org/10.1021/ie500235f

Zhu, Z., Wang, L., Ma, Y., Wang, W., and Wang, 
Y., Separating an azeotropic mixture of toluene 
and ethanol via heat integration pressure swing 
distillation. Computers and Chemical Engineering, 
76, 137–149 (2015). https://doi.org/10.1016/j.
compchemeng.2015.02.016

Zhu, Z., Xu, D., Liu, X., Zhang, Z., and Wang, Y., 
Separation of acetonitrile/methanol/benzene 
ternary azeotrope via triple column pressure-
swing distillation. Separation and Purification 
Technology, 169, 66–77 (2016). https://doi.
org/10.1016/j.seppur.2016.06.009




