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Abstract - This work presents an analytical modelling of mass transfer in spheroidal solids using a liquid 
diffusion model. The diffusion equation, written in cylindrical coordinates, is solved using the Galerkin 
method with a constant diffusion coefficient and an equilibrium boundary condition at the surface of the solid. 
Results on the drying kinetics, and moisture content distribution in the solids are presented and analysed. The 
iso-concentration lines for moisture content show that the drying process is faster in sharp areas,. It was 
verified that solids with a larger area/volume ratio dry faster. The results obtained are consistent so the model 
presented can be used to solve diffusion problems such as drying, wetting, heating and cooling of solids with 
a shape that varies from a circular disk to an infinite cylinder, including a sphere and ellipsoids. 
Keywords: drying, spheroid, ellipsoid, modelling, Galerkin method. 

 
 
 

INTRODUCTION 
 

In the chemical industries, drying is one of the 
most important processes used in the processing of 
foods and in the storage of grains. This process 
consists of the partial transfer of the liquid part 
(usually water) of a solid. The drying process can 
also be explained as a process of heat and mass 
transfer that generates the removal through 
evaporation of part of the moisture contained in the 
product (Fortes, 1978). Drying differs from other 
separation techniques due to the movement of the 
molecules, which in this case is obtained by a mass 
transfer of the liquid due to the difference in partial 
pressure of the steam between the surface of the 
solid to be evaporated and the air that surrounds it. In 
the case of foods, water is removal from the moist 
material up to a level where deterioration provoked 
by microorganisms can be minimised. 

The mechanisms of moisture transport in solids 
are still not very well understood by specialists. 

Some authors consider moisture transport to be a 
combination of moisture transport of liquid and of 
vapour diffusion, while others just consider it to be 
liquid diffusion. 

Analytical or numerical solutions of the diffusion 
equation, with either a constant or a variable 
diffusion coefficient and constant or convective 
boundary conditions, for several shapes (plate, 
cylinder and sphere), can be found in Crank (1992) 
and Gebhart (1993). For bodies in an elliptic shape 
Payne et al. (1986), Elvira (1990), Haghighi et al. 
(1990), Lu and Siebenmorgen (1992), Sarker et al. 
(1994), Lima (1999) and Lima and Nebra (2000) can 
be mentioned. Besides these studies,  and the work 
of Keltner (1973), Sheen and Hayakawa (1992), 
Coutelieris et al. (1995), Feng and Michaelides 
(1997), Alassar (1999), Igathinathane and 
Chattopadhyay (2000), Carmo (2000), Carmo and 
Lima (2000, 2001), Oliveira and Lima (2001), 
Oliveira (2001) and Lima et al. (2002a-b) can also be 
mentioned. 
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Payne et al. (1986) present a solution of the heat 
conduction equation for an irregular border using the 
Galerkin method with an equilibrium boundary 
condition at the surface of the solid. The method was 
used to determine the temperature at the center of 
spheroids. The numerical results obtained are 
compared with the analytical data reported by Haji-
Sheikh and Sparrow (1966), showing excellent 
agreement. 

Lima (1999) conducted a numerical and 
analytical study of the heat and mass diffusion in 
prolate spheroids with constant or variable properties 
and constant or convective boundary conditions, 
with or without shrink, using techniques of finite 
volume and separation of variables. The models 
presented are general and independent of the nature 
of the solid (fruits, cereals, etc); however, the author 
emphasised the drying of bananas. 

Oliveira and Lima (2002) offer an analytical 
solution of the diffusion equation applied to 
ellipsoids of revolution that is more than general that 
presented by Haji-Sheikh and Sparrow (1966). The 
authors included calculation of the average value of 
the variable of interest (moisture content) to describe 
mass transfer in prolate spheroids, assuming 
convective boundary conditions at the surface of the 
solid. 

The goal of this research is to present an 
analytical methodology to predict mass transport in 
ellipsoids of revolution (prolate and oblate 
spheroids) using the Galerkin method. 
 
 

MATHEMATICAL MODELLING 
 
The general diffusion equation is given by 

 
( ) ( ) '''

t
Φ∂ λΦ

= ∇ ⋅ Γ ∇Φ + Φ
∂

      (1) 

 
By writing Eq. (1) in cylindrical coordinates, for 

the two-dimensional case we have 
 

( ) 1
'''

t r r r z z
Φ Φ∂ λΦ ∂ ∂Φ ∂ ∂Φ   = Γ + Γ + Φ   ∂ ∂ ∂ ∂ ∂   

   (2) 

 
 For solution of Eq. (2), the following initial and 
boundary conditions can be used: 
 

( )r, zΦ = Φ  for t = 0 (3a) 
 

eΦ = Φ  at the surface of the solid for t > 0 (3b) 

0
z

∂Φ
=

∂
for r = 0 for every t  (3c) 

 

0
r

∂Φ
=

∂
 for z = 0 for every t  (3d) 

 
Defining the following dimensionless parameters: 

 
r

r*
a

= ;       
z

z*
a

= ;     3
V

V*
a

= ;  

(4a-e) 

e

0 e
*

Φ − Φ
Φ =

Φ − Φ
;       

( )
2

t
t*

a

ΦΓ
λ

=    

 
Considering constant transport coefficient, 

without the generation of the variable, the diffusion 
equation assumes dimensionless form as follows: 

 
2*

*
t *

∂Φ
= ∇ Φ

∂
   (5) 

 
In Eqs. (4a-e), " a" is a characteristic dimension 

of the solid.   
The solution of Eq. (5) can be written as follows 

(Payne et al., 1986): 
 

( ) ( ) n
N

t** * *
n n

n 1

* r ,z , t C r*, z* e−γ

=

Φ = ψ∑    (6) 

 
where nγ  is the nth eigenvalue (for all positions in 
the solid) and nC  is a constant to be determined. For 
convenience it is assumed that the solid has finite 
dimensions. 

Using the integral method based on Galerkin 
(GBI method) (Beck et al., 1992), 
function ( )n r*, z *ψ  is selected so the homogeneous 
boundary conditions are satisfied and Eq. (6) is the 
solution of Eq. (5). This last condition is satisfied by 
substituting Eq. (6) into Eq. (5). Then, after the 
substitution and a series of algebraic operations, we 
obtain 
 

( ) ( )2
n n nr*, z* r*,z* 0∇ ψ + γ ψ =  (7) 

 
Thus the diffusion equation will be now an 

eigenvalues problem and function ( )n r*, z *ψ  is the 

eigenfunction. Function ( )n r , z∗ ∗Ψ  is obtained by 
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the linear combination of a set of functions. Its 
members are linearly independent, so the boundary 
condition imposed is satisfied. This function is given 
by: 
 

( ) ( )
N

n nj j
n 1

r ,z d f r ,z∗ ∗ ∗ ∗

=

Ψ = ∑    (8) 

 

where ( )jf r , z∗ ∗  is an element of a group of base 

functions and njd  are constants to be determined. 

Function jf  is called the Galerkin function and it 

is obtained by the multiplication of function ( )r ,z∗ ∗ϕ  

by an element of a complete set of functions. 

Function ( )r ,z∗ ∗ϕ  is selected so as to satisfy the 

homogeneous boundary condition. Function jf  with 

j varying from 1 to N constitutes a set of base 
functions. 

The method to select base functions for boundary 
conditions of the first kind (the equilibrium boundary 
condition at the surface of the body) is given in the 
literature (Kantorovich and Krylov, Ozisik, Hagi-
Sheikh and Mashena, mentioned by Beck et al., 
1992). Each base function should tend towards zero 
at the boundary of the solid. Some, but not all, of     
the base functions can be zero at some point in the 
solid. 

Using the Galerkin procedure, which consists of 
multiplying both sides of Eq. (7) by *

if dV  and 
integrating the resulting function into the volume of 
the solid, the following is obtained: 
 

* *

2 * *
i n n i n

V V

f dV f dV 0∇ Ψ + γ Ψ =∫ ∫  (9) 

 
Substituting, the Eq. (8) into Eq. (9) and dividing 

by the volume of the solid, we obtain: 
 

* *

N
2 * *

j i j n i j* *
j 1 V V

1 1
dn f f dV f f dV 0

V V=

 
 ∇ + γ =
 
 

∑ ∫ ∫  (10) 

 
where i=1,2,... ,N. In the form of the matrix, Eq. (10) 
can be rewritten as follows: 
 

( )n nA B d 0+ γ =%  (11) 

 

where A  and B  are square matries of N�N 
elements. The elements of the matries A  and B  are 
given by 
 

*

2 *
ij i j*

V

1
a f f dV

V
= ∇∫                                          (12a) 

 

*

*

ij i j*
V

1
b f f dV

V
= ∫                                               (12b) 

 
Coefficients n1 n2 nNd ,d ,...,d  in Eq. (8) are 

elements of vector nd%  in Eq. (11). It can be observed 

that matrix B  is symmetrical, so ij jib b= . Matrix A  

is symmetrical as well. 
Since the linear equations originating in Eq. (11) 

are homogeneous, 1 2 N, ,...,γ γ γ  can be obtained to 

make the determinant of the matrix ( )A B+ γ  equal 

to zero. 
Once the eigenvalues, nγ , have been determined 

the values of coefficients njd  corresponding to nγ  

can be obtained. Again, since the simultaneous 
equations resulting from Eq. (11) are homogeneous, 
one of the coefficients njd  can be selected arbitrarily 

to be equal to 1 without any loss of generality. 
Therefore, for a specified njd , a system of  (N-1) 

equations should be solved by obtain 
n2 n3 nNd ,d ,...,d . 

To obtain coefficients nC in Eq. (6) the initial 
condition given by Eq. (3a) is used. Then, when t = 
0, from Eq. (6) we get: 
 

( ) ( )
N

n n
n 1

r ,z C r , z∗ ∗ ∗ ∗ ∗

=

Φ = Ψ∑  (13) 

 
By multiplying both sides of Eq. (13) by if dV*  

and by integrating over the volume of the solid, we 
obtain 
 

( ) ( )
* *

N
* *

i i n n
n 1V V

f r , z dV f C r ,z dV∗ ∗ ∗ ∗ ∗

=

Φ = Ψ∑∫ ∫  (14) 

 
The results of Eq. (14) will be a set of N linear 

algebraic equations that allows determination of 
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1 2 nC ,C ,...,C . This completes the solution of the 
problem.   

The average value of the variable ∗Φ  is given by 
(Whitaker, 1980): 
 

( )
*

** * *
*

V

1
r ,z , t dV

V
∗ ∗Φ = Φ∫  (15) 

 
where V *  is the volume of the solid being studied. 

In this work the GBI method was used to solve 
the problem of mass transport inside spheroidal 
solids (prolate spheroid, oblate spheroid and sphere). 
In this case, MΦ =  (moisture content), 

DφΓ = (diffusion coefficient) and λ=1. Fig. 1 
illustrates an ellipsoid of revolution. The contour of 
the solid is defined by 
 

2 2 2

2 2 2
x y z

1
a a b

+ + =  (16) 

 
Since 2 2 2r x y= + , Eq. (16) can be written as 

follows: 
 

2r
z b 1

a
 = −  
 

 (17) 

 
 

b

ra

 
 

Figure 1: Ellipsoid of revolution and characteristics. 
 

 
Thus, the following initial and boundary 

conditions can be given as follows: 
 

( ) 0M r,z, t 0 M cte= = =            (18a) 
 

2

e
r

M r a,z 1 , t M
a

   = = − =    
         (18b) 

 
M

0
z

∂
=

∂
 for r = 0, for every t;          (18c) 

 
M

0
r

∂
=

∂
 for z = 0, for every t          (18d) 

 

Using the dimensionless parameters defined in 
Eqs. (4a-e), we have 
 

( )2b
z 1 r

a
∗ ∗= −            (19) 

 
and the initial and boundary conditions in 
dimensionless form are: 
 

( )M r ,z , t 0 1∗ ∗ ∗ ∗ = =              (20a) 

 

( )2b
M r 1,z 1 r , t 0

a
∗ ∗ ∗ ∗ ∗ 

= = − = 
 

       (20b) 
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M *
0

z*
∂

=
∂

 for r = 0, for every t;         (20c) 

 
M *

0
r *

∂
=

∂
 for r = 0, for every t          (20c) 

 
The base functions, jf , are given by 

 

( ) ( )
2 2

p q q
j 2 2

r z
f r,z 1 r z

a b
− 

= − −  
 

       (21) 

 
or, in the dimensionless form as follows: 
 

( ) ( ) ( ) ( ) ( )
22 2 p q q* * * * p * *

j 2
a

f r ,z 1 r z a r z
b

− 
= − − 

  
   (22) 

 
where p = 0, 2, 4,..., NP and q = 0, 2, 4,...,p. In this 
work ten base functions, which correspond to NP = 
6, where used. These base functions are not 
orthogonal; however, according to Payne et al. 
(1986), functions nΨ  are orthogonal. 

To calculate the area (S) and volume (V) of 
prolate and oblate spheroids, the following 
equations, can be used (Mohsenin, 1986): 
 

2

2

a
arc sin 1

ba 1
S 4 a b

2b 2 a
1

b

      − −         = π + 
   − −   
     

   (23) 

 
valid for b/a<1.0     
 

2

2

a a
ln 1

b ba
S 4 a b

2b a
2 1

b

      + −         = π + 
    −   
     

    (24) 

 
valid for b/a>1.0     
 

24
V a b

3
= π                      (25) 

 
Eq. (25) is valid to prolate and oblate spheroid 

including sphere and circular disk. The Eqs. (23) - 
(25) were used to verify the effect of the shape of the 
solids on the drying kinetics. Other details about this 
formulation can be found in Farias (2002). 
 
 

RESULTS AND DISCUSSIONS 
   
Validation   
   
 To obtain the results, a computational code 
written in the Mathematica language, version 4.1 
was implemented (Wolfram, 1999). To validate the 
methodology presented here, some results are shown 
in Fig. 2 on the dimensionless moisture content at the 
center of the spheroid ( )r* 0, z* 0= =  as a function of 
the Fourier number obtained in this work, compared 
with results reported by Payne et al. (1986) for spheroids 
with the aspect ratios b a 2.00=  (prolate spheroid) and 
b a 0.50=  (oblate spheroid) and for b a 1.00=  
(sphere). Analysing Fig. 2, a perfect agreement between 
the three cases presented can be observed. 

 

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

Payne et al. (1986)  b/a=2.0
This work b/a=2.0
Luikov (1968) b/a=1.0
This work b/a=1.0
Payne et al. (1986) b/a=0.5
This work b/a=0.5

Dt/a2  
Figure 2: Moisture content in the center of three spheroids 
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Application 
 

Using the model presented in this work, the 
behaviour of the dimensionless average moisture 
content can be traced for many spheroids as a 
function of Fourier number. Fig. 3 illustrates the 
dimensionless average moisture content of spheroids 
for aspect ratios that vary from b/a=0.25 to 5.00. 
Analysing Fig. 3, it can be observed that for the 
aspect ratio 0.25, the dimensionless average moisture 
content decreases much faster than for the aspect 
ratio 5.00. Therefore, it can be observed that the 
aspect ratio of the spheroid has a influence direct on 
the drying process. This is directly related to 
area/volume ratio (S/V). In a detailed analysis, it can 
be affirmed that the larger the area/volume ratio of a 
solid, the faster it will dry when maintained under 

the same experimental conditions. 
Similar results were also observed in other work 

with oblate spheroids (Carmo, 2000) and prolate 
spheroids (Lima, 1999) as well as with other 
geometric forms, such as the parallelepiped 
(Nascimento, 2002). That characteristic is observed 
not only in the solids drying process, but also in 
heating, cooling and wetting processes. 

In Figure 4 the dimensionless moisture content at 
the center of spheroids as a function of Fourier 
number is shown for several aspect ratios. Analysing 
this figure, it can be observed that the dimensionless 
moisture content at the center of the spheroid has the 
same behaviour as the dimensionless average 
moisture content in the previous illustration, so the 
smaller the aspect ratio the faster the loss of mass of 
the solid. 

 
 

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

b/a=0.25
b/a=0.50
b/a=0.75
b/a=1.00
b/a=1.50
b/a=2.00
b/a=5.00

Dt/a2  
 

Figure 3: Dimensionless average moisture content as a function  
of Fourier number for several aspect ratios. 
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Figure 4: Dimensionless moisture content in the center of the spheroid as  
a function of the Fourier number for several aspects ratios. 
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It can be verified however that at the center of the 
spheroid, the behaviour of the curves is smoother 
than the behaviour of the curves of the dimensionless 
average moisture content. It can be concluded that 
the center of the spheroid is the place where the 
smallest moisture gradients are seen during the 
drying process for the same aspect ratio and the same 
Fourier number. 

Figure 5 illustrates the behaviour of the 
dimensionless moisture content as a function of 
radial coordinate for several Fourier numbers         
for z*=0.0 for a spheroid with the aspect ratio 
b a 0.5= . Analysing the illustration, it can be 
observed that the dimensionless moisture content 
decreases with the increase in Fourier number and 
radial coordinate.  

Taking as reference the curve for the Fourier 
number t* 0.05=  and r* 0= , the value of the 
dimensionless moisture content is approximately 
0.68 and for the coordinate r* 0.8= , the value of the 
dimensionless moisture content is approximately 
0.18. It can be observed that the dimensionless 

moisture content decreases with the increase in the 
coordinate r* for the same Fourier number, i.e., the 
closer to of the surface of the spheroid, the lower the 
dimensionless moisture content will be. This result 
shows that the moisture gradients are smaller close to 
the center of the spheroid and higher close to the 
surface, mainly for short times. 

Figure 6 illustrates the behaviour of the 
dimensionless moisture content as a function of 
longitudinal coordinate for several Fourier numbers, 
for r* 0=  for a spheroid with the aspect ratio 
b a 0.5= . It can be observed that the curves have the 
same behaviour as the curves in Fig. 5; this 
demonstrates the dependence of the dimensionless 
moisture content of the longitudinal coordinate for 
any Fourier number. However, for the case presented 
in Fig. 5, it can be observed that the curves are 
smoother, with a variation in radial coordinate, 
indicating that the moisture gradients are larger in 
the direction of coordinate z*than in the direction of 
coordinate r* for a spheroid with the aspect ratio 
b/a=0.5. 

 
 
 
 

 

0.0 0.2 0.4 0.6 0.8 1.0
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0.0
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t*=0.01
t*=0.02
t*=0.05
t*=0.10
t*=0.15

 
 

Figure 5: Dimensionless moisture content as a function of radial coordinate 
for several Fourier numbers for z* 0=  for aspect ratio b/a=0.5. 
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Figure 6: Dimensionless moisture content as a function of radial coordinate 

for several Fourier numbers for r* 0=  for the aspect ratio b a 0.5= . 
 

In Figure 7 the behaviour of the dimensionless 
moisture content as a function of radial coordinate 
for several Fourier numbers for z* 0=  is shown for 
a spheroid with the aspect ratio b/a=1.5 (prolate 
spheroid). Analysing the graph, it can be observed 
that the dimensionless moisture content depends on 
Fourier number and on coordinate r*, as expected, as 
in the case of oblate spheroids. So, it can be verified 
that, independent of the aspect ratio, the 
dimensionless moisture content depends directly on 
radial coordinate as well as on the Fourier number. 

It can be noted that in Figures 5 and 7 for short 
times (t*=0.01) small mathematical oscillations 
occurred that didn't affect the results. Increasing the 
number of base functions can diminish this 
behaviour. Payne et al. (1986) compared the values 
of (1 - M*) with several numbers of base functions 
for ellipsoids with aspect ratios b/a = 0.5 and b/a = 
1.5, where this effect is clearly observed. 

In Figure 8 the dimensionless moisture content as 
a function of longitudinal coordinate z *  for several 
Fourier numbers for r* 0=  for the aspect ratio 
b a 1.5=  (prolate spheroid) is presented. 

As in Fig. 7, the dependence of dimensionless 
moisture content on Fourier number and longitudinal 
coordinate is evident. It can be noted that the higher 
the Fourier number the smaller the dimensionless 
moisture content for the same coordinate r *  and/or 
z * , so the higher the longitudinal coordinate the 
smaller the dimensionless moisture content for the 
same Fourier number and aspect ratio. 

  In Figures 9 and 10 the distribution of the 
dimensionless moisture content inside an oblate 
spheroid with the aspect ratio b a 0.5=  as a function 
of the cylindrical coordinates ( )r*, z *  for elapsed 
times t* 0.05=  and 0.10, respectively, is shown. 

Analysing Fig. 9, it can be observed that the 
dimensionless moisture content distribution has high 
moisture gradients, mainly on the z *  axis and in 
proximity to the surface of the solid, as could already 
be seen in the Fig. 5. The iso-concentration lines are 
shown in the form of elliptic lines with the shape of 
an oblate spheroid. A phenomenon that occurs on the 
extremity of the spheroid in proximity to the 
coordinate r* 1.00=  is observed; drying is quick in 
that area, generating high moisture gradients. Thus, 
this area is more susceptible to thermo-mechanical 
effects, such as cracking and deformation that could 
even rupture the solid. These effects jeopardise the 
quality of the product after drying. Several authors 
also reported this type of effect, for instance Lima 
(1999), Carmo (2000), Oliveira (2001), Nascimento 
(2002) and Oliveira and Lima (2002). The analyses 
in Fig. 10 demonstrate that the dimensionless 
moisture content distribution has low moisture 
gradients, i.e., the dimensionless moisture content 
distribution is already almost the same as that in the 
spheroid.  

So, it can be verified that larger moisture 
gradients occur for lower Fourier numbers, tending 
to zero at the end of the process, when the solid 
reaches its dimensionless equilibrium moisture 
content. 
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Figure 7: Dimensionless moisture content as a function of radial coordinate 

for several Fourier numbers for z* 0=  for the aspect ratio b/a=1.5. 
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Figure 8: Dimensionless moisture content as a function of longitudinal coordinate z *   

for several Fourier numbers for r* 0=  for the aspect ratio b a 1.5= . 
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Figure 9: Distribution of the dimensionless moisture content for b a 0,5=  and t* 0.05= . 
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Figure 10: Distribution of the dimensionless moisture content for b a 0.5=  and t* 0.10= . 

 
Figures 11 and 12 show the dimensionless moisture 

content distribution in a spheroid with the aspect ratio 
b a 1.0=  (sphere) as a function of cylindrical coordinates 
for the Fourier numbers t* 0.05=  and 0.10, 
respectively. Analysing Fig. 11, it can be noted that high 
moisture gradients are found in the spheroid, i.e., in the 
area close to the surface, the spheroid is practically dry, 
while at the center it is very moist. The iso-concentration 
lines are circular in the shape of the spheroid according 
to boundary conditions used in this work. In Fig. 12 
smaller moisture gradients than in the previous case 
(t*=0.05)    are seen. This indicates that the moisture 
moves from the center of the solid to the surface of the 
same. 

Figures 13 and 14 illustrate the dimensionless moisture 
content distribution in a spheroid as a function of 
cylindrical coordinates ( )r*, z *  with aspect ratiob a 1.5=  
(prolate spheroid) for t* 0.05=  and 0.01, respectively.  

In analysing Fig. 13 high moisture gradients can 
be observed in the spheroid for t* 0.05= . It can be 
noted that the iso-concentration lines have an elliptic 
form with the shape of a prolate spheroid. Analysing 
Fig. 14, it can be seen that the dimensionless 
moisture content distribution in the spheroid has 
smaller moisture gradients than in the case for 
t* 0.05=  (Fig. 13) due to the water loss. 

By comparing Figs. 9-14, it can be seen, that the 
area/volume ratio directly influences the drying 
kinetics. The higher the area/volume ratio, the faster 
the solid will dry. 

The areas where high moisture gradients are 
found are the areas with the largest loss of water. 
These areas also have high temperature gradients, so 
are more apt to experience thermal shocks and 
consequently cracks, fractures and deformations, 
which depending on intensity may affect the quality 
of the product. 
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 Figure 11: Distribution of the dimensionless moisture content for b a 1.0=  and t* 0.05= . 



 
 
 
 

Mass Transport in Spheroids                                                                                            677 
 

 
Brazilian Journal of Chemical Engineering Vol. 21,  No. 04,  pp. 667 - 680,  October - December  2004 

 
 
 
 

 

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

r*

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

z*

 
Figure 12: Distribution of the dimensionless moisture content for b a 1.0=  and t* 0.10= . 
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Figure 13: Distribution of the dimensionless moisture content for b a 1.5=  and t* 0.05= . 
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Figure 14: Distribution of the dimensionless moisture  

content for b a 1.5=  and t* 0.10= . 
 
 

CONCLUSIONS 
   

According to data obtained by simulation of the 
drying process in bodies with an ellipsoidal shape, it 
can be concluded that the mathematical modelling 
and the integral method based on Galerkin used to 
solve the problem of mass transport in solids that 
vary in shape from a circular disk to an infinite 
cylinder, including a sphere, was appropriate. The 
solution can also be used to describe other unsteady 
phenomena such as wetting, cooling and/or heating.  

It was verified that the dimensionless average 
moisture content in a spheroid as well as the 
dimensionless moisture content at the center and at 
any point inside the same, it decreases with the 
increase in Fourier number for any aspect ratio. The 
form and aspect ratio of a spheroid directly influence 
the drying process, and this is directly related to the 
area/volume ratio, i.e., as the lower the area/volume 
ratio, the faster the drying for a fixed value of 
Fourier number.  

During the drying process the smallest moisture 
gradients are found close to the center and the 
highest are found close to the surface, mainly for 
short times for any aspect ratio. The dimensionless 
moisture content depends on radial and longitudinal 
coordinates. The closer to the surface of the 
spheroid, the lower the dimensionless moisture 
content will be. The iso-concentration lines in the 
spheroid tend to have the same shape as the surface 
of the solid. This is due to the boundary condition 
used in this work. Oblate and prolate spheroids show 
a phenomenon called the tip effect, and the area with 
high moisture gradients is more significant in prolate 
spheroids. 
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NOMENCLATURE 
 

a, b Characteristic dimensions    (m) 
Ai, Constant i = 0, 1, 2,....,n (-) 
A , B  Matrix N×N   (-) 
Cn Constants    (-) 
D  Diffusion coefficient  (m2 s-1) 
dnj Constants    (-) 

nd   Vector     (-) 

M t∂ ∂  Diffusion rate  (s-1) 
fj  Element of the set base 

function 
 

(-) 
gn Constants    (-) 
M Moisture content   (kg kg-1) 
M0 Initial moisture content  (kg kg-1) 
Me Equilibrium moisture content (kg kg-1) 

M•   Dimensionless moisture 
content  

 
(kg kg-1) 

M   Average moisture content (kg kg-1) 

M•   Average dimensionless 
moisture content  

 
(kg kg-1) 

r Radial coordinates (m) 
r* Dimensionless radial 

coordinates  
 

(-) 
r
r

  Vector    (-) 
S Area    (m2) 
t Time   (s) 
t* Fourier number   (-) 
T Temperature  (ºC) 
V Volume   (m3) 
V* Dimensionless volume   (-) 
X, y, z Cartesian coordinates  (-) 
z* Dimensionless Cartesian 

coordinates 
 

(-) 
 
Greek Letters 
 
∇ Gradient  (-) 

2∇   Laplacian   (-) 

λ  Property of the solid (-) 
Φ Physical parameters  (-) 

*Φ   Dimensionless physical 
parameters  

 
(-) 

*Φ   Average dimensionless 
physical parameters 

 
(-) 

Φ’’’ Source term of Φ   (-) 
ΦΓ   Transport coefficient  (-) 

 

γn nth value  (-) 
Ψn Function   (-) 
ϕn  Surface 1, 2, 3, ..., n  (-) 
∑ Sum  (-) 
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