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Abstract - The reaction of calcium oxide with carbon dioxide is one of the most important methods for the 
capture and concentration of greenhouse gas from the flue gases of industrial plants. In this work, the 
carbonation reaction of CaO obtained from various sources with CO2 was investigated by a thermogravimetric 
method. These sources include commercial lime or CaO, CaCO3, Ca(OH)2, CaC2O4.H2O, a synthesized 
nanoporous sorbent, limestone and acetic acid washed limestone. The effect of structural parameters of the 
sorbents on the reactivity and CO2 capture capacity were studied using pore size distribution data. Also, the 
changes in the solid texture during the carbonation reaction were investigated. It was found that there is a 
direct relation between the pore volume of the sorbents and their reactivity. It was found that sintering is one 
of the main reasons for decreased activity in the carbonation/calcination cycles.  
Keywords: CO2+CaO reaction; Thermogravimetric Analyzer; Calcium-based sorbents; Pore size distribution. 

 
 
 

INTRODUCTION 
 

Global accumulation of CO2 greenhouse gas in the 
atmosphere has increased from 280 ppm in around 
1860 to approximately 316 ppm in 1957 and rapidly 
to 390 ppm in 2010 (Kenarsari et al., 2013). Fossil 
fuels are the dominant form of energy utilized in the 
world (86%), and are responsible for more than 75% 
of the current CO2 emission (Houghton et al., 2001). 
The need to reduce CO2 emissions is globally ac-
cepted and represents the driving force to reconsider 
the environmental aspects of current technologies 
used for power generation plants (Herzog, 2001). 

The use of CaO as a regenerable CO2 sorbent has 
been reported from several works. For example, a 
process using twin circulating fluidized bed reactors 
for the large scale carbon dioxide capture from flue 

gas by lime has been proposed (Shimizu et al., 
1999). Also, the reversible carbonation-calcination 
reactions of calcium oxide have been suggested as 
the basis of energy storage systems (Aihara et al., 
2001), and as the basis of a moderate temperature 
separation of CO2 for hydrogen purification (Silaban, 
Narcida and Harrison, 1996). The effective capture 
of CO2 by CaO has been demonstrated in a fluidized 
bed reactor or carbonation site (Abanades et al., 
2004). The reacted sorbent is then transferred to an-
other fluidized bed reactor (calciner) operating at 
higher temperatures (>900 ºC) to produce a concen-
trated (>95%) CO2 stream (Hughes et al., 2005, Lu, 
Hughes and Anthony, 2008). Also, a relation between 
the extent of carbonation as a function of the number 
of cycles was expressed (Abanades and Alvarez, 
2003). 
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MwCO2 is the molecular weight of CO2. Nitrogen 
adsorption was used to evaluate the pore size distri-
butions of the samples (pellets after decomposition) 
and their specific surface areas. The pore size distri-
butions were determined according to the HK+BJH 
model for micro-meso pores, respectively. Also, the 
BET method was used to determine the specific sur-
face of the samples. 

The various types of lime used in this work as 
starting materials for investigating the carbonation 
reaction behavior were as follows:  

A) Commercial lime (CaO, Merck Art. No.102109). 
B) CaO from calcination of calcium carbonate 

(CaCO3, Merck Art. No.102059). 
C) CaO from calcination of natural limestone. 

The natural limestone used in this work was from 
Abyek mine. The XRF analysis of this sorbent is 
shown in Table 1. 

 
Table 1: XRF analysis of limestone sample from 
Abyek mine, Iran. 
 

 CaO Al2O3 SiO2 MgO K2O LOF
Composition %  52.7 0.61 0.71 1.87 0.07 45.3 

 
D) CaO from calcination of limestone washed 

with acetic acid solution. For this sample, 105 g lime-
stone was added to 500 mL of 3M acetic acid. The 
reaction time was about 3 h. Then it was filtered and 
dried at 120 ºC for 4 h.  

E) CaO from decomposition of commercial cal-
cium hydroxide (Ca(OH)2, Merck Art No. 102047).  

F) CaO from decomposition of commercial calcium 
oxalate (CaC2O4.H2O, Aldrich). 

G) CaO from calcination of a synthesized nano 
calcium carbonate. This sample was prepared by 
reaction of calcium nitrate with sodium bicarbonate 
solutions under ultrasonic treatment (Nouri, Ale 
Ebrahim and Naser Nejad, 2014). 
 
 

RESULTS AND DISCUSSION 
 

The carbonation reactions were carried out in the 
TGA at 650 ºC. The conversion-time profiles of dif-
ferent sorbents are shown in Figure 2. It is clear that 
the reactivity and CO2 capture capacity of the differ-
ent sorbents are not similar. 

The differences in the reactivity are due to the 
differences in the sorbent textures. The XRD (X-Ray 
Diffraction) patterns show that the crystal size and 
structure of the sorbents are almost the same (Figure 
3). Therefore, the surface reaction rate of calcium 
oxide with CO2 is not different for the various 
sorbents. The pore size distributions of calcium ox-
ides obtained by calcination of various sources are 
shown in Figure 4. Also, Table 2 shows the pore 
volume values and BET surface areas of the different 
sorbents. There is a direct relation between the pa-
rameter β (which is the pore volume of the sorbent 
per unit surface) and the reactivity of the sorbent, 
especially in the fast stage of reaction (about the first 
200 s of reaction). As can be seen in Figure 2, the 
sorbents obtained from calcium oxalate and nano 
calcium carbonate show the best performance, espe-
cially in the fast stage of carbonation. The fast reac-
tion period is practically important in order to main-
tain the reactor sizes economically feasible. 
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Figure 2: Conversion-time profiles for different sorbents reacting with 10% CO2 at 650 oC 

 
Table 2: Structural parameters of the different sorbents. 

 
 A B C D E F G B after 12 cycles 

VP (cm3/g) 0.204 0.275 0.24 0.34 0.372 0.474 0.49 0.128 
SBET (m2/g) 83.84 82.01 111.8 101.7 113.2 134 136.8 0.78 
VP/SBET (106cm) 0.24 0.335 0.214 0.334 0.328 0.354 0.358 0.164 
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Figure 3: The XRD patterns for calcium oxides obtained from sources C, B, and G. 
 

The overall reaction rate is a function of sur-
face reaction kinetics, diffusion through the CaCO3 
product layer surrounding the CaO grains, diffusion 
through the macropores of the pellet, and the gas 
film around the pellet. In the fast kinetic control 
stage, the thickness of the CaCO3 product layer is 

thin. Thus, the sorbent with higher surface area and 
pore volume shows higher reactivity because there is 
more space for the surface reaction. The sudden 
change in the reaction rate can be explained by the 
change in the morphology of the sorbent during the 
reaction. 
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Figure 4: Pore size distributions for calcium oxides obtained from different sources (pore volume vs. pore 
diameter). 
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of the sorbent during the cyclic reaction is obvious. 
During the calcination, the calcium carbonate de-
composes to calcium oxide, causing micro and meso 
pores to be created. On the other hand, some of these 
pores sinter together creating macropores. This phe-
nomenon decreases the activity of the sorbent during 
the cycles in which this decay is more rapid in the 
preliminary cycles. However, the difference between 
the final points in Gigure 6 is negligible, and thus 
this process approached a constant final conversion.  
 
 
 

CONCLUSION 
 

In this work, the rate of the carbonation reaction 
of lime produced from various sources was investi-
gated by the thermogravimetric method. The increase 
in the porosity of these samples is due to the gaseous 
products evolved during the decomposition stage of 
the initial materials. Calcium oxide obtained from 
the calcination of calcium oxalate and nanoporous 
calcium carbonate show the best CO2 capture capacity 
among the sorbents. The reactivity and CO2 uptake 
capacity of the sorbents are proportionally related to 
their pore volumes and BET surface areas. The be-
havior of calcium carbonate sorbent (B) during the 
multiple carbonation/calcination cycles was also 
studied. The decay in the sorbent reactivity during 
the cycles is one of the major problems that is still 
open for investigation. It seems that, during the mul-
tiple calcinations, the pore structure of the sorbent is 
changed due to the sintering and its highly reactive 
microporous structure changes to a sintered macro-
porous texture.  
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