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Abstract - This paper addresses the development of an efficient numerical output feedback robust model
predictive controller for open-loop stable systems. Stability of the closed loop is guaranteed by using an
infinite horizon predictive controller and a stable state observer. The performance and the computational
burden of this approach are compared to a robust predictive controller from the literature. The case used for
this study is based on an industrial gasoline debutanizer column.
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INTRODUCTION

Model predictive control (MPC) is the most
popular advanced control technique in the process
industry. For more details about the wide acceptance
of MPC see the survey paper by Garcia et al. (1989).
In industrial applications, production of a stable
response is required despite changes in the operating
conditions and model uncertainties. This issue is
referred to as robust stability and has received
considerable attention in academic research, as can
be verified in the reviews by Mayne et al. (2000) and
Morari and Lee (1999). From the point of view of
industrial application, the review papers by Qin and
Badgwell (1997, 2000) emphasize the lack of a
practical industrial solution to the robust MPC
problem.

In the robust MPC literature, the work of
Badgwell (1997), which proposed extension of the
nominal infinite horizon MPC (IHMPC) of Rawlings
and Muske (1993) to the robust case, can be cited.
Robustness is achieved by the inclusion of
contracting constraints in the objective function

corresponding to each model of the set of possible
process models considered by the controller. Another
contribution to the robust design of MPCs was made
by Lee and Cooley (2000), who proposed a robust
infinite horizon MPC for stable and integrating
systems with model uncertainties on the input
distribution matrix. In this case, the infinite
prediction horizon cost becomes equal to the output
error at the end of the control horizon. The paper by
Kothare et al. (1996), which presented a robust MPC
based on the LMI framework, can be also cited. An
infinite prediction horizon is used, and the authors
propose a method that minimizes an upper bound for
the objective function.

At this point, it should be stressed that all these
approaches can guarantee robust stability only for
the regulator problem, since these authors assume
that the state tends to zero when time tends to
infinity. Here, a new robust infinite horizon MPC
that was recently presented in the literature
(Rodrigues and Odloak, 2001) is extended to the
output feedback case. The controller is more general
than the existing controllers qualified as robust, since
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it applies to both the regulator and the target tracking
problems. The approach is based on a particular
realization of the system state space model
(Rodrigues, 2001; Tvrzská de Gouvêa and Odloak,
1997). This model realization allows the direct
integration of the squared error of the system output
so that the cost function of the controller can be
defined in a more suitable form. Following this
strategy, equality constraints, which ensure that the
infinite horizon cost function is bounded, naturally
arise. Model uncertainties are approximated by a
finite set of disjunct linear models.

This paper is organized as follows: In Section 2
the state space model used in this paper is briefly
introduced. In Section 3 the development of a
modified nominal IHMPC is presented and in
Section 4 these results are extended to the robust
case. Simulation results are presented in Section 5,
where the proposed controller is compared to a
robust MPC presented in a previous paper. In
Section 6 some concluding remarks are offered.

MODEL STRUCTURE

In this paper, it is assumed that the system is
represented by the following linear discrete-time
model:

k 1 k k[x] A [x] B u+ = + ∆     (1)

ky(k t) C(t)[x]+ =    (2)

where nxx∈  is the vector of states, nuu∈  is
the vector of inputs, k k k 1u u u −∆ = −  is the process
input increment, k is the present time step and

nyy∈  is the vector of outputs. Here the model
representation designated output prediction oriented
model (OPOM), which was proposed by Rodrigues
(2001), is adopted. Using OPOM, the model matrices
involved in eqs. (1) and (2) have the following
structure:
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The state vector, x was partitioned into two
auxiliary vectors, sx  and dx . For stable systems,

component s nyx ∈  corresponds to the predicted
value for the system output at steady state. Vector

d ndx ∈  is related to the dynamic modes of the
system and na is the order of the respective transfer
function model. Matrix D0 contains the steady state
gains of the process and matrix Ψ(t) is shown below.
More details on the OPOM formulation can be seen
in Rodrigues (2001) and Rodrigues and Odloak
(2002).

1

2

ny

(t) 0 0
0 (t) 0

(t)

0 0 (t)

Φ 
 Φ Ψ =
 
 Φ  

                  (4)

( )
i,1,1 i,1,na

i,nu,1 i,nu,na

r t r t

i
r t r t

e e
t i 1, 2, ,ny

e

 
 
 Φ = =
 
  

where

ny nd(t) ×Ψ ∈ ,             nd
iΦ ∈ ,            i 1, , ndr = …

are the poles of the system, and nd ny.nu.na= .

INFINITE HORIZON MPC (IHMPC)

An important feature of OPOM is that time
appears continuously in the output prediction
mapping. This peculiarity was used by Rodrigues
(2001) to propose a modified infinite horizon MPC,
whose main steps are described in the sequel.

Consider a modified expression for the objective
function of MPC as given by (5):
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sp
k te y(k t) y+ = + − , sp nyy ∈  is the vector of

output reference values; m is the control horizon; T
is the length of the sampling time, and ny nyQ ×∈ ,
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nu nuR ×∈  and ny nyS ×∈  are positive definite
weighting matrices. ny

kδ ∈  is the vector of slack
variables that was introduced into the IHMPC
objective function to allow for processes
with ny nu> . Inside the control horizon, the output
error can be represented by the following expression:

s d 0
k t k k n ne [e ] (t)[x ] D u (t)W Z u+ = + Ψ + ∆ +Ψ ∆    (6)
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Substituting (6) into the first term on the right-
hand side of (5), one obtains
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where

nT
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nT
T

2
0

G (n) (t) Q (t)dt= Ψ Ψ∫ .

When the time t is within the interval mT t≤ <∞ ,
the error of the process output can be described by

s d 0
k t k k k m m[e ] [e ] (t)[x ] D u (t)W Z u+ = +Ψ + ∆ +Ψ ∆    (8)

Substituting (8) into the infinite integral on the right-
hand side of (5), one obtains:
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For stable systems 
t

lim (t) 0
→∞
Ψ =  and

consequently the second and third terms on the right-
hand side of (9) are bounded. However, the first term
on the right-hand side of (9) will be bounded only if
the equality below holds:

s 0
k k m[e ] D u 0+ δ + ∆ =   (10)

Introducing (10) into (9), results in
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ROBUST INFINITE HORIZON MPC
(RIHMPC)

In this section, the modified infinite horizon MPC
presented in the previous section is extended to the
case of model uncertainty. When the stabilizing
control law takes into account model uncertainties,
the resulting controller is designated robust. It is well
known that a single linear model can not accurately
represent the actual plant under different operating
conditions. Recently, the multimodel representation
of uncertain processes has been introduced in the
robust MPC literature (see Badgwell, 1997 and
Rodrigues, 2001). This model mismatch
representation considers a finite set of disjunct linear
systems (Ω), which are obtained at different points
of the operating domain, or better:

( ) { }1 1 L LA,B |  : (A ,B ) (A ,B )∈Ω Ω =  (12)

which means that the matrices of the model
described by (1) and (2) are not exactly known, but
belong to Ω.

Considering this kind of uncertainty and the
developments presented in Section 3, Rodrigues
(2001) proposed a robust infinite horizon MPC for
the case where all state variables of the process can
be measured (state feedback). However, during
actual plant operation only a subset of the model
states, the outputs, is measured. One way to extend
the referred robust IHMPC to the output feedback
case is based on the separation principle (Levine,

1996). Briefly, the separation principle consists in
splitting the feedback control design into two steps.
In the first step, a full-state feedback controller is
designed assuming that all the model states can be
measured, and the control sequence is calculated
using these model states. In the second step, an
observer is introduced to estimate the state of the
system based upon the system outputs. This
framework was employed here to design the robust
output feedback MPC. In the simulations presented
here the following sequence is adopted:

a) One model of Ω (the most probable) is assumed
to be the true plant. The output of this model is
designated p k[y ] .
b) The states of the remaining models are estimated
as follows:

i k 1|k 1 i i k|k i k F p k
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− + ∆ = − +

+ − ∆ + = −

  (13)

c) The observer used here has a static gain given by:

T nd ny
F FK [I 0] , K ×= ∈  (14)

This observer is based on the assumption that the
difference between model output and plant
measurement is produced by a step disturbance in the
system output. This assumption is adopted by most
MPC packages but is restricted to stable systems,
which is the case considered here.

Therefore, assuming that the uncertain process
belongs to Ω, one estimates the states of all the linear
models lying in Ω using (13) and (14). Substituting
(7) and (11) into (5), one can write the following
optimization problem for RIHMPC:
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k ju U+∆ ∈ , j 0≥                                                                                                  (16)
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U  defines the set of feasible solutions related to
the input constraints. Problem P1 can be solved by
the available methods of linear matrix inequalities
(LMI). The theorem below summarizes the robust
stability of the RIHMPC with output feedback
defined by Problem P1).

Theorem:

Consider an open-loop stable process where the
true plant model belongs to Ω and whose states are
estimated by a stable observer. If there is a feasible
solution to Problem P1), then the resulting control
law stabilizes all the plants belonging to Ω.

Proof:

The proof for the state feedback case can be
found in Rodrigues and Odloak (2002). It remains
to be proved that when a stable state observer is
used the resulting closed loop remains stable. It is
easy to verify that the observer gain defined by
(14) corresponds to F i i(I K C )A 1,  i 1, ,Lλ − < = … .
Thus, as a consequence of the separation
principle, when one uses IHMPC, which
stabilizes all the models belonging to set Ω when
the states are perfectly known, and a stable state
observer, the resulting closed-loop will also be
stable.



480                  M.A.Rodrigues and D.Odloak

Brazilian Journal of Chemical Engineering

COMPARING RIHMPC TO A ROBUST MPC
FROM THE LITERATURE

Rodrigues and Odloak (2000) proposed a finite
horizon robust output feedback MPC, which was
named RSMPC. The approach is based on the
parameterization of the control moves by an output
feedback scheme similar to the conventional linear
quadratic regulator. In this way, it was possible to
use the quadratic Lyapunov stability condition that
was included in MPC as an additional constraint. In
their MPC, these authors considered a polytopic
representation of the uncertain models. The
multimodel version of the Rodrigues and Odloak
(2000) robust predictive controller is described below:

Problem P2)
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[ ]s nuN I 0= ,                 [ ]x[nu] nu.m
sN ∈ℜ

iS  is the step response coefficient matrix at sampling
step i

mK  is the feedback gain of the controller

Rodrigues and Odloak (2000) proposed an
iterative algorithm based upon LMI tools to solve
Problem P2). It is important to observe that matrices
A  and B  of RSMPC are related to the augmented
system (parameters + outputs at prediction steps).
Consequently, the dimension of the state x of this
controller is different from the dimension of the state
considered by RIHMPC.

SIMULATION RESULTS

The process simulated in this work is a
debutanizer column of an oil refinery, and it was
borrowed from Rodrigues and Odloak (2000). This
column produces LPG (liquefied petroleum gas) as
the top stream and stabilized gasoline as the bottom
stream. The controlled outputs are the concentration
of C5+ in the top stream (y1) and the Reid vapor
pressure of the bottom stream (y2). The manipulated
inputs are the top reflux flow rate (u1) and the
reboiler heat duty (u2). The set of uncertain models,
Ω, was built by linear models identified at three
different operating points of the column. These
models can be seen in Table 1. The most probable
model is assumed to be 1G (s) .

RIHMPC was simulated using 1G (s)  as the true
plant, which together with the other two models
constitutes the set Ω. The tuning parameters of
RIHMPC are

T 1= ;              m 2= ;               Q diag(1,1)= ;

2 2R diag(10 ,10 )− −= ;                 S diag(100,100)= ;

j,maxu 15= ;    j,minu 21= −   and   j,maxu 5∆ = .

RSMPC was simulated using the same set of
models as RIHMPC and the following tuning
parameters:

T 1= ;              m 2= ;                Q diag(1,1)= ;

2 2R diag(10 ,10 )− −= ;    j,maxu 15= ;      j,minu 21= − ;
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j,maxu 5∆ = , np =3;                    ne = 75; ε = 0.1

where np is the number of equally spaced system
output prediction steps, ne is the extra prediction step
included in the computation of output error and ε is
the convergence parameter of RSMPC.

Figure 1 shows the results of RIHMPC and
RSMPC for the models and tuning parameters
described above. The case of output tracking where

the reference values of the two outputs were
simultaneously increased is considered. It can be
observed that for controlled output y1 (C5+ in the
LPG stream), RIHMPC has a better performance
than RSMPC. For y2 the performance of RIHMPC is
quite similar to that of RSMPC. The ratio between
the computational time expended to run one sample
step and the sampling time length (CPU Time/T) was
0.0022 for RIHMPC and 10.4208 for RSMPC at a
COMPAQ XP1000 workstation (512 MB RAM).

Table 1: Models of the debutanizer column.

1G (s) : 2G (s) : 3G (s)

2 2

2 2

0.2623 0.1368
60 59.2 1 1164 99.7 1

0.1242 0.1351
218.7 16.2 1 70 20 1

− 
 + + + + 
 
 

− 
 + + + + 

s s s s

s s s s

2 2

2 2

0.3544 0.2044
218.6 59.2 1 1150.2 93.86 1

0.0685 0.1256
100.2 11.32 1 20 15 1

− 
 + + + + 
 
 − 
 + + + + 

s s s s

s s s s

2 2

2 2

0.2790 0.050
59.77 99.61 1 499.8 73.77 1

0.1950 0.1722
220.1 18.93 1 29.74 20.71 1

− 
 + + + + 
 
 − 
 + + + + 

s s s s

s s s s

Figure 1: Input and output profiles for RIHMPC and RSMPC for the debutanizer column.
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CONCLUSION

In this paper an extension of a highly numerical
efficient robust infinite horizon MPC was developed
for the output feedback case. A case study using an
industrial process was carried out in order to
compare the proposed controller to another robust
MPC presented earlier in the MPC literature. The
simulation results showed that RIHMPC has a very
low computational burden compared to RSMPC.
Therefore, it can be concluded that RIHMPC is
appealing for industrial applications. Although
RIHMPC is a controller where a min-max problem is
solved, and consequently the worst case performance
is considered, its closed loop performance is better
then the performance of RSMPC whose control law
is based on the most probable system model.
Consequently, inclusion of the Lyapunov stability
condition in the MPC problem can make the
controller more conservative than the controller
based on the min-max approach. The main advantage
of RSMPC over RIHMPC is that Problem P2) may
be convex in the model matrices if the Lyapunov
matrix Pi is the same for all the models lying in Ω .
In this case, stability is guaranteed for any plant
whose model is a convex combination of the models
of Ω . This is not true for RIHMPC, since Problem
P1) is not convex and stability is only guaranteed for
the plants lying in Ω .
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