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Abstract – In reducing the grid orientation effect for the numerical solution of partial differential equations, interpolation 
functions play an important role when the advective transport of the governing equations is considered. This is due 
to the fact that, in general, the unknowns are evaluated in the vertices of the elements and such properties must be 
extrapolated to inner parts of the elements. First-order schemes, such as upwind, are the easiest methods to use for 
performing the extrapolation of the properties. However, such methods introduce a large amount of numerical diffusion 
in the solution. A few higher-order interpolation schemes, on the other hand, are capable of providing solutions free 
of numerical diffusion, increasing the accuracy of the method and reducing the computational efforts required. In 
this work, we investigate the TVD interpolation scheme for three-dimensional unstructured grids in conjunction with 
Element-based Finite Volume Method (EbFVM) using four types of elements: hexahedron, tetrahedron, prism and 
pyramid. 

Keywords: Higher-order TVD scheme, Compositional reservoir simulation, IMPEC approach, EbFVM.

INTRODUCTION

Interpolation schemes play an important role when 
numerical methods such as finite-volume method are 
used. Usually, most of the unknowns are evaluated in the 
center of each grid block, for structured grids, or in each 
vertex, for cell-vertex grids. However, in order to compute 
advective and diffusive terms it is necessary to extrapolate 
these variables from the cell’s center or vertex of the grid 
to the interfaces of the grid blocks. This is performed 
through the use of interpolation functions. Unfortunately, 
accurate interpolation schemes cannot be used arbitrarily 
for advective dominant problems. The use of high-order 

schemes for the advective dominant problems yields 
spurious oscillations in the solution. In order to overcome 
this limitation, the use of a Total Variation Diminishing 
(TVD) scheme can be an alternative option. It is known 
that TVD schemes can preserve the monotonicity of the 
solution, hence avoiding spurious oscillations. 

Higher-order TVD schemes usually blend the stability 
of the upwind schemes with the use of higher-order terms 
through the use of flux-limiters. Van Leer (1979) developed 
the first monotonicity preserving flux-limiter. However, 
the importance of the TVD in the monotonicity preserving 
was only discussed later by Harten (1983). Further, Sweby 
(1984) developed the TVD region for one-dimensional 
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problems. Several flux-limiters were later introduced and 
studied by other authors, such as Roe (1983), Chakravarthy 
and Osher (1983), Roe (1986) and Koren (1993).

However, the application of these functions for 
unstructured grids was not straightforward. The Control-
volume Finite Element Method (CVFEM) presented by 
Baliga and Patankar (1980) was used in conjunction with 
lower-order schemes; they used upwind and exponential 
schemes. This exponential function, also known as Flow-
Oriented Interpolation (FLO), performs the interpolation 
based on the exponential element shape functions for 
the element’s average velocity and linear for the normal 
direction. Prakash (1986) added the source terms evaluation 
to the original FLO function, giving rise to the FLOS 
scheme. Later, Maliska (2004) renamed the CVFEM as 
Element-based Finite Volume Method (EbFVM), since we 
still have a conservative approach that borrows the idea 
of elements and shape functions from the finite-element 
method. New interpolation functions were introduced 
for the EbFVM, mainly for the simulation of skew grids. 
Hassam et al. (1983) and Schneider and Raw (1986) were 
the first authors to propose skew upwind schemes for two-
dimensional problems. Also, Swaminathan and Voller 
(1992a, 1992b) adapted the streamline upwind Petrov-
Garlekin (SUPG) function developed by Brooks and 
Hughes (1995) from Cartesian to unstructured grids using 
EbFVM, presenting the streamline upwind control volume 
(SUCV). Many of those schemes may produce results with 
second-order accuracy in space, however at the cost of 
low numerical stability and possibly downwind influence, 
which requires a proper treatment, and in general, they are 
reduced to first order schemes.

Various TVD schemes have been studied and 
implemented for unstructured grids, such as Bruner and 
Walters (1995), and Hou et al. (2011, 2012). However, 
none of those works aimed at the application of TVD in 
cell-vertex approaches like as EbFVM. Just recently, 
Fernandes et al. (2013), based on the work of Darwish 

and Moukalled (2003), introduced a TVD scheme for 2D 
unstructured grids for the EbFVM in conjunction with 
compositional reservoir simulation. Later, Fernandes et al. 
(2015a) extended the method for solving three-dimensional 
problems using Hexahedron element grids. In this work, 
we extend the work presented by Fernandes et al. (2015a) 
to tetrahedron, prism, and pyramid elements as well as 
hybrid element grids. This implementation is performed in 
the in-house compositional reservoir simulator UTCOMP 
(1990). UTCOMP is an IMPEC-based (Implicit Pressure 
Explicit Compositional) compositional, multiphase/
multicomponent simulator that can take into account 
up to four phases developed at The University of Texas 
at Austin. The EbFVM implemented in the UTCOMP 
simulator are based on Marcondes and Sepehrnoori (2010), 
Marcondes et al. (2013) and Santos et al. (2013) for the 
General Purpose Adaptive Reservoir Simulator (GPAS). In 
UTCOMP, the implementation for 2D and 3D unstructured 
grids using the EbFVM and the IMPEC approach are 
presented in Fernandes et al. (2012) and Araújo et al. 
(2016). Additionally, IMPSAT (Implicit Pressure and 
Saturations) approaches (Fernandes et al., 2014; Fernandes 
et. al., 2015b) and two volume balance based fully implicit 
approaches (Fernandes, 2014; Fernandes et al., 2016) were 
implemented for both Cartesian and unstructured grids. In 
this manuscript, only IMPEC will be considered.

MATHEMATICAL MODEL

The isothermal fluid flow in porous media can be 
modeled through a material balance equation for each 
chemical species and constraint equations. The local 
equilibrium is assumed in order to model the hydrocarbon 
properties, amounts and compositions (Chang, 1990).

The material balance equation of each component 
considering both advection and diffusion transport and 
assuming multiphase Darcy’s flow is written as

1 1

1 0 ; 1,2,.., , 1
n np p

i i
ijj ij j j j j ij c c

j jb b

N qx k S x i n n
V t V

ξ λ φ ξ
= =

 ∂
−∇ ⋅ ⋅∇Φ + Κ ⋅∇ − = = + 

∂   
∑ ∑

  

where nc represents the number of hydrocarbon components, 
nc+1 refers to the water component, np is the number of 

fluid phases, 
ijΚ  is the physical dispersion tensor, k  is 

the absolute permeability tensor, Ni is the number of moles 
of the i-th component, ξj and λj  represent, respectively, the 
molar density and the mobility of the j-th phase, φ is the 
formation porosity, xij represents the mole fraction of the 
i-th component in the j-th phase, qi is the molar flow rate 
of the i-th component of a grid block that contains a well, 
and Vb stands for the bulk volume of the grid block. The 

hydraulic potential of a phase, Φj, is given by

ZP jjj γ−=Φ

where Pj e jγ  are the pressure and specific gravity of the 
phase j, respectively, and Z denotes the depth, which is 
positive in the downward direction.

Local phase equilibrium is assumed between all 
hydrocarbon phases in each grid block. In this work, grid 
block refers to the control volume that is assembled around 
each vertex of the grid. This condition is represented by the 

(1)

(2)
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phase fugacities (f), as follows:

0 ; 1,...., ; 2,.....,j r
i i c pf f i n j n− = = =

where the superscript r describes the reference phase, and 
fugacity is a function described by

( )ln ; 1,..., ; 2,...,j
i ij ij c pf x i n j nφ= = =

In Eq. (4), ∅ij stands for the fugacity coefficient of 
the i-th component in the j-th phase. The mole fraction 
constraint equation, for each hydrocarbon phase, and the 
Rachford-Rice equation are given by

1 1

( 1)1 0 , 2,.., ; 0
1 ( 1)

n nc c
i i

ij p
i i i

z Kx j n
Kν= =

−
− = = =

+ −∑ ∑

where zi and Ki are the overall mole fraction and the 

equilibrium ratio of the component i, respectively, and υ is 
the gas mole fraction in the absence of water.

The calculations associated with phase equilibrium and 
PVT properties are conducted using the Peng-Robinson 
Equation of State (Peng and Robinson, 1978). It is assumed 
that there is no mass transfer between the water and 
hydrocarbon phases. Therefore, water is not included in the 
flash calculations. Further details about this calculation can 
be found in Perschke (1988).

The last equation is the volume constraint equation, 
which is given by

1

1
np

j
j

S
=

=∑

where Sj denotes the saturation of the phase j.
The UTCOMP simulator is based in an IMPEC 

(Implicit Pressure Explicit Composition) formulation 
as described by Àcs et al. (1985). The unknown primary 
variables are the oil pressure and the total number of moles 
of each component. The oil pressure is obtained from a 
volume balance, giving rise to the following expression:

0

1 1 1

1 .
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The applied formulation evaluates the oil pressure 
implicitly, while all the remaining properties are explicitly 
evaluated from the previous time step. The mole balance 
and flash calculations, for instance, are only conducted 
after the pressure at the new time is evaluated.

APPROXIMATE EQUATIONS

In the EbFVM, the physical domain is divided into 
elements, which are sub-divided into sub-elements 
according to the number of vertices. These sub-elements 
are called sub-control volumes, since the material balance 
equations are integrated to each one of these sub-elements. 
Figure 1 shows the four elements investigated in this work. 
For each element, a local coordinate system is established. 
This allows the simulator to perform the flow rate at each 

interface of the sub-control volume, etc. Regardless of 
how distorted the element is. It is important to stress that 
except for the pyramid element, the sub-control volumes 
of the other three elements always have three quadrilateral 
integration surfaces, where the material balance is 
evaluated; the sub-control volumes of the pyramid element 
associated to the base have also three integration surfaces, 
but they are triangular surfaces, and the sub-control volume 
associated to apex of the pyramid has 4 quadrilateral 
integration surfaces.

In order to obtain the approximate balance equation 
for each component and pressure, Eqs. (1) and (7) are 
integrated in time and for each sub-control of each 
element. Integrating, for instance, Eq. (1), in space and 
time and applying the Gauss theorem for the advective and 
dispersion terms, we obtain:

1, ,

,
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In order to perform the integrations of the first and 
second terms of Eq. (8), it is necessary to make use of 
the shape functions. The shape functions, for hexahedron, 

prism, tetrahedron, and pyramid elements, are respectively 
given by Eqs. (9) through (12).

(a) (b)

(c) (d)
Figure 1. Sub-control volumes for all element types. a) Hexahedron; b) Tetrahedron; c) Prism; and d) Pyramid.

1 2

3 4

5 6

7 8

(1 )(1 )(1 ) (1 )(1 )(1 )( , , ) ; ( , , )
8 8

(1 )(1 )(1 ) (1 )(1 )(1 )( , , ) ; ( , , )
8 8

(1 )(1 )(1 ) (1 )(1 )(1 )( , , ) ; ( , , )
8 8

(1 )(1 )(1 ) (1( , , ) ; ( , , )
8

s t p s t pN s t p N s t p

s t p s t pN s t p N s t p

s t p s t pN s t p N s t p

s t p sN s t p N s t p

+ − + + − −
= =

− − − − − +
= =

+ + + + + −
= =

− + − −
= =

)(1 )(1 )
8

t p+ +

(9)



Brazilian Journal of Chemical Engineering Vol. 34, No. 04, pp. 1161 – 1174, October – December, 2017

A TVD Scheme for 3D Unstructured Grids Applied to Compositional Reservoir Simulation 1165

1 2

3 4

5 6

( , , ) (1 )(1 ) ; ( , , ) (1 )
( , , ) (1 ) ; ( , , ) (1 )
( , , ) ; ( , , )

N s t p s t p N s t p s p
N s t p t p N s t p p s t
N s t p sp N s t p tp

= − − − = −
= − = − −
= =

,

1 2

3 4

( , , ) 1 ; ( , , )
( , , ) ; ( , , )

N s t p s t p N s t p s
N s t p t N s t p p

= − − − =
= =

,

1

2

3

4

5

1( , , ) [(1 )(1 ) / (1 )]
4
1( , , ) [(1 )(1 ) / (1 )]
4
1( , , ) [(1 )(1 ) / (1 )]
4

( , , ) [(1 )(1 ) / (1 )]
( , , ) .

N s t p s t p stp p

N s t p s t p stp p

N s t p s t p stp p

N s t p s t p stp p
N s t p p

= − − − + −

= + − − − −

= + + − − −

= − + − − −
=

Using the shape functions, the area, volume, and 
gradients that are necessary to evaluate each term of Eq. (8), 
can be easily evaluated. Further details of this calculation 
can be found in Marcondes et al. (2013) and Santos et al. 

(2013). Adopting an explicit scheme and evaluating the 
physical properties at each interface of the control volume, 
the following expressions for the first and second terms of 
Eq. (8) are obtained:

,
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where ip denotes each integration point located on 
the surfaces of each sub-control volume and Nv is the 
number of vertices of each element. A similar procedure is 

performed for the pressure equation. Substituting Eqs. (13) 
and (14) in Eq. (8), the following equation for each sub-
control volume of each element is obtained:

, , 0 ; 1,..., ; 1,..., 1m i m i i e cAcc F q m N i n+ + = = = + .   
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The above equation stands for the material conservation 
for each sub-control volume of each element. The total 
material balance of each grid volume is computed 
assembling the contributions of all sub-control volumes 
that share the same vertex. This procedure is described in 
detail in Marcondes et al. (2013).

In order to evaluate each term of Eq. (14), it is necessary 
to calculate physical properties, such as mole fractions, 
phase molar densities, and mobilities at the integration 
points of each sub-control volume. This extrapolation is 
conducted through interpolation functions. In this work, 
two interpolation schemes are implemented for the four 
element types shown before: a first order upwind, and a 
second order TVD in conjunction with two flux-limiters. 

The upwind interpolation for the EbFVM is analogous 
to the classic upwind used for Cartesian grids. Considering, 
for instance, the integration point 1, for all elements shown 
in Figure 1, the product of physical properties is evaluated 
by 

( )
,2 ,2 ,2

1

1

,1 ,1 ,1
1

. . 0

. . 0

ij j j j
ip

ij j j ip

ij j j j
ip

x if K dA
x

x if K dA

ξ λ
ξ λ

ξ λ

 ∇Φ ≤= 
 ∇Φ >






.    

In Eq. (16), the normal to the integration surface 
is always positive when it is orientated in the outward 
direction of that interface. 

For the TVD function, we will investigate two flux-
limiters to switch between lower and higher-order 
schemes. Although the scheme proposed by Fernandes 
et al. (2013) for approximating the successive slope ratio 
has been shown to be efficient for 2D unstructured grids, 
results obtained by Fernandes et al. (2014) demonstrated 
that, when the gravitational effects are added this scheme is 
more prone to spurious oscillations. Therefore, in this work 
we used the successive slope ratio proposed by Darwish 
and Moukalled (2003), that performed better than the 
one used by Fernandes et al. (2013) and Fernandes et al. 
(2014). According to Darwish and Moukalled (2003), the 
interpolation of any physical property for the EbFVM can 
be evaluated through the following equation:

( ) 2
D U

f U frδ ψ ∆ −∆
= ∆ + .

In Eq. (17), the subscript f denotes the integration 
point where the property needs to be evaluated, U denotes 
the property evaluated in the upwind vertex, D denotes 
the property evaluated in the downwind vertex, and rf is 
the successive slope ratio. In this  investigation, we will 

employ the following equation given by Darwish and 
Moukalled (2003) to evaluate the slope ratio:

( )
( )

2 .U UD D U
f

D U

r
r

∇∆ ∆ − ∆ −∆
=

∆ −∆





,

where 
U∇∆



represents the property’s gradient evaluated 

at the upwind vertex, and UDr∆  is the vector distance from 
the upwind node to the downwind node. The gradient at 
the vertex is evaluated by the volumetric average of the 
gradient of all elements that share the same vertex (Tran 
et al., 2006).

Finally, the two flux-limiters investigated in this work 
for the TVD interpolation function are the MINMOD (Roe, 
1986), or MM, as we shall call it from now on, the most 
diffusive limiter, and the Koren (1993), a very compressive 
limiter. Their expressions are given, respectively, by

MINMOD: ( )( )( ) max 0,min 1,f fr rψ = ,

Koren: 
2

( ) max 0,min 2,2 ,
3

f
f f

r
r rψ

 +  
=   

  
.

RESULTS

Three case studies will be presented to investigate 
the current implementation. The first is an advection-
dispersion tracer injection in a quarter of five-spot, the 
second case study is a CO2 flooding, and the third case is a 
CO2 injection in an irregular reservoir. The accuracy of the 
TVD schemes is presented for each element individually, 
although the method presented is implemented in a 
general way and hybrid grids composed of hexahedron, 
tetrahedron, pyramid or prism can be considered without 
any further consideration.

In the first case, a non-reactive tracer is injected in a 
quarter of five-spot. Water is the only mobile phase and 
the tracer does not partition in any other phase other than 
water. Tracer is injected along with water until a pore 
volume injected (PVI) of 0.02. After 0.02 PVI, just water 
is injected. Gravitational effects are neglected in order to 
validate the solutions with the analytical solution given by 
Abbaszadeh-Dehghani and Brigham (1984). All data for 
this case are presented in Table 1. A quarter-of-five spot 
configuration is used with two vertical wells in the corners. 
The grids are formed dividing the reservoir as a Cartesian 
grid. For elements other than hexahedron, each grid cell is 
divided again to form the other elements, such as prisms, 
pyramids, and tetrahedrons.

(16)

(17)

(18)

(19)

(20)



Brazilian Journal of Chemical Engineering Vol. 34, No. 04, pp. 1161 – 1174, October – December, 2017

A TVD Scheme for 3D Unstructured Grids Applied to Compositional Reservoir Simulation 1167

The tracer’s effluent profile is presented in Figure 2, 
where two grids were used to compare each interpolation 
function to the exact solution. The results obtained for 
hexahedron, tetrahedron, prism, and pyramid elements are 
presented Figures 2a and 2b, 2c and 2d, 2e and 2f, and 2g 
and 2h, respectively. As expected, the Koren’s TVD flux-
limiter is always the most accurate while the upwind is less 
accurate. For the 50x50 grid using hexahedron elements, 
the results for the Koren’s flux-limiter were almost in 
good agreement with the exact solution. For the grids with 
tetrahedron elements, the results of the TVD, although 
accurate, but were not as accurate as for the other elements. 
One possible reason for this is the grid orientation effect. 
Also, due to the shape functions the tetrahedron is the less 
accurate element. As can be observed from Figure 2f, the 
result obtained with Koren’s flux limiter matches the exact 
solution. Results presented in Fig. 2h were quite good for 
pyramid elements as well.

In the second case study gravity effects are considered. 
In this case, CO2 is injected in a quarter of five-spot 
configuration. We illustrate this case by running a coarse 
and a fine grid for hexahedrons, tetrahedrons, and prism 
elements. The reservoir data and fluid properties for this 
case are presented in Table 2. Corey’s model (Corey, 1986) 
is used for modeling the multiphase relative permeability 
curves.

The oil and gas volumetric production rate curves 
are presented in Figure 3. It can be observed that, for the 
hexahedron and prism element grids, the solution for the 
upwind scheme converges to the higher resolution schemes 
as the grid is refined for both Koren and MINMOD (MM) 
flux limiters. However, for the tetrahedron element, it 
can be seen that refining the grid makes the solution 
for the upwind scheme deviate from the TVD schemes 
investigated. The reason for such behavior is that all grids 
employed in this case study have the same number of 
vertices in the Z-direction. Since the tetrahedron element 
is the less accurate element and few vertices in the 
Z-direction are commonly used in reservoir simulation, the 

upwind solutions for the tetrahedron elements have a poor 
resolution in the Z-direction. As we use the TVD schemes, 
the resolution in the Z-direction is highly increased and the 
curves converge to the correct answer. This argument was 
confirmed by running more refined grids in the Z-direction, 
which resulted in an upwind solution closer to that of the 
TVD solution. 

The gas saturation fields at 260 days for the coarser 
grids are presented in Figure 3, where it can observed that 
the gas saturation front is more dispersed when using the 
upwind scheme, and less dispersed for MM and Koren’s 
flux limiters. This shows how effective the TVD schemes 
are in reducing the effects of the numerical dispersion.

The third Case is similar to Case 2, but now an irregular 
reservoir is considered. The reservoir geometry is presented 
in Figure 5.We used the same data set shown in Table 2, 
except for the reservoir dimensions. This case shows that 
a better accuracy can still be obtained when using TVD 
even if the grid elements are distorted or vary in size. We 
present the gas production curves in Figure 6. From Figure 
6, it can be clearly observed that the upwind curves tend to 
that obtained by using Koren’s flux limiter. It also indicates 
that the TVD scheme can produce accurate results even for 
irregular grids.

Figure 6 presents a comparison of the gas saturation field 
between the upwind and TVD scheme using a Koren flux 
limiter, in a plane cut between two of the injecting wells, 
for the coarser grids at 500 days. This view was chosen 
for showing both gravity and displacement effects of the 
gas saturation front. From this figure, once again it can be 
observed that the fields obtained with the TVD function 
present less numerical dispersion than those obtained 
with the upwind function. The TVD scheme was not only 
capable to capture a sharper gas front, but also shows that 
the gas is expected to migrate to the higher reservoir layers. 
Such behavior is in accordance to that observed when the 
grid is refined in the Z-direction, showing that the TVD 
schemes also enhanced the accuracy of the gravitational 
effects.

Table 1. Fluid and reservoir data for Case 1.

Property Value

Length, width and thickness 50.292 m, 50.292 m and 0.3048 m

Porosity (fraction) 0.2

Water viscosity 2.49x10-4 Pa·s

Reservoir pressure 13.79 MPa

Water injection rate 20.39 mol/s

Producer’s bottom hole pressure 13.79 MPa

Water initial saturation 1.00

Longitudinal dispersion coefficient 0.2012 m

Transversal dispersion coefficient 0.0201 m

Injected tracer’s concentration 200 ppm
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Figure 2. Tracer concentration in the production well. a) 30x30 hexahedron elements, b) 50x50 hexahedron elements, c) 30x30 tetrahedron 
elements, d) 50x50 tetrahedron elements, e) 30x30 prism elements, f) 50x50 prism elements, and g) 30x30 pyramid elements, h) 50x50 pyramid 
elements.
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Figure 3. Oil and gas volumetric production rates for each element - Case 2. a) Oil - hexahedron, b) gas - hexahedron, c) oil - tetrahedron, d) 
gas - tetrahedron, e) oil - prism, f) gas - prism.
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Figure 4. Gas saturation at 260 days - Case 2. Hexahedron grid with 4410 vertices: a) upwind, b) MM, c) Koren; Tetrahedron grid with 4410 
vertices: d) upwind, e) MM, f) Koren; Prism grid with 4410 vertices: g) upwind, h) MM, i) Koren.

Figure 5. Reservoir geometry – Case 3.
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Figure 6. Gas volumetric production rates for each element - Case 3. a) Hexahedron, b) tetrahedron, c) prism, and d) pyramid.
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Table 2.  Fluid and reservoir data for Cases 2 and 3.

Property Value

Length, width and thickness 170.69 m, 170.69 m and 0.3048 m

Porosity (fraction) 0.163

Water saturation 0.25

Reservoir pressure 19.65 MPa

Permeability in X-, Y-, Z-directions 1.974×10-13 m2, 1.974×10-13 m2, 1.974×10-14 m2

Formation temperature 400 K

Gas injection rate 14.16×103 m3/d

Producer’s bottom hole pressure 19.65 MPa

Residual saturation (water, oil-water, oil-gas, gas) 0.25, 0.2, 0.2, 0.05

Relative permeability end points (water, oil, gas) 1.0, 0.7, 0.3

Residual permeability exponents (water, oil-water, oil-gas, gas) 1.5, 2.5, 2.5, 2.5

Initial fluid composition (CO2, C1, C2-3, C4-6, C7-14, C15-24, C25+)
0.0077, 0.2025, 0.1180, 0.1484, 

0.2863, 01490, 0.0881

Injection fluid composition (CO2, C1, C2-3, C4-6, C7-14, C15-24, C25+) 0.96, 0.01, 0.01, 0.01, 0.01, 0.00, 0.00
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Figure 7. Gas saturation at 260 days - Case 3. Hexahedron grid with 13858 vertices: a) upwind, b) Koren; Tetrahedron grid with 13858 vertices: 
c) upwind, d) Koren; Prism grid with 13858 vertices: e) upwind, f) Koren; Pyramid grid with 25858 vertices: g) upwind, h) Koren.
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CONCLUSIONS

Two 3D TVD interpolation functions (MINMOD 
and Koren) in conjunction with unstructured grids were 
implemented in a compositional reservoir simulator using 
the Element based Finite-Volume Method considering 
four element types: hexahedron, tetrahedron, prism, 
and pyramids and two-flux limiters. Comparison of the 
results using both TVD schemes and the upwind scheme 
shows that TVD schemes produce more accurate non-
oscillatory results. In addition, the EbFVM in conjunction 
with the higher-order TVD limiters can easily be applied 
to irregular grids in order to model irregularly shaped 
complex reservoirs. Also, the proposed method (EbFVM 
with higher-order TVD limiters) allows the usage of 
coarse grids, while maintaining high accuracy for the 
computational results.

NOMENCLATURE

A   Area (m2)
Acc   Accumulation term of the material balance 
(mol/d)

fc   Rock compressibility (Pa-1)
F   Advective flux term of the material balance 
(mol/d)

f   Fractionary flow or fugacity for the equilibrium 
constraint
g   Gravity (m/d2)
J   Mole flux  transported by dispersion (mol/m² d)
K   Equilibrium ratio

K   Absolute permeability tensor (m2)

rk   Relative permeability
N   Number of moles (mol) or shape function

cn   Number of components

pn   Number of phases
P   Pressure (Pa)
q   Well mole rate (mol/d)
S   Saturation
t   Time (s)

bV   Bulk volume (m3)

pV   Pore volume (m3)

tV   Total fluid volume (m3)

tiV   Total fluid Partial molar volume (m3/mol)

iV


  Phase partial molar volume (m3/mol)

x   Phase mole fraction
z   Overall mole fraction
Greek Letters
γ   Specific gravity (Pa/m)
ξ   Mole density (mol/m3)
φ   Porosity
λ   Phase mobility (Pa-1 d-1)
Φ   Hydraulic potential (Pa)
µ   Viscosity (Pa d)
ν   Mole fraction in the absence of water
Superscripts
n       Previous time step level

1n +   New time step level
Subscripts
i  Control volume
j  Phase
k  Component
r  Reference phase
t Total
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