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Abstract: Classical and recent numerical schemes for solving hyperbolic conservation laws were analyzed for 
computational efficiency and application to nonideal gas flows. The Roe-Pike approximate Riemann solver 
with entropy correction, the Harten second-order scheme and the extension of the Roe-Pike method to second-
order by the MUSCL strategy were compared for one-dimensional flows of an ideal gas. These methods 
require the so-called Roe’s average state, which is frequently difficult and sometimes impossible to obtain. 
Other methods that do not require the average state are best suited for complex equations of state. Of these, 
the VFRoe, AUSM+ and Hybrid Lax-Friedrich-Lax-Wendroff methods were compared for one-dimensional 
compressible flows of a Van der Waals gas. All methods were evaluated regarding their accuracy for given 
mesh sizes and their computational cost for a given solution accuracy. It was shown that, even though they 
require more floating points and indirect addressing operations per time step, for a given time interval for 
integration the second-order methods are less-time consuming than the first-order methods for a required 
accuracy. It was also shown that AUSM+ and VFRoe are the most accurate methods and that AUSM+ is 
much faster than the others, and is thus recommended for nonideal one-phase gas flows.  
Keywords: Hyperbolic conservation laws; Riemann solvers; Roe solver; VFRoe; AUSM+; Hybrid schemes; 
Real gases; Compressible flow. 

 
 
 

INTRODUCTION 
 

The simulation of compressible flows is 
important in many industrial applications and it is 
governed by the conservation of mass, momentum 
and energy and the associated constitutive equations, 
which are macroscopic relations such as an equation 
of state (EOS), which represents the behavior of the 
associated microscopic phenomena. These relations 
strongly affect the structure and dynamics of the 
waves in the flow. 

The conservation equations for advection-
dominated problems can be written as a set of 
hyperbolic equations whose solution for the flow 
variables may present large gradients or even 
discontinuities. Most of the existing commercial 
codes are based on very diffusive methods which 
may result in unrealistic solutions due to their failure 
at solving the flow wave field. On the other hand, 
there are several successful methods that account for 
the flow wave structure through a superposition of 
Riemann solutions. These are local solutions of the 
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hyperbolic equations, which are composed of 
elementary waves (Menikoff and Plhor, 1989). 

The set of hyperbolic conservation laws that 
models a transient one-dimensional compressible 
flow is usually written as 

 

0

u f (u) g(u)
t x

u(x,0) u (x)

∂ ∂
+ =

∂ ∂

=
               (1) 

 
where f (u)  is the physical flux and g(u)  represents 
a source/sink term, like friction loss. The linearized 
form of equation (1) is given by 
 

u u f (u)A(u) g(u), A(u)
t x u

∂ ∂ ∂
+ = =

∂ ∂ ∂
                         (2) 

 
where A  is the Jacobian matrix.  

Finite volume methods have proven their 
efficiency in solving hyperbolic initial-value 
problems. The most popular methods are based on 
the solution of the Riemann problem (RP) at the cell 
interfaces, which enables a very accurate estimate of 
the interface fluxes. The emergence of TVNI (total 
variation non-increasing, also popularly known as 
TVD, total variation diminishing) methods (Harten, 
1983) made the accurate capture of discontinuities 
possible. The pioneering method was that of 
Godunov (1959), which is based on the exact 
solution of the RP’s at the interfaces. Its advantage is 
the assurance of the density and pressure positivity, 
but its drawbacks are its high computer cost and the 
lack of generality due to its requirement of an 
analytical integration of the Riemann invariants. 
Therefore, approximate Riemann solvers (RS’s) have 
been proposed of which the most popular one is that 
of Roe (1981). Generalization of the Roe scheme is 
difficult because it is not always possible to 
analytically obtain the expressions necessary for the 
average state in which the Jacobian matrix must be 
evaluated. The average state must have the following 
properties: 

 
L RA(u ,u ) , diagonalizable with real eigenvalues    (3) 

 
R L L R R Lf (u ) f (u ) A(u ,u )(u u )− = −                    (4) 

 
However, the properties given by equations (3) 

and (4) are not sufficient to guarantee accurate 
results due to a violation of entropy law, which may 
result in negative values in the density and pressure 

fields. The condition given by equation                 
(4) is somewhat complex and it is sometimes 
impossible to enforce in several systems, such as 
complex turbulent models, two-phase models, 
reacting flows, etc. This has motivated the 
development of several alternatives to the original 
Roe scheme, such as VFRoe (Buffard et al., 2000), 
Advection Upstream Splitting Method (AUSM+) 
(Liou and Steffen, 1993; Liou, 1996) and hybrid 
methods such as the one proposed by De Vuyst 
(2004). These schemes are not more accurate than 
the popular TVD and ENO (Essentially Non-
Oscillatory, Harten et al., 1987) schemes, but they 
are suitable for general purpose solvers. 

As the ideal EOS is not able to represent 
nonclassical waves, many numerical methods were 
recently extended to real materials. Nonclassical 
wave phenomena are observed near the liquid-vapor 
saturation region or in phase-change flows. Under 
such conditions the fundamental derivative of gas 
dynamics, given by equation (5), becomes negative 
and the genuinely nonlinear character of the acoustic 
waves is lost (Guardone and Vigevano, 2002). The 
waves in those regions are called mixed or negative 
waves and the flow is said to be in the dense gas 
regime. 
  

12

2
P(s, ) P(s, )G(s, )

2

−
⎛ ⎞ς ∂ ς ∂ ς

ς = − ⎜ ⎟∂ς∂ς ⎝ ⎠
                              (5) 

 
In equation (5) s is the entropy and ς is the specific 
volume. According to thermodynamics, the term 

P∂ ∂ς  has to be negative for stability. Therefore, the 
negative sign of G(s,ς) is associated with nonconvex 
isentropes in the P-ς plane. The polytropic EOS is 
not able to describe these regions because it is 
convex everywhere (Menikoff and Plohr, 1989; 
Guardone and Vigevano, 2002). 

Exact RS’s for real gases were proposed by 
Collela and Glaz (1985), Saurel et al. (1994) and 
Quartapelle et al. (2003). However, the exact RS’s 
need to integrate the Riemann invariants along 
isentropes in order to satisfy simultaneously all jump 
conditions behind a shock wave, requiring a large 
amount of CPU time.  

A different approach based on finding a 
generalized Roe average state was taken by 
Grossman and Walters (1989), Glaister (1988), Liou 
et al. (1990), Vinokur and Montagné (1990), Abgrall 
(1991), Toumi (1992), Cox and Cinnella (1994) and 
Mottura et al. (1997). This average state includes the 
thermodynamics derivatives as additional variables 
and is responsible for the uniqueness of the average 
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state. However, as stated by Toumi (1992) and 
Guardone and Vigevano (2002), the average 
thermodynamics derivatives do not retain their exact 
significance, which could result in inconsistencies 
because they are employed to derive other 
thermodynamic quantities, such as the speed of 
sound. Guardone and Vigevano (2002) obtained the 
average state for the Roe solver for the Van der 
Waals EOS. As pointed out previously, this average 
state is valid just for this EOS and the problem of 
generalization of RS’s remains. 

Besides the entropy violation of the original Roe 
solver, the VFRoe scheme (Masella et al., 1999) has 
an additional one: it is not consistent with the 
integral form of the conservation laws (Buffard et al., 
2000). Buffard et al. (2000) extended the VFRoe 
scheme to nonconservative variables and compared 
the results to the original VFRoe scheme, analyzing 
the convergence rate for different time formulations. 
The authors also applied the first-order version to the 
Van der Waals EOS, but not the second-order 
extension. In the present work, the method was 
extended to achieve second-order and was applied to 
the Buffard et al. (2000) example, whose solution 
showed some numerical oscillations. 

The Advection Upstream Splitting Method 
(AUSM+) for systems of hyperbolic conservation 
laws was proposed by Liou and Steffen (1993) and 
Liou (1996). It does not require the evaluation of the 
Jacobian of the flux, allowing easy generalization to 
arbitrary EOS. Besides, the method presents a low 
computational cost and high accuracy in the capture 
of contact discontinuities and it preserves the 
positivity of pressure and density. Therefore, 
AUSM+ is suitable for real gas flows. However, 
density-based solvers experience stiffness problems 
and a loss of accuracy for low Mach number flows. 
In these cases, AUSM+ behaves more like a central 
difference discretization, which may result in odd-
even decoupling, and it is necessary to couple 
velocity and pressure (Liou and Edwards, 1999). The 
larger the difference between the speed of sound and 
the velocity, the stronger the odd-even decoupling 
effect is.  

It is well known that the first-order schemes tend 
to present numerical diffusion, while the second-
order schemes tend to have oscillations near high-
gradient regions. De Vuyst (2004) presented a novel 
hybrid method. The idea of this method (called 
HLFW) is to evaluate the flux with a weighted 
combination of first-order Lax-Friedrichs and 
second-order Lax-Wendroff schemes.  

This paper is organized as follows: section 2 is a 
short presentation of the basic concepts of 
Godunov’s method and the RS’s of Roe (1981), 

Harten (1983) and the MUSCL (Monotone 
Upstream-Centered Scheme for Conservation Laws) 
strategy of Van Leer (1977, 1979). In section 3, the 
AUSM+ and Hybrid Lax-Friedrich-Lax-Wendroff 
(HLFW) methods, which do not use any RS, are 
presented. In section 4, the application of these 
methods to ideal and real gas flows is described and 
the results compared. The RS methods were applied 
to ideal gas flows and those methods which do not 
require any RS were applied to Van der Walls gases. 
The methods are compared in terms of accuracy for a 
given mesh size and in respect to FLOP’s (floating-
point operations), IA’s (indirect addressings) and 
CPU time, adopting different meshes for each 
method which result in similar accuracy in the 
solution.  
 
 

FINITE VOLUME DISCRETIZATION, THE 
GODUNOV SCHEME AND RIEMANN 

SOLVERS 
 

Considering a uniform mesh where 
j 1 2 j 1 2x x x+ −Δ = − , the finite volume solution of the 

system given by equation (1) for g(u) 0=  is written as 
 

( ) ( ){ }n 1 n n n n n n n
j 1/ 2 j 1/ 2j j j j 1 j 1 ju u F u ,u F u ,u+
+ −+ −= − ε −  (6) 

 
where n

j 1/ 2F +  is the numerical flux evaluated at the 
interface j+1/2 and t xε = Δ Δ . The numerical flux 
must be consistent with the physical flux, i.e., 
F(u,u) f (u)= . 

The idea proposed by Godunov (1959) is to solve 
an RP with n

L ju u=  and n
R j 1u u +=  at the cell 

interfaces. These local RP’s are solved exactly to 
give ( )n n

exact j 1 ju x t ;u ,u , j−Δ ∀ , where j 1 2x x x −= − . 

The n 1
ju + is then calculated by 

 

( )
( )

n n n
j 1/ 2 exact j j 1

n 1 n
j j

n n n
j 1/ 2 exact j 1 j

F u 0;u ,u
u u

F u 0;u ,u

+ +
+

− −

⎧ ⎫⎡ ⎤ −⎪ ⎪⎣ ⎦⎪ ⎪= − ε⎨ ⎬
⎪ ⎪⎡ ⎤−

⎣ ⎦⎪ ⎪⎩ ⎭

    (7) 

 
However, this method is not attractive due to the 
computational cost of the exact solution of the RP. 

Roe (1981) proposed the use of the solution of the 
linearized local RP: 
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L R

L

R

u uA(u ,u ) 0
t x

u   if  x 0
u(x,0)

u   if  x 0

∂ ∂
+ =

∂ ∂

<⎧
= ⎨ >⎩

�
                                             (8) 

 

where L RA(u ,u )�  satisfies equations (3) and                   
(4). The relation given by equation (4) is called 
Roe’s condition, which is consistent with the integral 
form of conservation laws. However, Roe’s solution 
may violate the entropy condition, also giving 
negative values of pressure and density. Harten 
(1983) introduced a class of second-order schemes 
which satisfy the entropy condition. Thereafter, 
Harten and Hyman (1983) proposed an entropy 
correction for Roe’s solver. Other common schemes 
could be found in Harten (1983) and Toro (1999). 
One of these variants, the Roe-Pike method (Toro, 
1999), will be compared to Harten’s ULT1 method 
(Harten, 1983) in the present work. 

The final expression for numerical flux in Roe’s 
and Harten’s methods is 
 

m
k1 k

j 1/ 2i 1/ 2 i i 1 j 1/ 2
k 1

1F F F R
2

−
++ + +

=

⎡ ⎤
= + − ε β⎢ ⎥

⎢ ⎥⎣ ⎦
∑ � �               (9) 

 

where kR�  are the eigenvectors of L RA(u ,u )� ; 

( )km dim R= � ; Fi and Fi+1 are the fluxes evaluated at 

ui and ui+1, respectively; k k k
j 1/ 2 j 1/ 2 i 1/ 2+ + +β = υ α� � �  for the 

first-order Roe scheme and 

( )k k k k k k k
j 1/ 2 j 1/ 2 j 1/ 2 i 1/ 2 j j 1Q ( )+ + + + +β = υ +Ω α − +� �� �� � = =  for 

the second-order Harten ULT1 scheme; 
k k
j 1/ 2 j 1/ 2+ +υ = ελ�� , with k

2/1j
~

+λ  being the eigenvalues 

of L RA(u ,u )� ; and k
j 1/ 2+α�  is the kth component of 

the wave strength, i 1/ 2 u+Δ ,  in the k
i 1/ 2R +
�  

coordinate system: 
 

kk
i 1/ 2 i 1/ 2 i 1/ 2i 1 i

k

u u u R  + + ++Δ ≡ − = α∑ ��             (10) 

 
Q is the viscosity function which defines the amount 
of numerical viscosity. It was defined by Harten 
(1983) as a small perturbation of the absolute value 
function given by ( )Q x x for x 2= ≥ ζ , and 

( ) ( )2Q x x 4 for x 2= ζ + ζ < ζ , where ζ is a small 

positive number. The remaining terms in Harten’s 
flux definition are as follows: 
 

k k k
j j 1/ 2 j 1/ 2

k k
j 1/ 2 j 1/ 2

k k k k 2 k
j 1/ 2 j 1/ 2 j 1/ 2 j 1/ 2

k k k k
k j 1 j j 1/ 2 j 1/ 2
j 1/ 2 k

j 1/ 2

sign( )max[0,min(| |,

sign( ))]

0.5 Q ( ) ( )

( ) / , 0
0, 0

+ +

− +

+ + + +

+ + +
+

+

=

⎡ ⎤= υ − υ α⎣ ⎦

⎧ − α α ≠⎪Ω = ⎨ α =⎪⎩

� � �= = =

� �= =

� � � �=

� � � �= =�
�

       (11)   

 
For the solution based on Roe’s scheme, the average 

state in which the Jacobian matrix is evaluated must be 
determined. The A�  derivation is precisely the most 
important drawback of Roe’s scheme due to the 
difficulty of its generalization to other EOS’s.  

The Harten-Hyman entropy correction (Harten 
and Hyman, 1983) is applied to transonic rarefaction 
waves in the Roe-Pike method. First, the eigenvalues 
(λL < 0 < λR) are examined in order to detect the 
existence of a transonic rarefaction wave. Then the 
fluxes and the intermediate states are modified (see 
Toro, 1999 for details). 

The VFRoe scheme uses an average state 
different from Roe’s average state with the drawback 
of lack of conservation. However, Buffard et al. 
(2000) proved its accuracy for the flow of ideal and 
real gases and for two-phase flows. The simplest 
average is the arithmetic mean, which was used here. 
The remaining steps of the method are the same as 
those in the original Roe method.  

The methods presented were extended to the 
second-order in accordance with Van Leer’s (1977, 
1979) MUSCL method, later modified by Van Leer 
(1985) (MUSCL-Hancock). The first step is called 
data reconstruction and consists of changing the u 
value as follows: 

 
L

ii i

R
ii i

U u / 2

U u / 2

= − Δ

= + Δ
                                                      (12) 

 
The second step is the evolution step given by 
 

L L L R
i i i i

R R L R
i i i i

U U F(U ) F(U )
2

U U F(U ) F(U )
2

ε ⎡ ⎤= + −⎣ ⎦

ε ⎡ ⎤= + −⎣ ⎦

       (13)  

 
The last step is the application of the first-order 
method with the solution of the RP at the "i+1/2" 
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face with the values 
R
iU y  and 

L
i 1U +  as left and right 

values, respectively. The TVD version is obtained by 
setting the iΔ  values as follows: 
 

i 1/ 2 i 1/ 2

i 1/ 2 i 1/ 2 i 1/ 2
i

i 1/ 2 i 1/ 2

i 1/ 2 i 1/ 2 i 1/ 2

i 1/ 2 i 1/ 2i i 1 i 1 i

max[0,min( , ),

min( , )], 0

min[0,max( , ),

max( , )], 0

u u ,    u u

− +

− + +

− +

− + +

− +− +

ΓΔ Δ⎧
⎪
⎪ Δ ΓΔ Δ >⎪Δ = ⎨

ΓΔ Δ⎪
⎪
⎪ Δ ΓΔ Δ <⎩

Δ = − Δ = −
                 (14) 

 
where Γ = 1 and 2 results in the MINMOD 
(MINBEE) and SUPERBEE schemes, respectively. 

 
 

THE AUSM+ AND THE HYBRID LAX-
FRIEDRICH-LAX-WENDROFF METHODS 

 
AUSM+ is as accurate as the flux-splitting 

methods of Roe (1981) without wave decomposition, 
result in a large reduction in CPU time consumption 
and making the formulation simple and quite 
general. AUSM+ is able to solve the contact 
discontinuities exactly, which is suitable for viscous 
flow calculations. In the case of one-phase flow, the 
system given by equation (1) is valid with 
u=[ρ,ρv,E]t and f=[ρv, ρv2+P,v(E+P)]t. In this case 
the AUSM+ flux can be obtained from the following 
expression where the pressure and mass flux parts 
are separated: 
 

AUSM
j 1/ 2

t t

F (u) m P

[1;v ;H ] ;   P [0;p ;0]  

∗ ∗∗
+

∗ ∗∗ ∗ ∗

= Ψ +

Ψ = =

�
                       (15) 

 

where the following upwind formulae based on m∗�  
sign is used to compute ∗Ψ : 
 

L R

L R

m m (u ) (u )

0.5 m (u ) (u )

∗∗ ∗

∗

Ψ = Ψ +Ψ +⎡ ⎤⎣ ⎦

+ Ψ −Ψ⎡ ⎤⎣ ⎦

� �

�
                         (16) 

 
using the m∗�  value obtained by the following steps: 
 
(i) Evaluation of left and right Mach numbers, 
calculated using a mean sound speed at the interface:  
 

L R L,R L,Rc c c , M v / c∗ ∗= =        (17) 
 
(ii) Then the interface pressure is calculated by 
averaging the left and right pressures: 
 

L L R Rp (M )p (M )p∗ + −=℘ +℘                             (18) 
 
where ±℘  are consistent, differentiable and 
symmetric polynomial functions. 
 
(iii) the interface Mach number is calculated as a 
polynomial function of the Mach numbers given in 
the first step: 
 

L RM (M ) (M )∗ + −= μ + μ                                       (19) 
 
(iv) Finally, giving the mass flux as follows: 
 

L Rm 0.5c (M | M |) (M | M |)∗ ∗ ∗ ∗ ∗ ∗⎡ ⎤= ρ + + ρ −⎣ ⎦    (20) 

 
 
The original AUSM+ polynomials are 

 

1M (M) (M | M |) / 2± = ±                               (21) 
 

1
2 2

M (M),             if |M| 1
M (M)

(M 1) / 4,      otherwise

±
± ⎧ ≥⎪= ⎨

± ±⎪⎩
                                                      (22) 

 

1

2 AUSM 2

M (M),                                              if |M| 1
(M)

M (M) 1 16B M (M) ,      otherwise

±
±

±

⎧ ≥⎪μ = ⎨ ⎡ ⎤⎪ ⎣ ⎦⎩
∓∓

                       (23) 

 

1

2 AUSM 2

M (M) / M,                                                        if |M| 1
(M)

M (M) 2 M 16A M M (M) ,      otherwise

±
±

±

⎧ ≥⎪℘ = ⎨ ⎡ ⎤± −⎪ ⎣ ⎦⎩
∓∓

                 (24) 
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where AAUSM = 3/16 and BAUSM = 1/8. AUSM+ 
suffers of odd-even decoupling for low Mach 
numbers, thereby losing accuracy. This is 
particularly important for liquid flows, where the of 
sound speed is three orders of magnitude higher than 
the velocity. In the examples studied in this paper, no 
strategy to deal with odd-even decoupling was 
necessary.  

De Vuyst (2004) proposed a novel approach for 
numerical solution of hyperbolic systems using a 
hybrid method that combines first- and second-
order numerical fluxes. The author presented the 
basis for generalizing the calculation of the 
optimal weighting of such fluxes. The weight is 
calculated from a proposed concept of local 
dissipation by a convexity function which differs 
from the traditional entropy dissipation functions 
because it does not need an entropy flux 
expression and allows some relaxation of the 
entropy inequality (e.g. entropy violation). De 
Vuyst (2004) used the Lax-Wendroff  and the Lax-
Friedrichs fluxes. The Lax-Wendroff flux with a 
relaxation parameter χ can be written as 

 

( )

( ) ( )

LW
j 1/ 2 L Rj j 1

R Lj j 1 j j 1

F (u ,u , ) 0.5 f f

f (u ,u ) (f f ) f (u ,u )
2

+ +

+ +

χ = + −

ε ⎡ ⎤− ϕ + χ − − ϕ⎣ ⎦χ

(25) 

 

where L jf f (u )= , R j 1f f (u )+=  and  ϕ  is a consistent 

mean state function, (u,u) uϕ = . In the present work, 
constant value of χ = -10-2 and (u,v) 0.5(u v)ϕ = +  
were used. The modified Lax-Friedrichs numerical flux 
is given by 
 

( ) ( )MLF
j 1/ 2 L Rj j 1 j 1 j

1F (u ,u ) 0.5 f f u u
4+ + += + − −
ε

       (26) 
 
Then the weighted flux at tn is given by 
 

n n n LF n nn
j 1/ 2j 1/ 2 j 1/ 2j j 1 j j 1

LW n nn
j 1/ 2 j 1/ 2 j j 1

F (u ,u ) F (u ,u )

(1 )F (u ,u , )

++ ++ +

+ + +

= θ +

+ − θ χ
   (27) 

 

where the weighting factor, n n n
j 1/ 2 j j 1max( , )+ +θ = θ θ , 

depends upon the dissipation function, η, which is 
defined as 

( )

n 1 n n n n n n n n n n nn 1 n
j j j j 1/ 2 j 1/ 2 jj j j 1 j j j 1j 1/ 2 j 1/ 2

n n n n n n n n n2
uj j j j 1 j j 1 j 1 jj 1/ 2

( ) S(u ) S(u ) (u ,u ) f F  (u ,u ) F f

S(u ) || u || / 2, (u ,u ) S (u u ) / 2 (u u ) / 2

++
− +− +− +

+ + ++

⎧ ⎫⎡ ⎤ ⎡ ⎤η θ = − + ε − + −⎨ ⎬⎣ ⎦ ⎣ ⎦⎩ ⎭

= = ∇ + = +

� �

�
               (28) 

 
which, in turn, depends on the numerical flux given by 
equation (27) and on the final updated field, n 1

ju + . The 
method was implemented by the algorithm suggested by 
De Vuyst (2004) to achieve η ≤ 0, which calculates n

jθ  

as the smallest values that make n 1
j
+η  negative. Let  

n
j 0Δθ >  be a small increment and build the sequences 

{ }n,q
jθ  as follows: let q = 0 and n,.0

j 0θ =  and 
 

while ( ) ξ>θη + qn
j

n
j

,1  and  1, ≤θ qn
j   do   

 
n,q 1 n,q n

jj j
+θ = θ + Δθ  

 
q q 1= +  
 

n,qn n n n
j j 1/ 2 j j 1jset  and calculate max( , )+ +θ = θ θ = θ θ  

 
evaluate the numerical flux, Eq.(27)  
 
calculate the updated field, Eq. (6)  

n,qn 1
j jevaluate ( )+η θ  

 
end while 
where ξ is a small positive number. A Newton-
Raphson-like algorithm could reduce CPU demand.  

In order to make fair comparisons, and since the 
HLFW method is second-order accurate, AUSM+ 
method was extended to second-order accuracy using the 
same MUSCL-Hancock strategy (MUSCL AUSM+) as 
that applied to the VFRoe (MUSCL VFRoe) scheme. 
 
 

NUMERICAL RESULTS 
 
Application to Ideal and Real Gases 
 

For one-dimensional compressible flow, the 
system given by equation (1) is valid with  
 

t 2 tu [ , v,E] , f (u) [ v, v P,v(E P)] = ρ ρ = ρ ρ + +        (29) 
 
where ρ is the density, v is the velocity, P is the 
pressure and E is the total energy. This system of 
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equations must be completed by an EOS. For an 
ideal gas, the following relations hold: 
 
e P /( 1) , c P /= γ − ρ = γ ρ         (30) 
 
where c is the speed of sound and γ is the ratio of the 
specific heats (γ = Cp/Cv). The Jacobian matrix is as 
follows: 
 

( )

2

2 2

0 1 0

A 0.5( 3)v (3 )v ( 1)

v 0.5( 1)v H H 1 v v

⎡ ⎤
⎢ ⎥
⎢ ⎥= − γ − − γ γ −⎢ ⎥
⎢ ⎥⎡ ⎤γ − − − γ − γ⎢ ⎥⎣ ⎦⎣ ⎦

  (31) 

 
where ( )H E P /= + ρ  is the total enthalpy. Finally, 
the eigenvectors and eigenvalues are 
 

1 2t 2 t

3 t

1 2 3

R [1, v c,H vc] , R [1, v,0.5v ] ,

R [1,v c,H vc]

v c, v, v c

= − − =

= + +

λ = − λ = λ = +

        (32) 

 

Therefore, the solution is composed of three 
waves with velocities λ1, λ2 and λ3. The second wave 
is a contact discontinuity associated with a linear 
degenerated field (∇λ2⋅R2 = 0). The other wave fields 
are genuinely nonlinear rarefaction and shock waves 
(∇λi⋅Ri≠0, i = 1,3). 

The Roe-Pike average state for this case is as 
follows: 
 

R Lρ = ρ ρ�  

( ) ( )R R L L R Lv v v= ρ + ρ ρ + ρ�                    (33) 

( ) ( )R R L L R LH H H= ρ + ρ ρ + ρ�   

 
from which the eigenvectors, eigenvalues and wave 
strengths (Eqs. 10 and 32) can be calculated. 

The Van der Waals EOS is expressed as follows: 
 

( )( ) 12 2P(E, ) E a 1 b a−ρ = δ + ρ − ρ − ρ                        (34) 

 
The corresponding Jacobian matrix is given by 
(Guardone and Vigevano, 2002): 

 

{ } [ ] [ ]

2 2
m E

1 1 1
m E

0 1 0

A m / (w) 2m / (w) (w)

m E (w) (w) E (w) m (w) m 1 (w)
ρ

− − −
ρ

⎡ ⎤
⎢ ⎥

= − ρ +Π ρ +Π Π⎢ ⎥
⎢ ⎥

⎡ ⎤ρ − +Π +Π ρ +Π + Π ρ +Π⎢ ⎥⎣ ⎦⎣ ⎦

                                              (35) 

 
 
where m=ρv and 
 

( )

2

E E2

1 2
m E

P(E, ) P(E, ) m,
e

m , P E m 2 ,

ρ

−

∂ ρ ∂ ρ
= Π = Π − Π

∂ ∂ρ ρ

Π = − ρ Π Π = − ρ ρ
                (36) 

 
The treatment of the boundary conditions is 

described in detail in the Appendix. 
 
Comparison of the Methods 
 

In our comparative study, two approaches were 
used. First, the accuracy of the methods was 
compared for a given mesh. Then, different meshes 
were used for different methods in order to have 
results with approximately the same accuracy. 
Finally, the methods were compared with respect to 
FLOPs, IA’s and CPU time costs. This is important 
because the less accurate methods could be used with 

a refined mesh to give approximately the same 
results as the more accurate methods. These refined 
meshes require more CPU time than the coarse 
meshes. However, it is not clear if the increase in 
CPU time due to a refined mesh is compensated for 
by the smaller computational cost per step for the 
first-order accurate methods. The answer is bound to 
be method- and scheme-dependent. Some examples 
solved in this work are fictitious test problems 
obtained from the literature where the variable units 
were not specified. For the remaining cases the units 
are specified in the text. For ideal gas flow, a shock 
tube problem and the isothermal pipeline shutting-in 
test were employed. 
 
a)  Shock Tube Ideal Gas Flow  
 

Figure 1 shows the comparison between the 
solutions obtained for the modified Sod’s shock tube 
problem (Toro, 1999) for a 50-cell mesh, using the 
Roe-Pike method with the Harten-Hyman entropy 
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correction, the Harten method and both with two 
flux-limited (MINMOD and SUPERBEE) MUSCL 
reconstruction schemes applied to the Roe-Pike 
method. The exact solution, obtained using the HE-
E1RPEX routine of the NUMERICA library (Toro, 
1999), is also shown in Fig. 1. The initial values for 
density, pressure and velocity are (1, 1, 0.75) if x < 
0.3 and (0.125, 0.1, 0) otherwise. These figures show 
that the two second-order MUSCL schemes give 
much better results than the first-order methods. 
Although not shown, it was verified that accuracy 

similar to that of the MUSCL results could be 
obtained with the Roe-Pike and Harten methods 
when meshes with four times more cells were used. 

Figure 1 shows that the MUSCL SUPERBEE 
scheme gives the best solution for this test case, but 
followed closely by the MUSCL MINMOD scheme.  
In order of decreasing accuracy, they are followed by 
the Harten and Roe-Pike methods. It can be seen that 
SUPERBEE presented small errors on the rarefaction 
wave front, but higher peaks and some oscillation on 
its tail. 

 

(a) 
 

(b) 

(c) (d) 

Figure 1: A comparison between the results of the Roe-Pike with entropy correction, Harten, and two 
(MINMOD and SUPERBEE) Roe-Pike MUSCL schemes for a 50-cell mesh (at t = 0.2 s). 

 
 
b) Ideal Gas Flow During Isothermal Pipeline 
Shutting-In   
 

Consider now the pipeline shutting-in problem, 
where the friction loss is represented by 

2g(u) l v / 2D= ρ . Initially, a pipeline 100 m long was 
filled with a stagnant ideal gas and, at t = 0, a 70 

kg/m2s mass flux was imposed at the pipe inlet. 
When the steady state solution is obtained from a 
transient simulation, as in the present work, there is a 
cumulative error in the solution due to mass losses. 
Using the || un+1-un || < 10-10 criterion for assuming 
that the steady-state had been reached, The mean 
residues for each method based on the exact solution, 
which is the constant imposed mass flux, are 
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presented in. One can observe that the Roe-Pike and 
Harten schemes achieve results with a similar 
accuracy. The Roe-Pike scheme required about 1000 
cells to achieve accuracy similar to that of the results 
of the two MUSCL schemes for a 400-cell mesh. 

Figure 2 shows the simulation results at t = 0.1 s. 
Similarly to the shock tube problem, the Roe-Pike and 
Harten methods achieved accuracy comparable to that 
of the results obtained using the two MUSCL schemes 
when a mesh with four times more cells was used. 

 
Table 1: Mean values of the mass balance residues. 

 
 nc

j
i 1

1 m
nc

=

Δ∑  

Method \ nc 400 1000 
Roe-Pike 3.8 × 10-6 6.1 × 10-7 
Harten 3.8 × 10-6 6.1 × 10-7 
MUSCL MINMOD 6.2 × 10-7 1.0 × 10-8 
MUSCL SUPERBEE 6.1 × 10-7 6.0 × 10-8 

 
 

(a) (b) 
Figure 2: The pipeline shutting-in problem: results using Roe-Pike with entropy correction, Harten and two 

(MINMOD and SUPERBEE) Roe-Pike MUSCL schemes (at t = 0.1 s). 
 
The only difference in the Roe-Pike and Harten 

methods regarding FLOP’s and IA’s lies in the β 
evaluation in accordance with equation (9), and the 
difference between these methods and the MUSCL 
schemes is due to both β and data reconstruction 
steps in accordance with equations (12), (13) and 
(14).  Table 2 compares the numbers of IA’s and 
FLOP’s of these steps for each scheme. One should 
keep in mind that some conditional “if” operations 
can increase the CPU demand of the MUSCL 
schemes result in higher CPU times than those 
expected from Table 2. It is important to count the 
FLOP’s and IA’s as a function of the number of 
variables to be solved for and the number of time 
steps required for a given CFL number because they 
depend upon the problem. As shown previously, the 
Roe-Pike and Harten schemes require four times 
more cells to achieve accuracy comparable to that of 
the MUSCL MINMOD or SUPERBEE schemes at 
the time instant analyzed. Moreover, for a given CFL 

number and accuracy, the MUSCL schemes can use 
larger time steps because Δx is also larger. 
Furthermore, if the calculation is performed until the 
steady state is reached, the number of cells required 
by the Roe-Pike and Harten schemes for a given 
accuracy increases due to error accumulation during 
time integration. 

Table 2 also shows a comparison of the FLOP’s 
and IA’s required by each scheme to achieve the 
steady-state solution for the pipeline shutting-in 
problem (nv = 2) for a given accuracy. If the same 
number of time steps were performed for all 
schemes, the MUSCL number of FLOP’s for a 400-
cell mesh would be slightly smaller (40%) than those 
for the Roe-Pike and Harten schemes for the 3200-
cell meshes. However, the possibility of larger time 
steps decreases the FLOP’s in the MUSCL scheme 
much more than those in to the Roe-Pike and Harten 
schemes, showing the importance of the second-
order extension of these methods. 
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Table 2: Comparison of IA’s and FLOP’s in the β evaluation and data reconstruction steps and CPU 
times (in a PENTIUM III 933Mhz computer) for the pipeline shutting-in problem. 

 
 Roe-Pike Harten MUSCL 

  β evaluation β evaluation β and reconstruction 
evaluations 

IA’s 2 nv nc ns 11 nv (nc + 1) ns 10 nv (nc + 1) ns 
FLOP’s (2 nv + 2 nv2) nc ns (17 nv +2 nv2) (nc+1) ns 28 nv (nc + 1) ns 
 Totals for a given mesh and number of time steps for test case 2 
nc, ns 3200, 800000 3200, 800000 400, 100000 
IA’s 1.02×1010 5.63×1010 8.02×108 
FLOP’s 3.07×1010 1.08×1011 2.25×109 
CPU time (s) 11263 13111 188 

 
 
c)  Real Gases 
 

The MUSCL AUSM+, HLFW and MUSCL 
VFRoe methods were compared in terms of accuracy 
and computational cost for three flow test cases of 
Van der Waals gases found in the literature. The 
MINMOD limiter was adopted for the MUSCL 
scheme because the SUPERBEE limiter presented 
undesired oscillations near discontinuities. Test cases 
1, 2 and 3 are shock tube problems defined as a RP 
with vector (ρ, v, P) given for the left and right 
states. The left and right states are Lu = (100 kg/m3, 

0 m/s, 115931328.765 Pa) and Ru = (10 kg/m3, 0 
m/s, 6935545.80532 Pa) for test case 1 (Saurel, 
1994), Lu = (250, 0, 35966778) and Ru = (166.6, 0, 
27114795) for test case 2 (Buffard et al., 2000) and 

Lu = (1.818, 0, 3) and Ru = (0.275, 0, 0.575) for test 
case 3 (Guardone, 2002). Additional data for the 
EOS are defined by the parameter vector (a, b, δ) 
which is given by (0.138, 3.258×10-5, 0.4), (1684.54, 
1.692×10-3, 0.3292) and (3, 0.333, 1.25×10-2) for test 
cases 1, 2 and 3, respectively. 

Figures 3, 4 and 5 compare the HLFW, MUSCL 
VFRoe and MUSCL AUSM+ results for test cases 1, 
2 and 3, respectively. A 200-cell mesh was used with 
all methods, whose results can also be compared to 
those obtained with MUSCL AUSM+ using a 2000-
cell mesh. Since our aim is to compare the accuracy 
and CPU cost of these methods, the plots show only 
the regions where the differences between the results 
are largest. The complete solution can be found in 
the original references. 

 
 
 

 
(a) (b) 
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(c) (d) 

Figure 3: A comparison of the MUSCL VFRoe, MUSCL AUSM+  
and HLFLW methods for test case 1 (at t = 8.10-5 s). 

 
 

(a) (b) 

(c) (d)  
 

Figure 4: A comparison of the MUSCL VFRoe, MUSCL AUSM+  
and HLFLW methods for test case 2 (at t = 0.2 s). 
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(a) (b) 

(c) (d)  

 

Figure 5: A comparison of the MUSCL VFRoe, MUSCL AUSM+  
and HLFLW methods for test case 3 (at t = 0.15 s). 

 
For test case 1, the MUSCL VFRoe solution 

presented large deviations for v and E. It wrongly 
predicted the wave amplitudes, keeping these 
deviations in the two adjacent constant value regions. 
For all variables except ρ, the HLFW results are only 
a little worse than the MUSCL AUSM+ results. For 
ρ, the HLFW method provided a poor prediction of 
the contact discontinuity of about x = 0.29. As can be 
seen in Figure 3, the MUSCL AUSM+ results were 
the best for this test case. 

For test case 2, the MUSCL AUSM+ and 
MUSCL VFRoe results showed some numerical 
oscillations near discontinuities, with the AUSM+ 
oscillations being smaller but having higher 
frequencies. Strange oscillations were observed for 

the MUSCL AUSM+ and MUSCL VFRoe solutions 
in the region 250 < x < 300. It was found that these 
oscillations were produced by the MUSCL strategy, 
as they disappeared when it was turned off, which 
also increased the numerical diffusion as both 
methods become first-order accurate. The 
SUPERBEE MUSCL schemes were also tested, but 
their oscillations were even larger. Although applied 
to other cases, the second-order MUSCL strategy 
was not used by Buffard et al. (2000) for the VFRoe 
solution of test case 2, maybe due to these numerical 
oscillations. For this test case, all three methods gave 
good results, with the MUSCL AUSM+ results being 
somewhat better. However, the HLFW method 
presented less oscillatory behavior. 
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In test case 3, for the HLFW method there was a 
discontinuity in the central part of the rarefaction 
wave (x ≈ 0.5) due to entropy violation. It also 
showed large errors in the mixed wave region (x ≈ 
0.55-0.75). Numerical oscillations in the 
discontinuities similar to those observed in test case 
2 also appeared in the MUSCL VFRoe solution, 
whereas there were no such oscillations for the 
MUSCL AUSM+ numerical solution, which, as can 
be seen in Figure 5, presented more numerical 
diffusion than MUSCL VFRoe. 

The accuracies of all schemes were evaluated by 
comparison to the solution for a 2000-cell mesh, for 
which the MUSCL AUSM+ and MUSCL VFRoe 
methods obtain the same results. Table 3 contains the 
mean and maximum value of velocity, density and 
energy absolute deviations for the solutions of test 
case 3 by all three methods. The MUSCL VFRoe 
and AUSM+ schemes presented comparable 
accuracies for a given mesh, but the MUSCL 
AUSM+ results were slightly better but with more 
oscillations than the MUSCL VFRoe results. 
However, the MUSCL AUSM+ results presented 
more numerical diffusion with larger errors than the 
MUSCL VFRoe results in the shock wave region, as 
can be seen in Figure 5. These regions make the 
maximum deviations for the MUSCL AUSM+ larger 
than those for MUSCL VFRoe results, except for 
density. However, in a wide region near x = 0.5, the 
MUSCL VFRoe results presented larger residues 
than the MUSCL AUSM+ results. This region makes 
the values of mean deviations for velocity and 
energy larger for the MUSCL VFRoe solution. The 
HLFW scheme was less accurate than the MUSCL 
VFRoe and AUSM+ methods. Its results presented 

more numerical diffusion than the MUSCL VFRoe 
results but less oscillation than the MUSCL AUSM+ 
solution. However, the HLFW method presented 
large deviation in the regions of mixed waves and 
contact discontinuities.  
 In Figure 6 the fundamental derivative for test 
cases 1, 2 and 3 are presented. For test case 3, 
where the fundamental derivative presents a sign 
change result in mixed waves, the MUSCL AUSM+ 
and MUSCL VFRoe schemes were able to follow 
the density elevation near x = 0.7. However, the 
HLFW solution shows strong deviations in this 
region. 

In order to compare the CPU time, test case 3 was 
considered. For refined meshes the methods tends to 
achieve the same accuracy. In order to compare the 
methods for a given accuracy, the MUSCL AUSM+ 
solution using a 200-cell mesh was considered and 
the meshes for the MUSCL VFRoe and HLFW 
methods were increased to 230 and 700 cells, 
respectively. The results for CPU times relative to 
that spent by MUSCL AUSM+ in the 200-cell mesh 
are shown in Table 3 for these meshes and for a 
5000-cell mesh. For the given refined mesh, where 
there is no difference in the results, the HLFW 
method required 5.6 times more CPU time than the 
MUSCL AUSM+ method, but it was more than 
twice as fast as the MUSCL VFRoe method. 
However, for the meshes with a similar accuracy, 
MUSCL AUSM+ is tremendously faster than the 
other methods and MUSCL VFRoe became about 
nine times faster than HLFW. This kind of 
comparison is important because only small meshes 
are usually practical for a long time integration in 
multidimensional problems. 

 
 

Table 3: Absolute deviations and relative CPU time for test case 3 with CFL = 0.1. 
 

 Results for 100, 200 and 500 cells 
Deviations MUSCL VFRoe MUSCL AUSM+ HLFW 
mean ρ 0.029; 0.015; 0.006 0.017; 0.009; 0.004 0;053; 0.035; 0.017 
max. ρ 0.39; 0.32; 0.26 0.28; 0.24; 0.22 0.39; 0.40; 0.40 
mean v 0.032; 0.016; 0.006 0.027; 0.013; 0.006 0.07; 0.04; 0.017 
max. v 0.65; 0.58; 0.52 0.78; 0.72; 0.68 0.91; 0.93; 0.91 
mean E 5.6; 2.8; 1.2 5.3; 2.6; 1.2 11.5; 7.5; 3.5 
max. E 70; 62; 57 79; 70; 65 86; 87; 86 
 Meshes with comparable accuracy | fine mesh 
nc 230 | 5000 200 | 5000 700 | 5000 
Relative CPU time 17.6 | 9153 1 | 667 159.8 | 3740  
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Figure 6: The fundamental derivative for cases 1 to 3 (MUSCL VFRoe, 500 cells, at the time instants 

corresponding to the results shown in Figures 3, 4 and 5). 
 
 

CONCLUSIONS 
 

Some Riemann solver-based methods were 
compared for two ideal gas flow problems. Due to 
the difficulty in application of Riemann solvers to 
real gases, three Riemann solver-free methods were 
compared for three real gas flow problems taken 
from the literature. The methods were compared not 
only for a given mesh, but the performance for a 
given accuracy with different meshes was also 
analyzed. This methodology allows the correct 
evaluation of the advantages of the MUSCL strategy 
for achieving second-order accuracy.  

Several issues were analyzed for the first time in the 
literature: the comparison of the recent proposed hybrid 
Lax-Friedrich-Lax-Wendroff (De Vuyst, 2004) method 
with the most popular hyperbolic solvers, the MUSCL 
second-order extension of the VFRoe method and the 
application of these methods to real gases flows. 
Besides, an accurate procedure for imposing the 
boundary condition when there are source terms was 
clearly presented and compared to common procedures 
in a pipeline shutting-in problem. 

The Riemann solvers of Roe-Pike, Harten and the 
MUSCL-Hancock MINMOD and SUPERBEE 
second-order extensions of the Roe-Pike method 
were compared for accuracy and CPU time cost 
using ideal gas flows in shock tube and pipeline 
shutting-in test problems. The CPU cost was also 
evaluated in terms of the number of discretization 
cells, time steps and variables. The results show that, 
although the MUSCL-Hancock second-order 
extension requires more FLOP’s for a given mesh 

and CFL number, it is faster than first-order methods 
because, for a given accuracy, it requires fewer cells 
and consequently allows larger time steps than the 
first-order methods. It was shown that the Roe-Pike 
solver with MUSCL-Hancock extensions are more 
accurate and faster than the original Roe-Pike and 
Harten methods. The SUPERBEE MUSCL scheme 
presented numerical oscillations near discontinuities 
common to second-order methods whereas the 
MINMOD MUSCL scheme did not.  

The hybrid Lax-Friedrich-Lax-Wendroff, VFRoe 
and AUSM+, the latter two in their MUSCL-
Hancock second-order extensions, were applied to 
real gases using the Van der Waals EOS. The 
accuracy and CPU cost of these methods were 
compared for three test cases. In one of the tests the 
MUSCL VFRoe and the hybrid method presented 
large errors due to entropy violation. The MUSCL 
AUSM+ and VFRoe schemes showed small 
oscillations near discontinuities for one of the test 
cases, also producing strange oscillations in two 
adjacent constant value regions. This was shown to 
be caused by the MUSCL second-order extension. 
The MUSCL AUSM+ scheme was always much 
faster than the others. The MUSCL VFRoe method 
was the slowest scheme for large meshes, but it was 
faster than the hybrid method for small meshes with 
comparable accuracies.  

Therefore, the AUSM+ scheme is generally 
recommended for compressible gas-phase flow 
problems, although caution must be taken in the use 
of its MUSCL extension due to strange nonphysical 
oscillations for some real gas flows. 
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NOMENCLATURE 
 
a parameter in Van der Waals EOS 
AAUSM auxiliary AUSM+ constant 
A   Jacobian matrix 
b  parameter in Van der Waals EOS 
BAUSM auxiliary AUSM+ constant 
c  speed of sound 
Cp specific heat at constant pressure 
Cv specific heat at constant volume 
D  diameter 
e  specific internal energy 
E  total energy per unit volume, 

( )2E 0.5u e= ρ +  

f   flux vector 
F  numeric flux vector 
g  nonhomogeneous vector in 

conservation equations 
G fundamental derivative 
�  auxiliary function in the HLFW 

method given in equation (28)  
h  specific enthalpy, h e p /= + ρ  
�= auxiliary function in the Harten 

method  
H total specific enthalpy, 2H 0.5u h= +  
l  friction factor 
m  mass flux 
M Mach number 
nc number of cells 
nv number of variables in u 
ns number of time steps 
P  pressure 

±℘  AUSM+ polynomials for pressure 
flux part 

Q  viscosity function 
R   right eigenvector of the Jacobian 

matrix 
ℜ universal gas constant 
s entropy 
S auxiliary variable in the Harten 

method in equation (11) 
t  time 
u vector of unknown variables 
v  velocity for one-dimensional flows 

exactu  local RP solution 
U   vector of initially modified variables 

in the MUSCL reconstruction  
U   vector of MUSCL reconstructed 

variables   
x   spatial coordinate 
x   local spatial coordinate 
w  vector of primitive variables 
 
Greek Symbols  
 
α  wave strength 
β
~

 auxiliary variable in the Roe-Pike and 
Harten methods 

γ  ratio of specific heats, γ = Cp/Cv 

Γ auxiliary variable in MUSCL data 
reconstruction 

δ  parameter in Van der Waals EOS, δ 
=ℜ/Cv  

Δ variation 
Δ  auxiliary variable in MUSCL data 

reconstruction 
ε  Δt/Δx ratio 
ζ  small parameter in viscosity function 

Q 
η dissipation function 
θ  weighting parameter in hybrid method
λ Jacobian matrix eigenvalue 

±μ  AUSM+ polynomials for mass flux 
part 

ξ small positive parameter in the HLFW 
method 

Π thermodynamics derivative defined in 
equation (36) 

ρ density 
υ~  auxiliary variable in the Roe-Pike and 

Harten methods 
ϕ mean state function 
χ relaxation parameter of Lax-Wendroff 

flux 
Ψ auxilary vector in AUSM+ method 
ς specific volume 
Ω auxiliary function in the Harten 

method 
 
Subscripts 
 
j   value at cell j 
j+1/2   value at xj+1/2 (cell face) 
L left state 
R   right state 
0 initial values 
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Superscripts 
 

AUSM related to the AUSM+ method 
LW  related to the Lax-Wendroff 

method 
LF  related to the Lax-Friedrich method 
MLF modified Lax-Friedrich method 
n  value at time instant n 
k related to the kth wave 
* variable modified by the AUSM+ 

method 
± related to different AUSM+ 

polynomials 
 
Overscripts 
 
~ evaluated at mean state 
 
Abbreviations 

AUSM advection upstream splitting 
method 

CFL Courant-Friedrich-Lewy number, 
CFL = Δt (c+max(v))/Δx 

CPU central processing unit 
EOS equation of state 
ENO essentially non-oscillatory 
FLOP floating point operation 
HLFW hybrid Lax-Friedrich Lax-Wendroff 

method 
IA indirect adressing 
MUSL monotone upstream-centered 

scheme for conservative laws 
RP Riemann problems 
RS Riemann solver 
TVD total variation diminishing 
TVNI total variation nonincreasing 
VFRoe Volume of Fluid Roe method 
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APPENDIX 
 

The boundary conditions are imposed at the inlet 
and outlet using the well-known ghost-cell approach, 
in which the first and last faces correspond to the 
domain limits and additional fictitious cells are 
outside the domain. The problem consists of how to 
determine the next time step values in the fictitious 
cells. In common shock problems the states in those 
cells are equal to those in the adjacent internal cells 
and there is no difficulty in imposing the boundary 
conditions. However, generally, as in pipeline flows, 
the fictitious state must be determined. For two-
phase flows, Masella et al. (1998) pointed out that 
the commonly used extrapolation from the internal 
values to the unknown variables could result in 
inconsistent results, making it necessary to take into 
account the source terms and the differential 
equations themselves. Usually, the outlet pressure 
and inlet mass flow rate and temperature are kept 
constant. Figure A1 shows an example of those 
boundary conditions for a pipeline with friction 
losses with the extrapolation of the pressure from the 
last internal cell to the fictitious cell. The figure is a 
result of the propagation of waves in a 100-meter 
pipeline during its shutting-in and a zoom was 
applied in order to improve visualization. One can 
observe the change in curvature in the x = 99.5 m 
region.  

The procedure used to impose the boundary 
conditions is based on the simultaneous solution of 
the discrete equations and the EOS using the known 
variable values at the boundaries. For the ideal gas 
isothermal one-dimensional flow with friction, the 
system of equations to be solved for the fictitious 
cell at the flow inlet with the specified mass flow 
rate is as follows: 

 
n 1 n n 1 2
0 0 0

n 1 n 1 n 1 2
0 0 1

n 2
n 1 n 1 n0
1 1 0n

0
n 1 2 n 1
0 0 0

m m [(m ) /

/ P (m ) /

t(m )/ P ] lsgn(m )
2D

P c /

+ +

+ + +

+ +

+ +

⎧ − = ε
⎪
⎪ ρ + −⎪⎪
⎨

Δ⎪ ρ − −⎪ ρ⎪
= ρ γ⎪⎩

                (A.1) 

 
where the index 0 corresponds to the fictitious cell, 
D is the diameter, l is the friction factor and c is the 
sound velocity which is constant for isothermal flow 
of an ideal gas. The solution of this system gives the 
following equation for the density and, consequently,  
the pressure, at the inlet fictitious cell. 
 

n 1 2 n 1 2 n 1 n 1 n 1
0 0 1 1 1 0

n 1 2 n
0 0

c / ( ) [(m ) / p ]

l(m ) 1 sgn(m ) 0
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Since the flow is isothermal and pressure is 
assumed to be constant at the outlet, the density is 
also constant at the outlet. Therefore, the discrete 
form of the momentum equation can be solved to 
obtain the outlet mass flow rate resulting in 

 
n 1 2 n 1 n 1 n 1 n 1 n 1 2
N N N N N 1 N 1

n 1 2
n 1 n 2 n 1N 1
N 1 N N 1n 1

N 1

(m ) / m [P P (m ) /

(m ) l t/ ] (m ) sgn(m ) 0
2D

+ + + + + +
− −

+
+ +−
− −+

−

ε ρ + +ε − −

Δ
ρ − + =

ρ

(A.3) 

 
where the index N corresponds to the fictitious cell at  

the outlet. For a general EOS, the procedure is 
similar, but the resulting system of equations must be 
solved numerically. 

For the nonisothermal flow of an ideal gas it is 
assumed that the temperature is known at the inlet. In 
the general case, this implies the need for solving an 
additional relation involving enthalpy, pressure and 
temperature. However, for an ideal gas, the enthalpy 
is not a function of pressure and a constant 
temperature implies a constant enthalpy. Hence, the 
discrete form of the momentum equation and the 
EOS can be solved simultaneously.  The system of 
equations to be solved is 

 
 

( )

n 2
n 1 n n 1 2 n 1 n 1 n 1 2 n 1 n 1 n0
0 0 0 0 0 1 1 1 0n

0
-1n 1 n 1 n 1 n 1 2 n 1

0 0 0 0 0
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2D
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⎪ ⎡ ⎤ ′= ρ − ρ γ⎣ ⎦⎩

                                       (A.4) 

 

where ( )1−γγ=γ′ . Solving the above system, the inlet density ρ1 can be obtained from the following 
quadratic equation: 
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1
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2D 2
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          (A.5) 

 
The temperature is not known at the outlet. Therefore, the discrete forms of momentum and energy equations 

are solved together with the EOS in order to evaluate the outlet total energy, density and mass flow rate. The 
final system is given by 
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                                  (A.6) 

 
Using the technique described above to impose the boundary conditions, the same flow example of the 

shutting-in of a 100-meter pipeline was solved and the results are shown in Figure A1. The improvement in the 
solution is quite clear. 

 
Figure A.1: The effect of the boundary condition treatment for the Roe-Pike solver for a 400-cell mesh.  


