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Abstract - Reducing process variability is crucial to reach a more profitable operating point. Periodical 
disturbances, however, impose barriers to achieve this goal. Their effect can be strong since one disturbance 
that appears in a specific loop of a highly coupled plant can be seen in several loops. Thus, isolating their 
source and diagnosing their cause are essential. In this work, we describe the application of spectral 
independent component analysis to isolate a periodical disturbance that has a strong impact on the final 
variability in a polyethylene plant located in Southern Brazil. After the first analysis, the source was detected 
and the cause identified: valve stiction. To identify the cause (valve, bad tuning, or periodic disturbance), we 
used the methodology based on higher-order statistics. Once the valve problem had been overcome, the 
product variance was reduced by 93%. 
Keywords: Fault diagnosis; Plant-wide disturbance; Oscillation; Independent Component Analysis. 

 
 
 

INTRODUCTION 
 

One frequent cause of poor process performance 
is the presence of plant-wide periodical disturbances 
(Thornhill and Horch, 2007) whose effect can spread 
through the entire plant, inhibiting the process from 
achieving a more profitable operating point. Nowa-
days, plants are more coupled and have a large num-
ber of recycles because of mass and heat integration. 
One oscillation that starts in a specific loop can be 
propagated to the entire process, increasing the product 
variability. Thus, it is clear that detecting and elimi-
nating plant-wide oscillations are essential to ensure 

process profitability and reduce product variability. 
However, the diagnostics of the loop that is the source 
of the disturbance and the cause of the oscillation is 
not straightforward. 

This is the scenario seen in a petrochemical plant 
located in Southern Brazil. One periodical oscillation 
affects the product variability and, because of plant 
recycles, the engineers could not detect either the 
source or the cause. Our goal is to detect and find the 
source of the oscillation, eliminating it (if possible) 
after diagnosing the cause. 

The procedure to eliminate plant wide oscillations 
requires three steps: 
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METHODOLOGY 
 

This section describes the methodologies used to 
automatically detect the oscillation, its root cause 
(source), and the cause of oscillation. 
 
Oscillation Detection 
 

Initially, the oscillation was automatically de-
tected using the integral of the square error, a method 
proposed by Hägglund (1995). 

The idea behind the method is simple: based on 
time trend zero-crossing, the integral of the absolute 
error between each zero crossing is computed (IAEC). 
It is then compared with a threshold value (IAELIM). 
If IAEC > IAELIM, then the process has an oscillatory 
behavior. 

The oscillation detection procedure can be sum-
marized as follows: 

1. Choose an acceptable oscillation amplitude (a); 
2. Compute IAELIM as 2a/.  is 2/Ti and Ti is 

the integral time of the controller. 
3. Monitor IAEC. Restart it when the control error 

changes its signal. 
4. If IAEC exceeds IAELIM then the oscillation has 

occurred. 
 

Detecting the Root Cause (Source) of Oscillation 
 

To detect the root cause of the oscillation, the 
methodology based on Spectral Independent Compo-
nent Analysis (SICA) was used (Xia et al., 2005). 
Initially, the time-domain ICA will be described and 
then the methodology to detect the root cause of 
oscillations will be explained.  

Consider that the plant has m sensors, whose ob-
servations are xm. 
 

 1 2  T
mX x x x           (1) 

 
They are linear combinations of n independent, 

non-Gaussian source outputs. Each column is called an 
Independent Component (IC). 
 

 1 2  T
nS s s s            (2) 

 
The matrix of observations (X) can be written as a 

linear function of the matrix of ICs (S). 
 

X AS                 (3) 
 
where A is called the mixing matrix (m by n). Each 
sensor can be decomposed into linear combinations 
of ICs. 

,1 1 ,1 1 ,1 , 1    i i i i nx a s a s a s  i m    (4) 
 

The ICA problem involves the estimation of both 
A and S. The Fast ICA algorithm (Hyvärinen et al., 
2001) was used in this work. 

In the spectral ICA model, the rows of X are single-
sided power spectra P(f) over a range of frequencies 
(f) of the same sensor. P(f) can be estimated using 
Discrete Fourier Transform (DFT) (Oppenheim et al., 
1999). The main advantage of using power spectra 
instead of time series is that the first is blind to the 
time delays. Besides, SICA can isolate a single peak 
in each independent component, when multiple os-
cillations are present in the plant. 

The procedure to apply the methodology based on 
SICA is described below: 

1. Compute the power spectra for all measured 
variables (X). 

2. Decompose X into independent components, 
obtaining A and S (using FastICA). 

3. Find the sign of the dominant peak for each IC, 
denoted by SNj, (j=1…n); 

4. Adjust the A and S matrixes using the follow-
ing relation: 
 

 

 
1 2

1 2

.

Y  

n

n

B A diag SN SN SN

diag SN SN SN S

 

 
      (5) 

 
Then 
 

.X BY  
 

Here, the new term, based on matrix B, called the 
significance index is introduced. It provides the im-
portance of the combined matrix elements. Values 
close to 1 represent a strong impact from an IC in a 
power spectrum signature. Smaller values of the 
significance index show a smaller impact of a given 
IC. 

Then, each IC was adjusted to achieve a maxi-
mum significance index equal to 1. 

1. Find the maximum absolute value for each col-
umn of B (j, j=1…n); 

2. Scale the mixing matrix B and IC matrix Y; 
 

 
 

1 1 1
1 2

1 2

.       

    

n

n

A B diag

C  diag Y
           (6) 

 
Then 
 

.X AC  
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Based on the new matrix A, the source of each in-
dependent component, or plant-wide disturbance, 
can be identified. The loop for a given IC whose 
significance index is close to 1 is probably the root 
cause of that oscillation. 

In the work of Xia et al. (2005), the dominance of 
each independent component over the plant is ana-
lyzed, helping to discover which are the main plant 
disturbances. However, in our case, a visual analysis 
showed that the mentioned oscillation (see Fig. 2) 
appeared in several loops, causing a strong impact in 
the product variability. 
 
Detecting the Cause of Oscillation 
 

The last step is to diagnose the cause of the oscilla-
tion. In this work, we will apply the methodology 
based on higher-order statistics, proposed by Choud-
hury et al. (2004). To corroborate the results, the meth-
odology to quantify stiction based on ellipsis interpola-
tion will also be used (Choudhury et al., 2008). 

The method proposed by Choudhury et al. (2004) 
claims that, if the process is locally linear and a non-
linear behavior is present, then the valve is responsi-
ble for this behavior. If the loop has an oscillatory 
behavior and the valve is working properly, the prob-
lem can be poor loop performance or other external 
disturbance (e.g., a disturbance transferred from an-
other loop with oscillatory behavior).  

Initially the non-Gaussianity index (NGI) is com-
puted, using the bicoherence (bic2) concept. 
 

 
     

2
1 22
2 2

1 2 1 2

,


         

B f f
bic

E X f X f E X f f
    (7) 

 
where X(f) is the discrete Fourier transform of any 
time series x(k) and B(f1,f2) is called the bispectrum 
in the frequencies f1 and f2. The bispectrum is the 
third order cumulant in the frequency domain. It is 
defined as: 
 

       1 2 1 2 1 2,    
*B f f E X f X f X f f      (8) 

 
where * denotes the complex conjugate. One positive 
feature of bic2 is that it is bounded between 0 and 1. 

Assuming that bic2 at each frequency is a chi-
squared (2) distributed variable with 2 degrees of 
freedom, a modified test formulated by averaging the 
squared bicoherence over the triangle of the principal 
domain with better statistical properties will be used 
to verify signal Gaussianity. The test can be summa-
rized as follows: 

 Null hypothesis: the signal is Gaussian, 
 Alternate hypothesis: the signal is non-Gaussian. 
 

Under the null hypothesis, the test can be based 
on the following equation: 
 

 22
2 χ

αP KLbîc c α             (9) 

 

where 
2χ

αc  the critical calculated from the central ² 
distribution table for a significance of  and 2L de-
grees of freedom, K is the number of data segmenta-
tion during the bicoherence computation, L is the 
number of bifrequencies inside the principal domain 

of the bispectrum, and 
2 2

1 .L
ibîc bîc   

If the signal is Gaussian, the process is assumed 
to be linear. If the signal is non-Gaussian, the process 
nonlinearity should be tested. To evaluate the non-
linearity, the constancy of the squared bicoherence 
should be evaluated. In this work, the maximum 
squared bicoherence can be compared with the aver-
age squared bicoherence plus two standard devia-
tions. At 95% confidence level, if the maximum bi-

coherence 2( )maxbîc  is less than 2
2

( 2 ),
bîc

bîc   the 

bicoherence curve is assumed to be constant. The 
index to evaluate the nonlinearity is defined as: 
 

 2
22 2max bîc

NLI bîc bîc               (10) 

 

Where 2bîc
  is the standard deviation of the 

squared bicoherence and 
2

bîc  is the average of the 
squared bicoherence. If NLI = 0, the process is lin-
ear; otherwise the process is nonlinear. If the loop is 
nonlinear, then the valve “suffers from” stiction.  

To corroborate the diagnostics provided by the 
method based on higher-order statistics, the method 
based on ellipsis interpolation (Choudhury et al., 
2006) will also be used to diagnose and quantify 
valve stiction. If the process variable (pv) and control 
output (op) plot has an ellipsis pattern, as shown in 
Figure 3, then the stiction is confirmed. The apparent 
stiction can be quantified as the length of the hori-
zontal ellipsis axis (sb). 
 
 

RESULTS 
 

This section describes the application of the 
methodologies in the petrochemical plant previously 
described. 
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Figure 9: Histogram with the impact of each inde-
pendent component (IC) (significance) on each vari-
able with PC02 open (Test2). 
 

Based on Figure 8 and Figure 9, we can verify that, 
in each case, the disturbance vanished. The positive 
impact on loop variability is corroborated by the 
comparison between the ratio of the original (when 
all loops were closed) and the new variance when 
PC01 and PC02 were opened, as shown in Table 4. 

Table 4 summarizes the strong impact caused by 
IC1. Its elimination can reduce the product and the 
whole plant variability, achieving a more profitable 
operating point. 
 
Table 4: Ratio between the original and the new 
variance, when PC01 and PC02 were opened (see 
that the variance of same loop was normalized 
using the same parameter, for the three cases). 
 

Loop Normalized 
original 
variance 

Relative variance 
- PC01 open 

Relative variance 
- PC02 open 

DC01 1 -78% -48% 
DC02 1 -88% -93% 
FC01 1 -98% -94% 
FC02 1 -83% -84% 
FC03 1 -30% -91% 
FC06 1 1724% 2% 
FC08 1 86% -78%
LC01 1 -26% -15% 
LC02 1 -1% 3% 
LC03 1 1400% 2035% 
PC01 1 171% -67% 
PC02 1 -51% 6867% 
PC04 1 98% -29% 

 
 

CONCLUSIONS 
 

In plants with a high number of recycles, periodi-
cal disturbances can strongly affect loop variability, 
because one oscillating loop can have a widespread 
effect in the whole plant. Thus, isolating its source 
and diagnosing its cause are essential to ensure a 

highly efficient operation. In this work, we illustrate 
this scenario in a petrochemical plant located in 
Southern Brazil, where periodical disturbances have 
a strong influence on product variability. 

The procedure followed three steps. Initially, we 
detected loop oscillation using the methodology 
based on IAE (Hägglund, 1995). Then, each disturb-
ance was isolated using Spectral Independent Com-
ponent Analysis (Xia et al., 2005). We identified the 
disturbance whose period we want to isolate and its 
sources, which were PC01 and PC02. Finally, we 
diagnosed the cause of the fault in both loops as 
valve stiction using the methodology based on 
higher-order statistics (Choudhury et al., 2004). 

To verify the theoretical predictions in the indus-
trial plant, each loop was opened for a period, be-
cause the valves could not be replaced. The impact 
was visible: the reduction in the variability of almost 
all loops was verified and the reduction in product 
variability was up to 93%. 
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