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Abstract - The multiobjective optimization method was applied in order to improve the droplet size 
distribution and stability of water-in-oil emulsions composed of sunflower and pumpkin seed oils as 
continuous phase, polyglycerol polyricinoleate as emulsifier, water as dispersed phase and sodium chloride as 
co-stabilizer (lipophobe). Three composition factors were varied based on the three level Box-Behnken design 
and three characteristics of the obtained emulsions were measured for each experimental run. The mean 
volume diameter of water droplets and the span of the droplet size distribution, both determined immediately 
upon preparation of the emulsion, as well as the stability index over a three-month period were interrelated by 
regression functions with the surfactant concentration, oil composition and the salt content in the water phase 
of the emulsion. Also, the fourth objective function based on a difference in the prices of pumpkin seed and 
sunflower oils was considered for optimization. The multiobjective optimum was calculated by using the 
minimal loss method with weight factors. 
Additionally, effects of the continuous phase composition and the salt content on the equilibrium interfacial 
tension of water-oil systems and the changes of the droplet size distribution over time were studied. 
Keywords: Water-in-oil emulsion; Multiobjective optimization; Pumpkin seed oil; Polyglycerol polyricinoleate; 
Sodium chloride; The equilibrium interfacial tension. 

 
 
 

INTRODUCTION 
 

Tasty, healthy, nutritious and more convenient 
food products with enhanced stability and shelf life 
are imperative for today’s increasingly demanding 
markets. The production of water-in-oil (W/O) and 
water-in-oil-in-water (W/O/W) emulsions is one pos-
sible step towards employing the novel idea that 
biologically active substances and active ingredients 
in the food industry should be entrapped in some 
carrier material to form microcapsules or nanoparti-

cles in order to achieve the controlled release of ac-
tive ingredients and flavour retention, to mask the 
bad taste or smell of some components, stabilize 
food ingredients, prevent their oxidation or hydroly-
sis, and adjust their properties and/or increase their 
bioavailability (Nikolovski et al., 2011). 

Different dispersing methods have been em-
ployed to generate emulsions such as conventional 
simple agitation, colloidal mills, static mixers and 
high shear mixers, as well as novel methods like 
membrane emulsification (Dragosavac et al., 2012, 
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Vladisavljević and Williams, 2005) and ultrasound 
cavitation (Sivakumar et al., 2014, Tang et al., 2013, 
Tang et al., 2012). For production of nanoemulsions 
intense shear should be applied in order to overcome 
the Laplace pressure and break up droplets into 
smaller (nanometre scale) dimensions (Sivakumar et 
al., 2014). The developed high-energy input tech-
niques adequate for production of nanoemulsions 
include the use of high-pressure homogenizers, ultra-
sonicators and microfluidizers (Sivakumar et al., 
2014, Landfester 2006). Also, low-energy input tech-
niques adequate for the production of nanoemulsions 
have been developed such as phase inversion tem-
perature, solvent-diffusion and spontaneous emulsifi-
cation (Sivakumar et al., 2014). However, low-en-
ergy input techniques have their own limitations 
(Sivakumar et al., 2014) including the use of a large 
quantity of surfactant, usually not of the food grade 
type, and instability after long-term storage, which 
can be improved when the droplet disruption is pro-
vided predominantly by high-energy input tech-
niques (Santana et al., 2013, Sivakumar et al., 2014, 
Tang et al., 2013). 

The stability problems in food emulsions cannot 
be improved by increasing the concentration of the 
emulsifying agent (like in cosmetic and pharmaceuti-
cal emulsions) due to limitations in the permitted 
dose for human consumption (Dickinson, 2011, Ji-
ménez-Colmenero, 2013). The polyglycerol ester of 
polyricinoleic acid (PGPR) (low HLB value) is a 
synthetic non-ionic and the most effective hydropho-
bic emulsifier, commonly used in the food industry 
as a chocolate thickening agent with excellent water-
binding characteristics (Gülseren and Corredig, 
2012, Wilson et al., 1998a). Used as a food additive, 
it is recognised as generally safe with a maximum 
per capita mean daily intake of 2.64 mg/kg body 
weight/day (Wilson et al., 1998b).  

Although PGPR reduces the interfacial tension 
very well, thereby facilitating droplet break-up, and 
prevents coalescence of newly formed water droplets 
via the Gibbs-Marangoni effect (Walstra, 1993) and 
by steric stabilisation (Landfester, 2006), diffusional 
degradation remains the destabilising mechanism, 
which has to be precluded by osmotic pressure regu-
lation. There are claims that the presence of salt is 
crucial for emulsion formation and the stability of 
primary W/O emulsions (Aronson and Petko, 1993). 
Despite the fact that some authors claim that a stable 
emulsion can be obtained without electrolytes in the 
emulsion and/or that the addition of salt (NaCl) or 
sodium phosphate buffer destabilizes the emulsion 
(Su et al., 2008), it is well known that the stability 
rating of primary W/O emulsions is markedly 

affected by the addition of electrolytes in the inner 
aqueous phase (Moguet et al., 2001, Srinivasan et 
al., 2000). Actually, salt is considered to be a co-
stabilizer, a lipophobe that builds-up the osmotic 
pressure to counterbalance the Laplace pressure, and 
consequentially stabilizes emulsions against diffu-
sional degradation known as Ostwald ripening 
(Capek, 2010, Colmán et al., 2014, Landfester, 2006). 
Therefore, the addition of an osmotic agent that can-
not interdiffuse between two droplets, and the use of 
an appropriate hydrophobic surfactant, could both be 
essential for preparation of stable and monodisperse 
water-in oil emulsions, with droplet sizes ranging 
from 50 to 500 nm, well known as inverse miniemul-
sions (Landfester, 2000, Landfester, 2003). For in-
verse miniemulsions, relations between surfactant 
content and droplet size, as well as particle size and 
the coverage of the particles by surfactant would 
additionally depend on the amount of the osmotic 
agent (Landfester, 2006). 

The chemical structure of the oil phase, i.e., the 
chain length of the fatty acids, molecular configura-
tion and the number of unsaturated bonds, is crucial 
for the stability of the emulsion. Particularly, the 
polarity of the oil phase can affect the interfacial 
tension of the W/O interface and the allocation of the 
components at the interface (Ushikubo and Cunha, 
2014). W/O and W/O/W emulsions were usually 
prepared with sunflower, corn, soybean oil, canola, 
olive and rapeseed oils (Jiménez-Colmenero, 2013), 
with olein and miglyol (Bonnet et al., 2009), and 
sometimes with specialty oils like Moringa oleifera 
oil (Khalid et al., 2013).  

Pumpkin seed oil is a complex mixture of fatty 
acids, fatty acid esters, monoglycerides (∼1.5%), di-
glycerides (∼0.4%), triglycerides (∼95%), and minor 
components, among which the most prominent are: 
vitamins (tocopherols and tocotrienols 0.03-0.09%), 
sterols (0.2-0.8%), squalene (0.2-0.8%) phospholipids 
(1%) and pigments. Therefore, this oil should be 
considered as a valuable natural source of essential 
fatty acids and biologically active micronutrients like 
sterols (Hrabovski et al., 2012, Neđeral Nakić et al., 
2006, Nikolovski, 2009), tocopherols, and especially 
squalene (Neđeral Nakić et al., 2006, Nikolovski, 
2009). Moreover, phospholipids and mono- and di-
glycerides reduce the interfacial tension between 
phases (Kalvodova, 2010, Mezdour et al. 2011), 
while squalene, due to its intrinsic insolubility in 
water, prevents oil-in-water emulsion instability 
caused by the Ostwald ripening mechanism (Fox et 
al., 2011). Thus, pumpkin seed oil might be em-
ployed to support the action of the emulsifier in or-
der to eventually decrease the concentration of the 
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emulsifying agent. Nonetheless, emulsions with 
pumpkin seed oil were rarely the subject of inves-
tigation (Nikolovski et al., 2011, Dragosavac et al., 
2012). Therefore, the incorporation of pumpkin seed 
oil into stable W/O emulsions, which could be even-
tually used for preparation of double W/O/W emul-
sions, was one of incentives behind our work. For 
stabilization of W/O/W food emulsions, beside a 
lipophilic emulsifier, a proper water-soluble food-
grade surfactant must be chosen among non-ionic 
small-molecular-weight emulsifiers (Tweens) (Das 
and Kinsella, 1990), block copolymer emulsifiers 
(Pluronics) (Torcello-Gómez et al., 2013, Drago-
savac et al., 2012) or biopolymer emulsifiers (protein 
and hydrocolloid emulsifiers) (Dickinson, 2011). 
Also, W/O/W emulsions are frequently stabilised by 
conjugates and complexes of hydrocolloids with 
food proteins (Dickinson, 2009).  

On the one hand, this work aimed to give an in-
sight into an inverse miniemulsion system composed 
of two oils with different physicochemical character-
istics (refined sunflower and unrefined pumpkin seed 
oil) as continuous phase, polyglycerol polyricinoleate 
as emulsifier, water as dispersed phase and sodium 
chloride as co-stabilizer. The influence of three com-
position factors on three characteristics of the ob-
tained W/O emulsions was studied. On the other 
hand, optimization of the formulation of this system 
was attained by the use of a multiobjective optimiza-
tion technique involving the Box-Behnken experi-
mental design, which is considerably cheaper than 
the three-level full factorial designs and is considered 
to be very efficient, when efficiency is estimated as 
the number of coefficients in the estimated model 
divided by the number of experiments (Ferreira et 
al., 2007). 
 
 

MULTIOBJECTIVE OPTIMIZATION 
 

Since we needed to take into account and eventu-
ally simultaneously optimize three different quality 
parameters of emulsions: the mean volume diameter 
of water droplets, the span value of the droplet size 
distribution and the stability index of the emulsions 
that were studied over a three-month period, it was 
necessary to resort to some type of multiobjective 
optimization technique. Our aims had different di-
mensions, different orders of magnitude and might 
potentially be of different importance in the decision 
making.  

Multiobjective optimization was performed in 
three steps. Firstly, each aim had to be described 
mathematically by its unique objective function fi = 

(X1, X2, X3) (i=1, 2 and 3). However, the three afore-
mentioned aims depended on the same independent 
variables/ factors - in our case polyglycerol poly-
ricinoleate (X1) and pumpkin seed oil (X2) contents 
in the oil phase and sodium chloride (X3) content in 
the water phase of the emulsion. In order to calculate 
the multiobjective optimum by taking into account 
all the aims simultaneously, some compromises had 
to be made. Therefore, in the second step, the im-
portance of the objectives was considered by defin-
ing the weighting factors (wi). The weighting factors 
influence the minimum of the loss function and the 
set of compromise optimum values of the independ-
ent variables X1,opt, X2,opt, and X3,opt. As the third step, 
the multicriterion optimization method had to be 
chosen. For our purposes we applied the loss-mini-
mization method (Osyczka, 1984, Gergely et al., 
2003). This method calculates the minimum of the 
sum of the weighted relative deviations: 
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!

m i i
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i

f X X X f
L w min
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⎡ ⎤−
= →⎢ ⎥

⎢ ⎥⎣ ⎦
∑     (1) 

 
where L is the loss function, and *

if  individual opti-
mum value of the i objective function. 

A constrained minimization of the multivariate sca-
lar function (L) was done by using the Scipy.optimize 
module of The Scientific Computing Tools for Python 
(ScyPy 0.14.0.). The algorithms that gave good re-
sults were: L-BFGS-B (Limited-memory Broyden-
Fletcher-Goldfarb-Shanno Bound-constrained) algo-
rithm, the Constrained Optimization BY Linear Ap-
proximation (COBYLA) method, and a Truncated 
Newton Conjugate-gradient (TNC) algorithm.  
 
 

MATERIAL AND METHODS 
 

Refined sunflower oil (“Vital”, Vrbas, Serbia) and 
unrefined cold-pressed pumpkin seed oil (“Sun-
cokret”, Hajdukovo, Serbia) were used in their origi-
nal form without further purification. The contents of 
saturated fatty acids, monounsaturated oleic and 
polyunsaturated linoleic fatty acids in the sunflower 
oil were 14.3, 24.2 and 63.1%, respectively. The 
sunflower oil density measured at 25 °C was 0.921 
g·cm-3. The fatty acid composition of the pumpkin 
seed oil (density at 25 °C 0.9169 g·cm-3), expressed 
as weight percentage of the total, was: 18.09% satu-
rated fatty acids (11.72% palmitic acid, 5.58% stearic 
acid, 0.42% arachidic acid, 0.14% behenic acid, 
0.12% myristic acid, 0.08% heptadecanoic acid, and 
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0.03% lignoceric acid); 37.73% monounsaturated 
fatty acids (37.43% oleic acid, 0.16% cis-11-ei-
cosenoic acid and 0.14% palmitoleic acid) and 
43.98% polyunsaturated fatty acids (43.75% linoleic 
acid and 0.23% linolenic acid). The oil soluble emul-
sifier polyglycerol polyricinoleate (PGPR 90) was 
kindly provided by “Jaffa” a.d. (Crvenka, R. Serbia). 
NaCl was purchased from Sigma Aldrich (UK). De-
mineralised water with a conductivity of about 4 
µS·cm-1 was used as the aqueous phase. 
 
Emulsion Preparation 
 

Water-in-oil (W/O) emulsions were prepared by 
homogenization using a high speed homogenizer 
(UltraturraxT-25, IKA, Germany) at 24000 rpm for 
10 min. Continuous phases were prepared by dis-
solving a certain amount of PGPR (1, 3 and 5% 
(w/w)) in an oil phase (the sunflower oil, the pump-
kin seed oil and a mixture of the oils (mass ratio 
1:1)) at 50 °C, by mixing on a magnetic stirrer for 30 
minutes. Final 20% (v/v) W/O emulsions were pre-
pared by careful addition (drop by drop) of the dis-
persed phase (water and water solutions of NaCl 
(0.15 and 0.3 M) into the continuous oil phase stirred 
by the high-speed homogenizer. The emulsification 
temperature was maintained at 25 °C by means of a 
water bath. After preparation all emulsions were ini-
tially analysed and then stored in a refrigerator at 4 °C. 
 
Sedimentation Stability  
 

For the stability test, the prepared emulsions were 
transferred into 10ml graduated glass cylinders and 
stored at room temperature for three months. During 
storage, the emulsions separated into an opaque layer 
of emulsion and a transparent serum layer consisting 
of oil at the top or water at the bottom of the cylin-
ders. The stability index (the creaming stability) was 
measured by the height of the serum layer (HS) with 
the storage time. The stability index (SI) (Perrechil et 
al., 2014) was reported as: 
 

( ) ( )E% / 100SSI H H= ×           (2) 
 
where HE represents the initial height of the emulsion. 
 
Droplet Size Analysis 
 

The mean droplet size and droplet size distribu-
tion of the primary W/O emulsions were measured 
immediately after the formation using a laser light 
scattering instrument ZetasizerNano ZS (Malvern 
Instruments, U.K.). To avoid multiple light scattering, 

samples of the emulsions were diluted with sun-
flower oil at a dilution ratio of 1:100, and analysed in 
triplicate. The optical parameters selected were: dis-
persed phase refractive index 1.33, dispersant liquid 
viscosity (sunflower oil) 51.32 mP·s and refractive 
index 1.4723. The stability of W/O emulsions was 
determined weekly during a month of storage. 

The results of the measurements are shown as the 
droplet size distribution and the volume-weighted 
mean droplet diameter, d4,3, given by Eq. (3): 
 

4

4.3 3
i i

i i

n d
d

n d
=∑
∑

              (3) 

 
where ni is the number of droplets with diameter of di. 

The width of the droplet size distribution and poly-
dispersity are expressed through the span value, de-
fined by Eq. (4): 
 

( )90 10

50

d d
span

d
−

=             (4) 

 
where d10, d50 and d90 are standard percentile read-
ings from the cumulative droplet volume distribution 
curve, meaning the droplet diameters below which 
10%, 50% and 90% of the sample lies, respectively 
(Ushikubo and Cuncha, 2014). 
 
Surface/Interfacial Tension 
 

A digital tensiometer KSV – Sigma 703D (Fin-
land) was used and the Du Noüy ring method was 
employed for interfacial tension measurements be-
tween the water and oil phases. Before the measure-
ment, the ring was immersed in the water phase, the 
oil phase was added slowly and the surface was left 
for 10 min to equilibrate. The reported values of the 
interfacial tension were the average values of at least 
three measurements. All measurements were per-
formed at 25 °C. 
 
Viscosity Measurements 
 

An RV20 rotational viscometer (cone plate geom-
etry) with a SVI measuring sensor (Haake, Germany) 
was used for viscosity measurements of the oil phase. 
The samples were transferred to the instrument and 
allowed to equilibrate to 25 °C for 5 min prior to 
measurement. Shear stress τ (Pa) was determined 
with continually changing shear rates D (s-1) from 
zero to 500 s-1 and the reverse. The apparent viscos-
ity was calculated as: 



 
 
 
 

How to Formulate a Stable and Monodisperse Water-in-Oil Nanoemulsion Containing Pumpkin Seed Oil: the Use of Multiobjective Optimization     923 
 

 
Brazilian Journal of Chemical Engineering Vol. 33,  No. 04,  pp. 919 - 931,  October - December,  2016 

 
 
 
 

D
τη =                 (5) 

 
Statistical Analysis 
 

Multivariate optimization schemes involve de-
signs for which the levels of all the variables (the 
significant factors) are changed simultaneously. The 
optimum operational conditions are attained by using 
more complex experimental designs such as the 
three-level Box-Behnken design, which has proven 
to be slightly more efficient than other experimental 
designs in use (Ferreira et al., 2007). 

The Box-Behnken designs are a class of rotatable 
or nearly rotatable second-order designs based on 
three-level incomplete factorial designs. The re-
quired number of experiments (N) is defined as N = 
2·k·(k − 1) + C0, (where k is number of factors and C0 
is the number of central points) (Ferreira et al., 
2007). The Box-Behnken designs give the possibility 
to estimate all linear effects, all quadratic effects, and 
all linear 2-way interactions between factors. 

In order to investigate the effect of emulsion com-
position parameters on the droplet size distribution 
and the sedimentation stability, the Box-Behnken 
design for three factors was applied. The three input 
variables were the content of PGPR in the continu-
ous phase (1-5% (w/w), X1), pumpkin seed oil con-
tent in the continuous phase (0-100% (w/w), X2) and 
NaCl concentration in water phase (0-0.3 M, X3), 
where three levels were chosen (−1, 0, +1) as shown 
in Table 1. The experimental design consisted of 15 
runs as shown in Table 2. The experimental values 
were expressed as the means of three determinations 

and the standard deviation. All statistical analyses 
were performed using STATISTICA 12 software 
(StatSoft, Inc., 2012). 
 
Table 1: Treatment levels and coded values for each 
of the independent variables used in developing 
the experimental data to optimize the W/O emul-
sion content. 
 
Independent variable Symbol Level 
 Uncoded Coded Uncoded Coded

PGPR content,  
% (w/w) 

  1 -1 
E X1 3 0 
  5 +1 

Pumpkin seed oil content 
in the continuous phase, 
% (w/w) 

  0 -1 
PO X2 50 0 
  100 +1 

NaCl concentration  
in the water phase, M  

  0 -1 
S X3 0.15 0 
  0.30 +1 

X1 = (E-3)/2, X2=(PO-50)/50, X3=(W-0.15)/0.15 
 
 

RESULTS AND DISCUSSION 
 

Varying PGPR and PO content in the oil phase 
and NaCl content in the water phase, thirteen W/O 
emulsions of different formulations were prepared 
and investigated in a such a way as to determine the 
mean volume diameter (d4,3) and span value of the 
freshly prepared emulsions and the stability index 
over a three-month period. All emulsions in the ex-
perimental design contained 20% (v/v) of water and 
the results obtained are shown in Table 2. The stabil-
ity index determined after 90 days of storage was 
labelled as SI90. 

 
Table 2: Experimental design and results of production of W/O emulsions. 

 
Experiment 

 
PGPR, 

E, % (w/w) 
Pumpkin seed  

oil, PO,  
% (w/w) 

NaCl 
concentration, 

S, M 

Mean volume 
diameter, 
d4,3, nm 

span SI (%) 
day 1 day 30 day 90 

 X1 X2 X3      
1 −1 −1 0 201.2±12.13 0.74 0 17.5 33 
2 +1 −1 0 187.0±9.18 0.76 1 4 10.5 
3 −1 +1 0 562.8±45.75 1.22 1.5 10 22 
4 +1 +1 0 174.8±5.65 0.65 0.5 3.5 5.5 
5 −1 0 −1 990.7±63.17 0.65 24 41 50 
6 +1 0 −1 598.3±40.45 0.70 1 16 22 
7 −1 0 +1 264.9±22.28 1.04 1.5 6 30 
8 +1 0 +1 185.1±6.55 0.66 0 3 5.5 
9 0 −1 −1 699.4±6.09 0.60 1 8 25 
10 0 +1 −1 843.6±75.02 0.80 1 6 15 
11 0 −1 +1 205.2±7.13 0.80 0 7 14 
12 0 +1 +1 186±13.22 0.77 1 3.5 7 
13 0 0 0 203.2±18.97 0.86 0 2 5.5 
14 0 0 0 192.4±10.90 0.89 0 3 8 
15 0 0 0 204.6±13.30 0.86 1.5 4 8 
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the water molecules associated with the polar parts 
of phospholipids and PGPR, changing the aggrega-
tion state of phospholipids, modifying the interac-
tions between phospholipids and PGPR and thus af-
fecting the properties of the adsorbed layer (Dedi-
naite and Campbell, 2000). The addition of PGPR in 
a range between 4% and 5% did not produce a sig-
nificant change of interfacial tension. Table 5 indi-
cates that the addition of NaCl slightly reduces inter-
facial tension between the water and oil phases in the 
presence of PGPR from 5.3±0.12 to 4.4±0.22 mN·m-1; 
nevertheless, it provides better stability of the emul-
sion during storage. Very stable droplets could be 
formed shortly after preparation of inverse minie-
mulsions due to the fact that the added salt enables 
the occurrence of a real zero-effective-pressure situa-
tion (i.e., the osmotic pressure counterbalances the 
Laplace pressure) (Landfester, 2006). This study 
confirms the hypothesis of Pawlik et al. (2010) that 
the addition of salt in the water phase strengthens the 
interaction between adsorbed molecules, and provides 
better packing of the PGPR in the interfacial layer. 
Therefore, increasing the elasticity of the layer de-
creases the interfacial mobility and the rate of film 
drainage between approaching droplets, leading to 
increasing emulsion stability by "stiffening" the in-
terface (Lutz et al., 2009). Moreover, the typical 
triangular relation between the amount of surfactant, 
resulting particle size, and surface coverage, existing 
as a result of droplet break-up and the recoalescence 
mechanism of minidroplet formation was recognized 
to depend on the amount of added salt (Landfester, 
2006). 

Response surface methodology was applied in or-
der to obtain relationships between the emulsion 
quality parameters (d4,3, span and SI90) and the com-
position of W/O emulsions (X1, X2, and X3). The 
proportion of variance accounted for by the whole 
model, with 9 degrees of freedom, for d4,3, span and 

SI90 was 0.994 (adjusted r2=0.982), 0.958 (adjusted 
r2=0.881) and 0.979 (adjusted r2=0.942), respec-
tively. However, all parameters of the whole model 
were by no means statistically significant, and the 
whole model was reduced to obtain regression func-
tions with all the significant parameters. The devel-
oped regression models for d4,3, span and SI90 and 
the coded values of the independent variables X1, X2, 
and X3 and their interdependence are shown in Eq. 
(6), (7) and (8), respectively. The values of the appro-
priate coefficients of the regression models are listed 
in Table 4.  
 
Table 3: The effect of composition of the continu-
ous phase and NaCl on the equilibrium interfacial 
tension (25 °C) of the water-oil system. 
 

Water PO  
(%) 

PGPR  
(%) 

NaCl  
(M) 

Interfacial 
tension  

(mN·m-1) 
+ 0 - - 27.49±0.33 
+ 100 - - 8.91±0.08 
+ 0 3 - 3.87±0.03 
+ 0 5 - 3.03±0.05 
+ 100 3 - 6.13±0.05 
+ 100 5 - 4.46±0.02 
+ 50 4 - 5.3±0.12 
+ 50 4 0.15 4.3±0.22 

 
2

4,3 0 1 1 3 2 5 3 6 3

7 1 2 8 1 3

 a a ·X a ·X a ·X a ·X

a ·X ·X a ·X ·X

= + + + +

+ +

d
     (6) 

 
2

0 1 1 3 2 5 3 6 3

7 1 2 8 1 3

 b b ·X b ·X b ·X b ·X

b ·X ·X b ·X ·X

= + + + +

+ +

span
     (7) 

 
2

0 1· 1 2 1 3 2

2
5 3 6 3

90  c c X c ·X c ·X

c ·X c ·X

= + + +

+ +

SI
        (8) 

 
Table 4: The values of the coefficients in Eq. (6), (7) and (8) and the proportion of variance accounted for 
by the models (r2). 
 

d4,3 (Eq. (6)) span (Eq. (7)) SI90 (Eq. (8)) 
r2= 0.976 r2= 0.916 r2= 0.963 

Parameter Estimate Standard 
error 

Parameter Estimate Standard 
error 

Parameter Estimate Standard 
error 

a0 246.6 21.7 b0 0.854 0.0235 c0 8.08 1.37 
a1 -109.3 20.3 b1 -0.110 0.0220 c1 -10.6 1.01 
a3 59.3 20.3 b3 0.068 0.0220 c2 9.24 1.48 
a5 -286.4 20.3 b5 0.065 0.0220 c3 -2.69 1.01 
a6 250.1 29.7 b6 -0.102 0.0322 c5 -7.31 1.01 
a7 -93.4 28.7 b7 -0.148 0.0311 c6 8.12 1.48 
a8 78.2 28.7 b8 -0.108 0.0311    

Eqs. (6-8) are regression models for the relationship between the mean droplet diameter (d4,3), span and the stability index after 90 days of 
storage time (SI90) and the coded values of the independent variables for PGPR content (X1), pumpkin seed oil content in the continuous 
phase (X2), and NaCl content in the water phase (X3). 
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Eqs. (6) - (8) were used as the objective functions 
for multiobjective optimization. Table 5 summarizes 
the individual optima (minima) for the objective 
functions Eqs. (6-8), and the compromise optima 
calculated at optimized X1,opt, X2,opt and X3,opt values, 
which were obtained as the result of the multicrite-
rion optimization by the loss-minimization method 
(Osyczka, 1984; Gergely et al., 2003). For the same 
value of all weighting factors of 1/3, the set of opti-
mized values was (0.75, 1, 0.45) as obtained by L-
BFGS-B, TNC and/or COBYLA – constrained opti-
mization methods of Scientific Computing Tools for 
Python (ScyPy 0.14.0, 2014). The results of the opti-
mization suggested that the smallest and most uni-
form water droplets in pumpkin seed oil with good 
sedimentation stability could be obtained at a rela-
tively high value of PGPR content (about 4.5%), in 
the presence of salt in the water phase at a concentra-
tion of 0.21 M.  

In order to verify the optimization procedure an 
emulsion should be prepared according to the recom-
mended optimal combination levels and the experi-
mentally obtained values should be compared to the 
corresponding predicted values. However, the formu-
lation of a W/O emulsion with only pumpkin seed oil 
obtained by the optimization was not preferred for 
two reasons. On the one hand, the occurrence of the 
bimodal distribution curve during storage indicated 
the coalescence of water droplets during aging of the 
emulsion. On the other hand, due to the high price of 
pumpkin seed oil (at the moment 23 times more ex-
pensive than sunflower oil) the economic factor 
should be also considered as an objective parameter. 
The price of the oil phase grows linearly with the 
content of pumpkin seed oil. A very simple objective 
function that can be derived from the difference in 
the prices of two oils is as follows: 
 

( )0 2d 1 22·XEC = +             (9) 
 

The result of the multiobjective optimization 

when four objective functions (Eqs. 6-9) were taken 
into consideration with weighting factors of 0.25, 
was the set of optimized values of (0.58, 0.03, 0.45), 
which corresponded to (4.16%, 51.5%, 0.22 M). This 
formulation with a lower content of pumpkin seed oil 
in the oil phase (about 50%) was both economically 
favoured and experimentally justified (Figure 2). De-
spite the fact that the salt concentration value pre-
dicted by multiobjective optimization was 0.22 M, 
the statistical analysis of the experimental results sug-
gested that a salt content of 0.15 M in the water 
phase was sufficient to increase the sedimentation 
stability of the emulsions and significantly decrease 
the mean volume diameter of the water droplets. Ad-
ditionally, this result was emphasised by the profiles 
for the predicted values and desirability function 
(StatSoft, Inc., 2012) in Figure 3. The objective func-
tions were transformed into individual preferred/de-
sired functions whose values ranged from 0 to 1. The 
value "0" of an individual desired function and the 
overall desired function represents the worst value, 
while the value "1" represents the best value of the 
observed response. 

Considering the results of multiobjective optimi-
zation and the profiles for the predicted values and 
the desirability function given in Figure 3, the set of 
values for the investigated composition parameters 
(0.5, 0, 0) was selected to prepare stable W/O emul-
sions with pumpkin seed oil in the continuous phase. 
The coded results corresponded to values of 4% 
(w/w) PGPR, 0.15 M NaCl, and 50% (w/w) pumpkin 
seed oil. Experimentally determined values of d4,3, 
span and SI90 for the optimized formulation were 
155.8±12.3 nm, 0.70 and 5.5%, respectively, and 
they corresponded well to the values calculated by 
the objective functions (Figure 3). Furthermore, the 
droplet size distribution curves recorded immediately 
after preparation and after 6 month of storage shown 
in Figure 4 additionally emphasise the stability of the 
optimised formulation, which is intended for the 
preparation of double W/O/W emulsions.  

 
 

Table 5: Results of multiobjective optimization of the water-in-oil emulsion quality parameters. 
 

Objective 
parameter 

Objective Individual optimum of the 
objective function, fi

*  
Weight factor of the 
objective function, wi 

Values of the objective function 
at X1,opt, X2,opt and X3,opt  

d4,3 (Eq 6) minimum 59.8 nm 1/3 102 nm 
Span (Eq 7) minimum 0.60 1/3 0.70 
SI90 (Eq 8) minimum 0.7% 1/3 0.9% 

The compromise optimum values are X1,opt=0.98, X2,opt =1 and X3,opt =0.12 
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mean volume diameter of water droplets, the span of 
the droplet size distribution and the sedimentation 
stability index after 90 days of storage were 
155.8±12.3 nm, 0.70 and 5.5%, respectively, and 
corresponded well to the values calculated by the 
objective functions. Droplet size distribution of the 
emulsion after six months of storage was recorded 
and confirmed good stability of the optimized formu-
lation, which is intended for preparing double W/O/W 
emulsions. 
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NOMENCLATURE 
 
Symbols 
 
a0, a1, a3, a5, 
a6, a7, a8 

adjustable parameters in Eq. (6) 

b0, b1, b3, b5, 
b6, b7, b8 

adjustable parameters in Eq. (7) 

C0 the number of central points in the 
Box-Behnken design 

c0, c1, c2, c3, 
c5, c6 

adjustable parameters in Eq. (8) 

D shear rate (s-1) 
d0 parameter in Eq. (9) 
d10, d50, d90 the droplet diameters below which 

10%, 50% and 90% of the sample  
lies, respectively (nm) 

d4,3 (Eq. (3)) the volume-weighted mean droplet 
diameter (nm) 

di diameter of droplet i (nm) 
E PGPR content % (w/w) 
EC Objective function for the price  
fi the i objective function 
fi

*  individual optimum value of the i 
objective function 

HE initial height of an emulsion in a 
cylinder (nm) 

HS height of a serum layer in a cylinder 
(nm) 

k the number of factors in the  
Box-Behnken design 

L (Eq. 1) the loss function (-) 
N the required number of experiments  

in the Box-Behnken design 

ni number of droplets of diameter di 
PO pumpkin seed oil content in the 

continuous phase % (w/w) 
S  NaCl concentration in the water phase 

mol·dm-3 
SI the stability index (%) 
SI90 the stability index after 90 days of 

storage time (%) 
span the span of droplet size distribution (-)
wi the weighting factor of the i objective 

function  
X1 coded value of the emulsifier content 

in the continuous phase  
(X1 = (E-3)/2), -  

X1,opt, X2,opt, 
and X3,opt 

the set of compromise optimum  
values of the independent variables 

X2 coded value of pumpkin seed oil 
content in the continuous phase, 
(X2=(PO-50)/50), - 

X3 coded value of sodium chloride 
content in the water phase,  
X3=(W-0.15)/0.15, -  

 
Greek Letters 
 
τ  Shear stress, Pa 
η apparent viscosity (Pa·s) 
 
Abbreviations  
 
COBYLA the constrained optimization by  

linear approximation method 
L-BFGS-B Limited-memory Broyden-Fletcher-

Goldfarb-Shanno bound-constrained 
algorithm 

PGPR polyglycerol polyricinoleate 
TNC a truncated Newton  

conjugate-gradient algorithm 
W/O  water-in-oil 
W/O/W water-in-oil-in-water 
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