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Abstract – This manuscript presents the effect of Reynolds number (Re) and proximity of the bodies on the 
hydrodynamics of flow of shear-thinning, Newtonian and shear-thickening fluids over a pair of cylinders kept 
in side-by-side arrangement. Results obtained from the numerical simulations carried out with a combination of 
different parameters in the range of 0.2 ≤ power law index (n) ≤ 1.8, 0.1 ≤ Re ≤ 100 and 1.2 ≤ G (gap between 
the cylinders/diameter) ≤ 4 have been discussed in details. Analysis of the results gives a clear insight into the 
complex influence of Re on streamline patterns, surface pressure profiles, drag and lift coefficients for various 
fluids when the gap between two cylinder is changed.
Keywords: Reynolds number; power-law fluids; gap ratio; pressure coefficient; drag-lift.

INTRODUCTION

In day to day life, many systems are encountered where 
fluid flow occurs over cylindrical bodies. These ordinary 
looking systems practically exhibit a rich variety of flow 
phenomena. Different flow regimes are encountered 
depending on the velocity of the fluid, size of the cylinders 
and the proximity of the cylinders to the neighboring bodies. 
Needless to say the fundamental change at the microscopic 
level is manifested at the macroscopic level, resulting in 
different scaling in the drag and lift forces and coefficients 
of heat and mass transfer etc. Therefore, the study of flow 
over a circular cylinder has drawn considerable attention 
over the last few decades.  Consequently, over the years, 
a voluminous body of information on the hydrodynamics 
of the flow of Newtonian fluids over a circular cylinder 

has been accrued. The available information is excellently 
summarized in two books by Zdravkovich (Zdravkovich, 
1997, 2003). Though the studies on flow over a solitary 
cylinder gives us valuable insights into the flow phenomena, 
these do not depict the reality for the cases where flow occurs 
over multiple cylinders as the hydrodynamics is dependent 
on the proximity and arrangement of the cylinders. As an 
example, in a shell and tube heat exchanger the area for 
heat transfer increases with the increase in number of tubes, 
but at the same time this may lead to a large pressure drop 
unless the size and the shape of the flow path are properly 
chosen. Likewise, there are several systems such as 
aerosol filters based on hollow fiber modules, polymer and 
paper coating applications, food processing industry and 
recycling plants where the arrangement of cylinders affects 
the flow pattern. Despite such pragmatic significance, there 
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have been very few studies involving multiple cylinders. 
It is also readily acknowledged that most high 

molecular weight and multiphase systems encountered 
in a broad spectrum of chemical, polymer, food, agro-
chemicals, biotechnological and process engineering 
applications display shear-thinning behavior (Bird et al., 
1987; Steffe, 1996; Chhabra and Richardson, 1999). This 
type of non-Newtonian flow behavior is conveniently 
approximated by the power-law model (Bird et al., 1987; 
Steffe, 1996; Chhabra and Richardson, 1999). Despite 
the wide occurrence of shear-thinning behavior in scores 
of industrial settings, very little is known about the flow 
around a group of cylinders, albeit a reasonable body of 
knowledge has evolved over the past 10-15 years as far as 
a single cylinder is concerned. Therefore, the present work 
is concerned with the flow over a two-cylinder assembly in 
a side-by-side arrangement. In particular, consideration is 
given to the role of non-Newtonian flow characteristics and 
of the spacing between the two cylinders on the detailed 
kinematics of the flow, as well as on the drag and lift 
coefficients of each cylinder. It is, however, instructive and 
useful to briefly recount the flow of power-law fluids past 
a cylinder and that of Newtonian fluids over a side-by-side 
arrangement of cylinders to facilitate the presentation and 
discussion of the new results reported herein.

PREVIOUS WORK

As noted earlier, a wide range of literature is 
available on various aspects of the flow over a single 
cylinder submerged in Newtonian fluids (Morgan, 1975; 
Zdravkovich, 1997, 2003), though there are still unresolved 
issues, especially at high Reynolds numbers. On the other 
hand, the analogous literature on the flow of power-law 
fluids past a cylinder is not only of recent vintage but is 
also much less extensive. Some numerical results are now 
available on hydrodynamics (D’Allessio and Pascal, 1996; 
Whitney and Rodin, 2001; Chhabra et al., 2004; Bharti et 
al., 2006, 2007), forced convection heat transfer (Soares et 
al., 2005; Bharti et al., 2007), and mixed convection heat 
transfer (Srinivas et al., 2009; Soares et al., 2009; Bouaziz 
et al., 2010). However, most of these studies are restricted 
to the steady flow regime (Sivakumar et al., 2006), very 
few studies deal with the flow of power-law fluids past a 
cylinder (Patnana et al., 2009), and heat transfer (Patnana 
et al., 2010; Soares et al., 2010), in the laminar vortex 
shedding regime. These studies (Patnana et al., 2009, 
2010; Soares et al., 2010), signify that all else being equal, 
shear-thinning behavior enhances the hydrodynamic drag. 
The effect on drag is particularly striking at low Reynolds 
number. Besides the aforementioned studies based on the 
numerical solution of the complete governing equations, 
some works have been carried out employing standard 
boundary layer flow approximations to obtain approximate 
expressions for skin friction and Nusselt number (Khan 

et al., 2006). A few experimental studies on flow of non-
Newtonian fluids past a cylinder have also been reported 
(Coelho and Pinho, 2003), which elucidate the roles of 
visco-elastic and shear-thinning behavior on the vortex 
shedding characteristics. Since the fluids used in most 
of the studies display both elastic and shear-thinning 
characteristics, it is difficult to delineate their individual 
contributions unless the special flow classification criteria 
are used (Astarita, 1979; Thompson and Mendes, 2005). 
Therefore, possibilities of detailed comparison between 
the prediction and experimental observation are excluded.

The flow over two-cylinders of equal size arranged in 
different configurations represents the simplest possible 
model to study the hydrodynamics of the flow over a group 
of cylinders. In this case, the flow is influenced not only 
by the value of Reynolds number (Williamson, 1985; 
Meneghini et al., 2001; Chitanya and Dhiman, 2012), 
but also by the center-to-center distance between the two 
cylinders (Bearman and Wadcock, 1973; Williamson, 
1985; Chitanya and Dhiman, 2012). The flow characteristic 
also changes depending on the geometrical configuration 
of cylinders such as side-by-side (Bearman and Wadcock, 
1973; Kang, 2003; Chitanya and Dhiman, 2012) and 
tandem (Meneghini et al., 2001; Juncu, 2007(2); Patil et 
al., 2008).

A cursory inspection of the available literature 
(Zdravkovich, 1977, 1987, 1997, 2003; Kang, 2003; 
Juncu, 2007; Liang et al., 2009; Ryu et al., 2009; Tsutsui, 
2010; Shyam et al., 2013) reveals that the bulk of the 
information relates to high Reynolds numbers like those 
encountered in air/gas, air/liquid heat exchangers. On the 
other hand, owing to the generally high viscosity levels 
of the multiphase (foams, suspensions, and emulsions) 
and polymeric systems, the representative Reynolds 
numbers in polymer, food and slurry related applications 
seldom exceed 20-30. Few studies have been reported on 
flow over multiple cylinders (Zhang et al., 2001; Huang 
et al., 2006), which take Reynolds numbers in different 
flow regimes into account. Especially, the studies on non-
Newtonian fluids that provide detailed information on the 
pressure distribution in the flow field, variation of drag and 
lift forces over a wide range of Reynolds number are rare. 
Knowledge of the pressure distribution in a flow field in 
the presence of multiple cylinders is not only important to 
optimize the design efficiently but also of interest to ensure 
the safety and longevity of the critical components in some 
of the applications. In addition, to ensure the stability 
of the components, the study of drag characteristics of 
flow of both the Newtonian and power-law fluids in both 
high as well as low Reynolds number regimes is also of 
industrial interest. Considering the practical importance 
of the information on flow over multiple cylinders using 
Newtonian and power-law fluids, the present work is carried 
out. In this work, the flow patterns of both Newtonian and 
power-law fluids when passed over two cylinders kept in 
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side-by-side arrangement are studied numerically, over a 
wide range of Reynolds number from 0.1-100. In addition 
to the effect of Reynolds number, the effects of power-law 
index and the gap between the two cylinders on pressure 
coefficients, drag and lift coefficients are analyzed in 
detail. The behavior of shear-thinning fluid has also been 
compared with that of the Newtonian and shear-thickening 
fluids under a few selected conditions.

PROBLEM STATEMENT AND GOVERNING 
EQUATIONS

Physical arrangement of the cylinders and the flow 
are schematically illustrated in Figure 1 (a). The circular 
cylinders shown in this figure are infinitely long in the 
z-direction and are of equal radius R and diameter D. The 
flow considered here is two-dimensional, incompressible, 
with uniform inlet velocity Uo. Based on the available 
literature (Kang, 2003; Sivakumar et al., 2006), flow for 
both Newtonian and power-law fluids is initially assumed 
to be steady up to Re = 40 and unsteady for Re > 40. To 
ascertain that the flow is indeed steady up to Re = 40, over 
the range of conditions used here, a few preliminary time-
dependent simulations for extreme values of parameters 
(Re, G, n) are performed. Also unsteady calculations are 
carried out for high Reynolds number (Re = 100) to see 
the effect of all parameters (Re, G, n) in the power-law 
regime. Since it is not possible to simulate an unconfined 
flow numerically, it is customary to introduce an artificial 
domain in the form of a box as shown in Figure 1 (b). In the 
figure, the cylinders are placed inside a square of size H, 
with a gap of G in such a way that the mid-point between 
the two cylinders coincides with the center of the box. The 
value of H is chosen in such a manner that the study is 
carried out with modest computational resources without 
influencing the flow field. The results obtained from the 
time dependent study indicate that the flow is steady 
in the range Re = 0.1 - 40 and is in agreement with the 
available literature (Kang, 2003; Sivakumar et al., 2006). 
The flow becomes unsteady in the range Re = 40 - 100. 
To characterize the flow of both Newtonian and power-law 
fluid, in both steady and unsteady domain, the continuity 
and momentum equations are solved. The governing 
equations in their dimensionless form are given below.

Continuity equations in cartesian form:

Momentum equations in cartesian form for the x- and 
y- directions:

x-momentum equation

y-momentum equation

For power-law fluids, the extra stress tensor τij is related 
to the rate of deformation tensor (εij) and is expressed as:

where the rate of deformation tensor is given by:

and the viscosity, η, for a power-law fluid is given by

where n is the power-law index. While n =1 corresponds to 
the Newtonian behavior, n < 1 denotes the shear-thinning 
behavior of fluid. I2 is the second invariant of the rate of 
deformation tensor and expressed as (Bird et al., 2002):

The physically realistic boundary conditions for this 
flow are written as follows:

(i)     At the inlet plane: The uniform flow in x-direction 
is prescribed, i.e.,

(ii)     The top and bottom walls are assumed to be slip 
boundaries so that there is no dissipation at these walls. 
In mathematical terms, these are expressed as:

(iii)     On the surface of the solid cylinders: The 
standard no-slip boundary condition is used, i.e.,

(iv)     At the exit plane: The default outflow boundary 
condition option in FLUENT (a zero diffusion flux 
for all flow variables) was used in this work. This 
choice implies that the conditions of the outflow plane 
are extrapolated from within the domain and this 
extrapolation procedure has negligible influence on 
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Figure 1. (a) Schematic representation of the physical model (b) Computational domain (c) Close up view of the grid in 
the vicinity of cylinders.
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the upstream flow conditions. Furthermore, the scheme 
used by FLUENT updates the outflow velocity and 
pressure in a manner that is consistent with the fully 
developed flow assumption, when there is no area 
change at the outflow boundary. However, the gradients 
in the cross-stream direction may still exist at the 
outflow boundary. This is similar to the homogeneous 
Neumann condition, that is,

The numerical solution of the governing equations (1), 
(2) and (3), together with the aforementioned boundary 
conditions, maps the flow domain in terms of the primitive 
variables, namely, Ux, Uy and P. These variables are 
post-processed to evaluate the derived quantities such as 
stream function, surface pressure coefficients, drag and 
lift coefficients as functions of the pertinent governing 
parameters. At this juncture, it is appropriate to introduce 
the definitions of some of these, as well as the other 
relevant parameters.

In this work, the free stream velocity, U0, and diameter 
of the cylinder, D, are used as scaling variables. Thus, the 
pressure is scaled using ρU0

2 , stress components using 
0

nUm
D
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, time with 
0

D
U . Furthermore, the flow is governed 

by three dimensionless groups, namely, the 
Reynolds number (Re), power-law index (n), and the non-
dimensional gap spacing (G).

Reynolds number (Re) is expressed as

Re =
2

0
n nU D

m
ρ −

and the non-dimensional gap spacing is expressed as 

Total drag (CD), pressure drag (CDP) and friction drag 
(CDF) coefficients  are written as

where CD is the drag force in the direction of flow exerted 
on the cylinder per unit length. It is also customary to split 
the total drag force into two components arising from the 
shear and pressure forces. The parameters that represent 

the shear force and pressure components are referred to 
as the friction drag coefficient (CDF) and pressure drag 
coefficient (CDP), respectively.

The non-dimensional parameter that is used to represent 
the lift is referred to as the lift coefficient (CL) and given as:

where FL is the lift force acting in the y-direction on 
the cylinder per unit length. The lift force also has two 
components, i.e., shear and pressure. These components 
are represented by two dimensionless parameters known as 
the pressure lift coefficient (CLP) and friction lift coefficient 
(CLF).

To get the information about the pressure distribution on 
the surface of the cylinders, the surface pressure coefficient 
(CP) is calculated and expressed as:

where p is the local pressure at a point on the surface of 
the cylinder and P∞ is its reference value far away from 
the cylinder.

In this work, the vortex shedding frequency (f) is 
calculated for the unsteady flow regime (Re = 100) from 
the time history of the lift coefficient (CL). The time period 
(T) has been calculated based on 10 constant periodic 
cycles.

NUMERICAL SOLUTION METHOD

In this study, the field equations are solved using 
FLUENT, whereas a third-party software is used for 
creating a suitable solution mesh. Different regions of the 
grid structure used for the present study are shown in Figure 
1(c). Fine unstructured triangular cells are generated in the 
region close to the cylinder (region A) where the gradients 
are expected to be steep. In all other regions (B, C and 
D), quadrilateral cells are used and the grid is stretched 
from fine to coarse using the ‘successive ratio’ stretching 
function.

The two-dimensional, laminar, segregated solver is 
used to solve the incompressible flow on the collocated 
grid arrangement. Both steady and unsteady solvers are 
used in this study. The detailed description of the numerical 
solution procedure is available in our earlier papers (Panda 
and Chhabra, 2010, 2011). To ascertain the prediction of 
the solver at high Reynolds number, flow patterns of both 
Newtonian and power-law fluids are obtained and can 
be validated using the results reported by Kang (2003). 
For discretizing the convective terms in the momentum 
equations a second order upwind scheme is used, whereas 
semi-implicit method for the pressure linked equations 
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Table 1. Physical properties of the fluid used

Re ρ (Kg/m3) m (Kg/m-s)
n = 0.2 n = 0.4 n = 0.6 n = 0.8 n = 1 n = 1.2

0.1 0.1 0.01584 0.02511 0.03981 0.06309 0.1 0.15848
0.2 0.2 0.01584 0.02511 0.03981 0.06309 0.1 0.15848
0.5 0.5 0.01584 0.02511 0.03981 0.06309 0.1 0.15848
1 1 0.01584 0.02511 0.03981 0.06309 0.1 0.15848
2 2 0.01584 0.02511 0.03981 0.06309 0.1 0.15848
5 5 0.01584 0.02511 0.03981 0.06309 0.1 0.15848
10 10 0.01584 0.02511 0.03981 0.06309 0.1 0.15848
20 20 0.01584 0.02511 0.03981 0.06309 0.1 0.15848
30 30 0.01584 0.02511 0.03981 0.06309 0.1 0.15848
40 40 0.01584 0.02511 0.03981 0.06309 0.1 0.15848
100 100 0.01584 0.02511 0.03981 0.06309 0.1 0.15848

Table 2. Selection of optimum domain at Re = 0.1

H/D
Re = 0.1, n = 1, G = 4

Upper Cylinder Lower Cylinder
CDP CD CLP CL CDP CD CLP CL

220 21.6440 43.7499 1.9171 3.8090 21.6429 43.7506 -1.9194 -3.8081
240 21.3989 43.2549 1.8931 3.7618 21.3979 43.2556 -1.8954 -3.7610
260 21.3984 43.2546 1.8924 3.7612 21.3981 43.2558 -1.8955 -3.7625

H/D
Re = 0.1, n = 0.2, G = 4

Upper Cylinder Lower Cylinder
CDP CD CLP CL CDP CD CLP CL

220 183.551 262.335 0.6632 -0.8828 183.541 262.325 0.6312 0.8464
240 183.581 262.378 -0.6704 -0.8927 183.571 262.369 0.6375 0.8553
260 183.542 262.338 -0.6724 -0.8962 183.568 262.364 0.6324 0.8592

Table 3. Selection of optimum domain at Re = 5

H/D
Re = 5, n = 1, G = 4

Upper Cylinder Lower Cylinder
CDP CD CLP CL CDP CD CLP CL

100 2.2058 4.2072 0.3475 0.6494 2.2058 4.2072 -0.3477 -0.6491
120 2.1853 4.1696 0.3464 0.6475 2.1853 4.1697 -0.3466 -0.6472
180 2.1838 4.1706 0.3458 0.6470 2.1855 4.1710 -0.3465 -0.6485

H/D
Re = 5, n = 0.2, G = 4

Upper Cylinder Lower Cylinder
CDP CD CLP CL CDP CD CLP CL

100 4.2432 5.8273 -0.021 -0.032 4.2433 5.8275 0.0201 0.0308
120 4.2447 5.8290 -0.021 -0.032 4.2448 5.8293 0.0200 0.0308
180 4.2454 5.8297 -0.021 -0.032 4.2454 5.8299 0.0201 0.0309

(SIMPLE) scheme is used for solving the pressure-velocity 
coupling. A time-integration second order implicit scheme 
is used with time step size (Δt) of 0.01. A through time 
dependent study is carried out to arrive at an optimum 
value of Δt. The physical properties of the flow are given 
as input using constant density and non-Newtonian power-
law viscosity modules. Minimum and maximum viscosities 
of the fluid used in the simulations are 0 and 1e20 Kg/m-s, 
respectively. The physical properties such as ρ, m, n used 
for this work are given in Table 1. The input values of these 
physical properties and kinematic parameters such as D, 
U0, Ω, etc. are of no consequence as the final results are 
reported in a dimensionless form. It must be noted here 
that the present simulations do not consider the effect of 

gravitational force on the flow. FLUENT solves the system 
of algebraic equations using the Gauss-Siedel (G-S) point-
by-point iterative method in conjunction with the algebraic 
multi-grid (AMG) method solver. The use of the AMG 
scheme greatly reduces the number of iterations (thereby 
accelerating convergence) and thus economizing the CPU 
time required to obtain a converged solution, particularly 
when the model contains a large number of control 
volumes.  For the present study, a relative convergence 
criterion of 10-8 is used for the residuals of the continuity 
and x- and y- components of the momentum equations. A 
simulation is deemed to have converged when the values 
of the global parameters stabilize to at least four significant 
digits. 
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CHOICE OF NUMERICAL PARAMETERS

It is well known that the reliability and accuracy of the 
numerical results are dependent on a prudent choice of the 
numerical parameters, namely, the optimal domain size 
(H), grid characteristics (number of cells on the surface 
of the cylinder, grid spacing, stretching, etc.) and to some 
extent by the convergence criterion, etc. (Roache, 1994; 
Sivakumar et al., 2007; Patil et al., 2008; Sahu et al., 
2009). In this work, the values of these parameters have 
been selected after extensive exploration by varying their 
values within 100 ≤ H / D ≤ 300. Due to the slow spatial 
decay of the velocity field at low Reynolds numbers, the 

required domain size decreases with increasing Reynolds 
number. For this purpose, the values of Re = 0.1 and 5 are 
taken to be representative of the low and high Reynolds 
number region.  The results summarized in Tables 2 and 
3 show the influence of (H/D) on CD, CDP, CL and CLP  for 
two different values of Reynolds number (Re = 0.1 and 5), 
two extreme values of power-law index (n = 1 and 0.2) and 
for G = 4. From the analysis of these results obtained from 
the domain independent study, (H / D) = 240 is chosen for 
Re < 5 whereas (H / D) = 120 is selected for Re ≥ 5 studies 
to nullify the domain effect. It must be noted here that the 
domain used in this study is much larger than that used by 
others (Kang, 2003).

Table 4. Details of grids used for the grid independence study

Grid H/D = 240
Ni N M Ncells

G1 100 5 16 48550
G2 200 10 33 196254
G3 400 20 66 782224

Grid H/D = 120
Ni N M Ncells

G1 100 5 16 37780
G2 200 10 33 153054
G3 400 20 66 609424

Ni = Number of points on the surface of the cylinder
N = Number of points in the 1st sub domain
M = Number of points in the 2nd sub domain

Similarly, an optimal grid is used to resolve the thin 
boundary layers and steep gradients near the cylinders 
without being prohibitively computationally intensive. 
To arrive at the choice of an optimal grid, the relative 
performances of the three grids were studied in details. Each 
grid was characterized in terms of the number of points (Ni) 
on the surface of cylinder and the value of  (δ / D)near 
the cylinder, which are summarized in Table 4. A typical 
grid is shown in Figure 1(c). Tables 5 and 6 summarize 
the relative performance of each grid in terms of CD, CDP, 
CL and CLP. From the detailed analysis  of these results, it 
is noted that very little is gained in terms of accuracy by 

moving from G2 to G3, however, the CPU time required for 
G3 is  many fold higher  than that needed for G2 to satisfy 
the same criterion of convergence. Therefore, grid G2 that 
denotes a good compromise between the accuracy and 
computational effort is chosen for the present study. Using 
the grid G2 and optimized domains, the two dimensional 
steady and unsteady flow computations were carried out. 
The parameters used for the present study are as follows:
Reynolds number, Re = 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 30, 40 
and 100 
Power-law index, n = 0.2, 0.4, 0.6, 0.8 and 1 
Gap spacing, G = 1.2, 1.7, 2, 2.5 and 4

Table 5. Effect of grid details on the results at Re = 0.1 (H/D = 240)

Grid
Re = 0.1, n = 1, G = 4

Upper Cylinder Lower Cylinder
CDP CD CLP CL CDP CD CLP CL

G1 20.0215 42.2026 1.8351 3.3564 20.0225 42.2046 -1.8342 -3.3586
G2 21.3989 43.2549 1.8931 3.7618 21.3979 43.2556 -1.8954 -3.7610
G3 21.4007 43.2452 1.9020 3.7681 21.3906 43.2451 -1.8920 -3.7583

Grid
Re = 0.1, n = 0.2, G = 4

Upper Cylinder Lower Cylinder
CDP CD CLP CL CDP CD CLP CL

G1 179.338 255.226 -0.8358 -1.0313 179.312 255.182 0.8298 1.0223
G2 183.581 262.378 -0.6704 -0.8927 183.571 262.369 0.6375 0.8553
G3 183.301 261.990 -0.6722 -0.8955 183.423 262.112 0.6339 0.8504
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It is to be noted here that, for comparison of flow 
behavior of shear thinning fluid with that of the shear 
thickening fluid, some additional simulations have been 
carried out using power-law index 1.2, 1.6 and 1.8 at 
selected Reynolds numbers (0.1 and 40) at gap spacings 
of 1.2 and 4.

RESULTS AND DISCUSSION

Validation of Results

Prior to presenting new results of any numerical study, 
it is necessary to validate the numerical solution procedure 
to ascertain the accuracy and reliability of the results. 
Towards this end, some of the results obtained from this 
numerical analysis are presented in Table 6 along with 
the data reported by Kang (2003), Ding et al. (2007) and 
Chaitanya and Dhiman (2012) under similar conditions. 
Comparison of the data given in Table 7 signifies that 
the results obtained from the present study are in good 
agreement with the results reported by other researchers. 

The small deviations in values can be attributed to the 
different grid sizes, solution methodologies, size and shape 
of domain, convergence criterion, etc. (Roache, 1994) 
chosen for simulations. 

Aside from the aforementioned comparisons, the 
credibility of the numerical solution methodology 
employed herein is verified by studying the flow of 
Newtonian and power-law fluids in the standard lid 
driven square cavity separately and thereafter comparing 
the results with available information (Ghia et al., 1982; 
Neofytou, 2005). The centerline velocities obtained from 
the present standard lid driven square cavity are found to 
be within ±2% of the corresponding Newtonian results 
(Ghia et al., 1982), and within ±2.5% for power-law fluids 
as reported by Neofytou (2005). Agreement of the results 
reported here with those reported by others demonstrates 
the credibility of the numerical solution methodology 
used for the present study. Based on the above mentioned 
comparison and past experience, the present results for the 
two cylinder configuration in power-law fluids are believed 
to be reliable to within ±1-2%.

Table 6. Effect of grid details on the results at Re = 5 (H/D = 120)

Grid
Re = 5, n = 1, G = 4

Upper Cylinder Lower Cylinder
CDP CD CLP CL CDP CD CLP CL

G1 2.1033 4.1561 0.3235 0.6356 2.1014 4.1512 -0.3227 -0.6438
G2 2.1853 4.1696 0.3464 0.6475 2.1853 4.1697 -0.3466 -0.6472
G3 2.1844 4.1633 0.3467 0.6488 2.1849 4.1658 -0.3459 -0.6483

Grid
Re = 5, n = 0.2, G = 4

Upper Cylinder Lower Cylinder
CDP CD CLP CL CDP CD CLP CL

G1 4.1291 5.8207 -0.035 -0.043 4.1321 5.8224 0.0355 0.0435
G2 4.2447 5.8290 -0.021 -0.032 4.2448 5.8293 0.0200 0.0308
G3 4.2431 5.8278 -0.020 -0.031 4.2444 5.8294 -0.0200 -0.0310

Table 7. Comparison between the present and literature values for Re = 100 and 40; G = 2 and 4; n = 1
Upper Cylinder

Source CD CL

Re = 40, n = 1, G = 2
Present 1.7064 0.3665

Kang, 2003 1.70 0.3651
Re = 100, n = 1, G = 4

Present 1.4686 --
Chaitanya and Dhiman, 2012 1.4727 --

Ding et al., 2007 1.514 --
Lower Cylinder

Source CD CL

Re = 40, n = 1, G = 2
Present 1.7066 -0.3658

Kang, 2003 1.70 -0.3706
Re = 100, n = 1, G = 4

Present 1.4702 --
Chaitanya and Dhiman, 2012 1.4726 --

Ding et al., 2007 1.514 --
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Figure 2. Vorticity contours for different wake patterns (a) single bluff-body pattern (Re=100, G=1.2); (b) flip-flopping 
pattern (Re=100, G=1.7); (c) in-phase-synchronized pattern (Re=100, G=2.5); (d) anti-phase- synchronized pattern 
(Re=100, G=4); (e) steady pattern (Re=40, G=2).

In Figure 2, only the vorticity contours for Re = 40 
and 100 (for Newtonian fluids) for different gap ratios are 
presented to validate the flow patterns shown by Kang 
(2003) in their study. The patterns are (a) single bluff-body 
pattern (Re = 100, G = 1.2), (b) flip-flopping pattern (Re 
= 100, G = 1.7), (c) in-phase-synchronized pattern (Re = 
100, G = 2.5), (d) anti-phase-synchronized pattern (Re = 
100, G = 4) and (e) steady pattern (Re = 40, G = 2). The 
flow patterns presented here are in good agreement with 
those of Kang (2003). As observed, the wake patterns are 
highly dependent on the gap between the two cylinders. At 
G = 1.2, both cylinders act like a single body and vortices 
are formed periodically at both sides of the cylinders. The 
flow through the narrow gap between the cylinders has no 
real effect on the wake region, so complete suppression 
of narrow vortices occurs between the cylinders. This 
flow pattern is called ‘single bluff-body pattern’. Upon 
increasing the gap from 1.2 to 1.7 (see Figure 2(b)), the 
flow encountered between the cylinders experiences a drag 
force from the cylinder surface and vortex shedding occurs 
in a highly irregular fashion. Such a flow structure is called 
‘flip-flopping pattern’ as suggested by Kang (2003). When 

the gap is increased to 2.5, the vortices generated from the 
cylinders merge with each other at the initial stage, but 
separate far away from the cylinder in the downstream. 
This flow pattern is known as ‘in-phase-synchronized 
pattern’. With a high gap ratio (at G = 4), the wakes 
formed are periodic in nature and formed separately from 
each cylinder. According to Kang (2003), the same drag 
coefficients are observed for both the cylinders and lift 
coefficients occur in anti-phase. So the pattern is referred to 
as an ‘anti-phase-synchronized’ pattern. At Re = 40 (G = 2), 
the flow is steady and symmetric about the mid-plane. 
No vortex shedding occurs in this case and the pattern is 
named as ‘steady pattern’.

Detailed Flow Characteristics

The flow field is usually characterized by streamline 
profiles and surface pressure coefficients close to the 
cylinders as functions of the governing parameters. These 
functional relationships are presented in the following 
sections.
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Streamline Profiles
Figure 3 shows the results elucidating the influence 

of Re, G and n on the streamlines in the vicinity of the 
cylinder. While Figure 3 (a) - (d) represent the streamlines 
obtained for Newtonian and shear-thinning fluids, Figure 3 
(e) shows streamlines for shear-thickening fluid at selected 
conditions. For the range of Reynolds number used here, 
the flow is known to be steady (0.1 ≤ Re ≤ 40) and unsteady 
(Re = 100) for all values of the power-law index (n) and 
gap (G) between the two cylinders. 

For shear-thinning fluids, the flow field is seen to be 
symmetric about the mid-plane at low Re (≤ 0.1) for all 
values of G. This is due to the fact that the viscous forces 
outweigh the inertial forces and a fluid element is able to 
follow the surface of the cylinders under these conditions. 
For fixed values of n and G with gradual increasing of 
Re, the flow field gets detached from the surface of the 

cylinder, which leads to the formation of the wake region 
in the rear end of the cylinder. This marks the formation of 
a pair of standing vortices at both cylinders, which grow 
independently with increasing value of Re, until Re attains 
a critical value. 

For G = 1.2, n = 0.2, at very low Re, i.e., at 0.1 the 
streamlines show symmetry about the mid-plane and 
follow a very close path. When Re is increased beyond 10 
no wake formation is observed. Finally, the flow field is 
detached from the cylinder surface at Re = 40 and 100, and 
a pair of vortices are formed at each cylinder.

At G = 1.2, with increasing power-law index from 0.2 
to 1, no vortices are found at Re = 0.1. At this condition, 
even for shear-thickening fluid with n = 1.2 - 1.8 not much 
difference is observed in streamline profiles (Figure 3(e)). 
The streamline profile obtained for low gap ration and low 
value of Re resemble the streamline obtained for a single 

Figure 3. (a) Streamline contours for Re=0.1 at different G and n
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bluff body irrespective of power-law index. When Re 
is increased to 10, vortices start forming at n = 0. Upon 
increasing the value of Re to 40, the wakes formed at n = 
0.6 become larger in size compared to that formed at Re = 
10.  Simultaneous comparison of streamline profiles shown 
in Figure. 3 (c) and 3 (e) for G = 1.2 and Re = 40 shows that 
the size of the wake grows with an increase in the value of 
n, irrespective of the nature of the fluid (i.e., shear-thinning, 
Newtonian or shear-thickening). When Re is increased to 
100, vortices become unstable at the rear region of the 
cylinder for n = 0.2 to 0.6. However, when n is increased to 
1, vertices become stable and become symmetric about the 
mid plane with the formation of wakes.

It has already been mentioned that at G =1.2 for low 
Re the streamline profiles obtained resemble the streamline 
profile obtained for a single bluff body irrespective of the 
power law index. When G is increased to little higher 

value, the streamline profiles follow a wider path, yet the 
flow field evoked by one cylinder is never independent of 
the other. At very high value of G, each cylinder behaves 
like an individual bluff body and creates a flow pattern 
without any influence of its neighboring cylinder. The 
shear thinning fluid with n = 0.2 can be an example to 
explain these phenomena. For G = 1.2 and at Re = 0 .1, the 
flow profile almost resembles the flow profile evoked by a 
single bluff body. When the G is increased to 2.5 or 4, the 
streamline profile evoked by each cylinder resembles the 
streamline profile obtained for flow over a single cylinder. 
However, when G = 1.7, the streamline profile no longer 
resembles the streamline profile of a bluff body, neither 
does it look similar to that obtained at G = 2.5 or 4. The 
profile here is clearly influenced by the proximity of the 
cylinders. For the same fluid with n = 0.2, if the Re is 
increased from 0.1 to 40 and above, the streamline profile 

Figure 3. (b) Streamline contours for Re=10 at different G and n
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Figure 3. (c) Streamline contours for Re=10 at different G and n

obtained at G = 2.5 no longer looks like the streamline 
profiles of two individual cylinders. This implies that the 
streamline profiles are also influenced by Re. For instance, 
the velocity field decays rapidly in shear-thinning fluids, 
therefore very little interference is seen even up to Re = 10 
and/or G = 1.2. On the other hand, the proximity of the two 
cylinders causes a boundary of the streamlines on the inner 
side of the cylinders, whereas that on the other side is seen 
to be influenced very little by the close proximity of the 
two cylinders. The fluid in the throat region experiences 
acceleration during the course of its passage through the 
nip region. The effect progressively diminishes with the 
increasing value of G. However, this asymmetry in the 
flow field gives rise to lift forces (in the y-direction) exerted 
on each cylinder. This asymmetry is seen to be present 
at all values of the Reynolds number, thereby leading to 
the formation of unequal sized standing vortices once the 
Reynolds number exceeds a critical value. 

Surface Pressure Profiles
Figures 4 (a) and (b) show representative surface 

pressure profiles for both the upper and lower cylinders for 
a range of combinations of Re, G and n. Pressure profiles 
are shown over the entire surface (00 ≤ θ ≤ 3600) for both 
the cylinders. The profiles for Re = 100 are time-averaged 
profiles and, as discussed earlier, at least 10 constant periodic 
cycles are considered for the study. At low Reynolds 
numbers, e.g., at Re = 0.1, the surface pressure at the front 
region of the upper cylinder progressively increases with 
increasing degree of shear-thinning (decreasing value of 
n) and the same effect is observed for the lower cylinder. 
The minimum value of the pressure coefficient occurs at 
the point of separation (θ = ~900 and ~2800) for Re = 40 
and 100, which is evident in both the cylinders. This is 
due to the recirculation nature of the flow at the rear of the 
cylinder. For Re = 40, as the value of G increases, the effect 
of power-law index seems to be less for both the cylinders. 
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Figure 3. (d) Streamline contours for Re=100 at different G and n

At Re = 100, increasing G, the pressure decreases at the 
front region of both the cylinders. With increasing G, the 
effect of n decreases on the values of CP for Re = 40 and 
100. The pressure is negative over most of the cases and 
this comes from different scaling of viscous and inertial 
forces on velocity and the power-law index.

Macroscopic Characteristics

The macroscopic characteristics of the flow are often 
presented by drag and lift coefficients. These characteristics 
in the steady state domain are discussed in the following 
sections.

Pressure Drag (CDP) and Friction Drag (CDF) Coefficients
Figure 5 (a) and (b) illustrate the influences of 

Reynolds number (Re), power-law index (n) and non-
dimensional gap (G) on pressure drag (CDP) and friction 

drag coefficients (CDF). It is noted that the variation of G 
has an insignificant effect on CDP and CDF; on the other 
hand, the effect of Reynolds number is pronounced on 
these parameters. With an increase in Reynolds number, 
both CDP and CDF continuously decrease for all constant 
values of n. The effect of power-law index on CDP and CDF 
can also be noted from these figures (Figure 5 (a) and (b)). 
Figure 5 (a) indicates that, with an increase in the value of 
n, CDP decreases continuously over the range Re = 0.1 - 40. 
The pressure drag coefficients (CDP) for Newtonian fluid 
are always less than the shear-thinning one. On the other 
hand, with an increase in the value of n, CDF decreases 
monotonously only in the range Re = 0.1 - 5. This shows 
that shear-thinning fluids exhibit stronger dependence on 
Re than Newtonian fluids. Therefore, a dramatic shift in 
trend is noticed in the high Reynolds number range, i.e., 
above Re > 5, where the value of CDF increases with an 
increase in the value of n. It clearly shows that a Newtonian 
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Figure 3. (e) Streamline contours for Re = 0.1, 40 at G = 1.2, 4 and n = 1.2, 1.6 and 1.8

fluid has higher friction drag coefficient than that of shear-
thinning fluids. The similar trend in the flow pattern is 
noted for all values of G. To further analyze the behavior, 
the variations of (CDP / CDF) at different values of n, Re, 
G are illustrated in Figure 6. From this figure, it can be 
seen that at high Reynolds number range the pressure drag 
(CDP) is always higher than the friction drag (CDF) for both 
Newtonian as well as power law fluids at the same value 
of Re and G.

Total Drag (CD) Coefficients
The dependence of the total drag coefficients, CD (= CDP 

+ CDF), on the Reynolds number (Re) and the power-law 
index (n) for different gap ratios (G) is shown in Figure 
7 (a). The value of total drag coefficient is approximately 
the same for both the cylinders. Therefore, a single figure 
(Figure 7) is used to represent the effect of drag coefficient. 
It is seen that, for constant n and G, an increase in Re 

decreases CD.CD becomes minimum at higher Re (Re = 40) 
for all the fluids over the entire range of G. The plot of CD 
vs Re (Figure 7 (a)) has a striking similarity with the plot 
of CDP vs Re (Figure 5 (a)). This similarity in the trend 
is attributed to the dominance of pressure drag coefficient 
over its counterpart friction drag coefficient over the entire 
studied range of Re, n and G. With an increase in n from 0.2 
to 1, the CD continuously decreases for all the conditions 
except in the range   Re = 15-40 with G = 1.7- 4.

The variation in total drag coefficient (CD) with gap ratio 
(G) for shear-thinning and non-Newtonian fluids at fixed 
values of Re is depicted in Figure 7 (b). From this figure it 
is clearly observed that in the low Re range the value of CD 
is almost independent of G for both Newtonian and shear-
thinning fluids. However, at high Re, especially at Re ≥ 10, 
CD is found to be significantly influenced by G. At Re = 10, 
with an increase in G, the value of CD increased constantly 
up to certain value where the growth of the CD value ceased 



Brazilian Journal of Chemical Engineering Vol 34, No 02, pp. 507 - 530, April - June, 2017

Two-Dimensional Flow of Power-Law Fluids over a Pair of Cylinders in a Side-By-Side 
Arrangement in The Laminar Regime

521

Figure 4 (a). Representative pressure profiles on the surface of the upper cylinder

(hereafter, this point is referred to as the critical value of 
G (Gc)). A further increase in the value of G beyond this 
critical value (Gc) does not influence the value of CD. From 
the plots given for Re = 10 in Figure 7 (b), it can be noted 
that Gc depends on n. The value of the Gc for the power-
law fluid with the smallest value of n is lower than that of 
the other fluids.  On the other hand, at Re = 40, with an 

increase in G beyond Gc, the value of CD decreases for both 
Newtonian and shear-thinning fluids. It needs to be noted 
here that Gc was never achieved for the power law fluid 
with n = 0.2 and the value of CD continuously decreased 
with an increase in G. The rate at which the values of CD 
decrease depends on n. The lower the power-law index, 
the higher the rate at which the value of CD decreases with 
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Figure 4 (b). Representative pressure profiles on the surface of the lower cylinder

increasing G. A comparison of the plots shown in Figure 7 
(b) also indicates that at low Re, the CD of shear-thinning 
fluid is higher than that of the Newtonian fluids. The value 
of CD further decreases when shear-thickening fluid is 
used instead of Newtonian fluid (Figure 8). However, as 
the value of Re (especially above Re =10) increases the 
CD of shear-thinning fluid decreases and becomes less 
than that of a Newtonian fluid.  In this regime, the value 

of CD remains highest for shear thickening fluid, which can 
be seen in Figure 8. This behavior is expected for shear-
thinning fluid because with increased shearing/agitation 
in the flow, the resistance offered by the fluid reduces 
depending on the power-law index. The higher the power-
law index, the higher is the resistance offered by the fluid 
in a similar environment. 
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Figure 5. Variation of (a) pressure drag coefficient (CDP) and (b) friction drag coefficient (CDF) with Reynolds number 
(Re)
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Figure 6. Variation of total lift coefficient (CDP
 / CDF) with Reynolds number (Re)

Since at very high gap ratio (G = 4) each cylinder 
almost behaves like an individual bluff body and creates 
a flow pattern without any influence of its neighboring 
cylinder, the comparison between CD values obtained for 
twin cylinders with that obtained for an isolated cylinder 
is inevitable. Therefore, CD values of the upper cylinder of 
the present case have been compared against the CD values 
of an isolated cylinder (Panda and Chhabra, 2010) at some 
selected Re and n for gap ratio 4 (see Table 8). From the 
table it can be seen that there exists a difference in values of 
CD for same values of Re and n. This difference in CD values 
signifies the presence of some influence of the neighboring 
cylinder on the hydrodynamics, even though the streamline 
profile evoked by each cylinder resembles the streamline 
profile obtained for flow over a single cylinder.

Total Lift (CL) Coefficients
Figure 9 shows the variation of the total lift coefficient 

with Reynolds number (Re) at different gap ratios (G) for 
each fluid. From the analysis of the results it is observed 
that the lift coefficients are the same for both the cylinders 
except the values are negative for the upper cylinder and 
positive for lower cylinders. Therefore, the values shown 
in Figure 9 can be used to represent the lift conditions of 
any of the cylinders, with the appropriate sign convention. 
For the easy analysis of the lift coefficient, the entire range 

of Reynolds number can be divided into three ranges; low 
Re range, medium Re range and high Re range. 

Low Re Range (0.1 ≤ Re ≤ 2): In this range, for each 
fluid the value of CL remains almost constant for a given 
G; an increase in Re value does not affect the value of the 
lift coefficient. On the other hand, the lift coefficient for 
Newtonian fluid monotonously decreases with an increase 
in Re, For shear thinning fluids, at low gap ratio the lift 
offered to the lower cylinder by the fluid with n = 0.2 is 
comparatively higher than that offered by other fluids. It 
can be noted from Figure 10 that with an increase in the 
value of n, CL is found to decrease and achieve a minimum 
value at n = 0.6. With further increase in power law index 
to 1 and beyond, the value of CL increases. With an increase 
in gap ratio the value of lift coefficient of this fluid (n = 0.2) 
continuously reduces. At G = 4, the CL of this fluid with n 
= 0.2 attains a negative value.  This signifies that at low 
gap ratio the fluid with power-law index n = 0.2 gives a 
positive lift and at high gap ratio it gives a negative lift to 
the cylinders which means the fluid tries to close the gap 
between the cylinders. On the other hand, at G = 4, the CL 
value for all other fluids remains positive and continuously 
increases with an increase in n (see Figure 10).  

Medium Re Range (2 ≤ Re ≤ 20):  In this range, for a 
fixed gap ratio in the range G = 1.2 - 1.7, the value of a lift 
coefficient for all the fluids decreased with an increase in 
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Figure 7. Variation of total drag coefficient (CD) with (a) Reynolds number (Re) and (b) gap ratio (G)
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Figure 8. Variation of total drag coefficient (CD) with power-law index for Reynolds number 0.1 and 40

Since at very high gap ratio (G = 4) each cylinder 
almost behaves like an individual bluff body and creates 
a flow pattern without any influence of its neighboring 
cylinder, the comparison between CD values obtained for 
twin cylinders with that obtained for an isolated cylinder 
is inevitable. Therefore, CD values of the upper cylinder of 
the present case have been compared against the CD values 
of an isolated cylinder (Panda and Chhabra, 2010) at some 
selected Re and n for gap ratio 4 (see Table 8). From the 
table it can be seen that there exists a difference in values of 
CD for same values of Re and n. This difference in CD values 
signifies the presence of some influence of the neighboring 
cylinder on the hydrodynamics, even though the streamline 
profile evoked by each cylinder resembles the streamline 
profile obtained for flow over a single cylinder.

Total Lift (CL) Coefficients
Figure 9 shows the variation of the total lift coefficient 

with Reynolds number (Re) at different gap ratios (G) for 
each fluid. From the analysis of the results it is observed 
that the lift coefficients are the same for both the cylinders 
except the values are negative for the upper cylinder and 
positive for lower cylinders. Therefore, the values shown 
in Figure 9 can be used to represent the lift conditions of 
any of the cylinders, with the appropriate sign convention. 
For the easy analysis of the lift coefficient, the entire range 
of Reynolds number can be divided into three ranges; low 
Re range, medium Re range and high Re range. 

Low Re Range (0.1 ≤ Re ≤ 2): In this range, for each 
fluid the value of CL remains almost constant for a given 
G; an increase in Re value does not affect the value of the 
lift coefficient. On the other hand, the lift coefficient for 
Newtonian fluid monotonously decreases with an increase 
in Re, For shear thinning fluids, at low gap ratio the lift 

offered to the lower cylinder by the fluid with n = 0.2 is 
comparatively higher than that offered by other fluids. It 
can be noted from Figure 10 that with an increase in the 
value of n, CL is found to decrease and achieve a minimum 
value at n = 0.6. With further increase in power law index 
to 1 and beyond, the value of CL increases. With an increase 
in gap ratio the value of lift coefficient of this fluid (n = 0.2) 
continuously reduces. At G = 4, the CL of this fluid with n 
= 0.2 attains a negative value.  This signifies that at low 
gap ratio the fluid with power-law index n = 0.2 gives a 
positive lift and at high gap ratio it gives a negative lift to 
the cylinders which means the fluid tries to close the gap 
between the cylinders. On the other hand, at G = 4, the CL 
value for all other fluids remains positive and continuously 
increases with an increase in n (see Figure 10).  

Medium Re Range (2 ≤ Re ≤ 20):  In this range, for a 
fixed gap ratio in the range G = 1.2 - 1.7, the value of a lift 
coefficient for all the fluids decreased with an increase in 
Reynolds number. Similar trend is also noticed at G = 4 for 
all the fluids except the one with n = 0.2. In this range, the 
lift coefficient for the fluid with power-law index n = 0.2 
increased and became positive. The rate at which the lift 
coefficient decreased or increased with Re depends on the 
power-law index.

High Re Range (20 ≤ Re ≤ 40):  At low gap ratio, 
particularly at G = 1.2, the variation of CL with Re shows 
similar characteristics as in the medium Re range. CL 
increases with an increase in the value of n from 0.2 - 0.6. 
A further increase in the value of n does not affect the value 
of CL. On the other hand as the value of G is increased, the 
lift coefficient again becomes independent of Re for each 
fluid. Also, the value of CL also remains unaffected by the 
nature of the fluid (see Figure 10). For G = 4, at Re = 40, 
CL becomes zero for all values of n, which is in complete 
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Figure 9. Variation of total lift coefficient (CL) with Reynolds number (Re)

Table 8. Comparison of drag coefficient values between a single cylinder and the present case for Re = 0.1, 1 and 40 (G = 4)
CD

Single Cylinder (Panda and Chhabra, 2010)
CD

Upper Cylinder (Present work at G = 4)
Re n = 0.2 n = 1 Re n = 0.2 n = 1
0.1 270.318 61.127 0.1 262.567 43.254
1 27.063 10.566 1 26.526 9.086
40 1.136 1.513 40 1.176 1.64

Figure 10. Variation of total lift coefficient (CL)  with power-law index  for different Reynolds number 0.1 and 40
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Reynolds number. Similar trend is also noticed at G = 4 for 
all the fluids except the one with n = 0.2. In this range, the 
lift coefficient for the fluid with power-law index n = 0.2 
increased and became positive. The rate at which the lift 
coefficient decreased or increased with Re depends on the 
power-law index.

High Re Range (20 ≤ Re ≤ 40):  At low gap ratio, 
particularly at G = 1.2, the variation of CL with Re shows 
similar characteristics as in the medium Re range. CL 
increases with an increase in the value of n from 0.2 - 0.6. 
A further increase in the value of n does not affect the value 
of CL. On the other hand as the value of G is increased, the 
lift coefficient again becomes independent of Re for each 
fluid. Also, the value of CL also remains unaffected by the 
nature of the fluid (see Figure 10). For G = 4, at Re = 40, 
CL becomes zero for all values of n, which is in complete 
agreement with the values reported for a non-rotating 
isolated cylinder (Panda, 2010).

CONCLUDING REMARKS

The momentum characteristics of an unconfined laminar 
flow of shear-thinning fluids over a pair of cylinders in a 
side-by-side arrangement have been studied numerically 
over wide ranges of conditions as: 0.1 ≤ Re ≤ 100, 0.2 ≤ 
n ≤ 1.8 by varying gap ratios (G = 1.2, 1.7, 2, 2.5 and 4).  
The results reported here include the effect of Reynolds 
number (Re) and gap ratio (G) on the flow patterns, 
friction, pressure and total drag coefficients, lift coefficient 
and surface pressure coefficients for Newtonian and shear-
thinning fluid flow. Reynolds number, power-law index 
and gap ratio significantly affect the streamline as well 
as the surface pressure coefficient of both the cylinders. 
From the analysis of results, it is also noted that at low 
Re, the total drag coefficient (CD) of shear-thinning fluid 
is higher than that of the Newtonian and shear-thickening 
fluids. However, as the value of Re (especially above Re 
=10) increases, the CD of shear-thinning fluid reduces and 
becomes less than that of Newtonian fluid. This behavior 
is attributed to the characteristic of shear-thinning fluid by 
virtue of which it offers less resistance to flow compared to 
a Newtonian fluid with increased agitation above a critical 
value of Re. The variation of lift coefficient (CL) with Re 
divides the entire steady flow range into three different sub-
ranges. In the low and high Re range, the lift coefficient 
remains almost independent of Re; in the medium Reynolds 
number range it shows a strong dependency on Re. Power 
law index (n) has a strong influence on the lift coefficient 
in both the low and medium Re range, whereas the effect of 
n becomes significantly weak on CL in the high Re regime. 
On the basis of this study, for a specific fluid, the flow and 
gap ratio can be optimized to ensure the safety and stability 
of the components in industrial operations.
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NOMENCLATURE

CD	 Drag coefficient, dimensionless
CL	 Lift coefficient, dimensionless
CDP	 Pressure component of drag coefficient, 
	 dimensionless
CDF	 Frictional component of drag coefficient, 
	 dimensionless
CLP	 Pressure component of lift coefficient,  
	 dimensionless
CLF	 Frictional component of lift coefficient,  
	 dimensionless
CP	 Pressure coefficient, dimensionless
D	 Diameter of the cylinder (m)
f	 Vortex shedding frequency (Hz)
FD	 Drag force per unit length of the cylinder (N/m)
CDP	 Pressure drag force per unit length of the
	 cylinder (N/m)
FDF	 Friction drag force per unit length of the
	 cylinder (N/m)
FL	 Lift force per unit length of the cylinder (N/m)
G	 Gap ratio (= g/D), dimensionless
Gc	 Critical gap ratio, dimensionless  
g	 Center-to-center distance between two
	 cylinders (m)
H	 Height (and width) of the square domain (m)
I2	 Second invariant of the rate of strain tensor (s-2)
L	 Length of the cylinder (m)
m	 Power-law consistency index (Pa.sn)
n	 Power-law flow behaviour index, dimensionless
ns	 Unit normal vector to the cylinder surface,  
	 dimensionless
Ni	 Number of points on the surface of the cylinder
P	 Pressure, dimensionless
R	 Radius of the cylinder (m)
Re	 Reynolds number, dimensionless
t	 time, dimensionless
Ux	 - Component of velocity, dimensionless
Uy	 - Component of velocity, dimensionless
U0	 Uniform velocity of the fluid at inlet (m/s)
x, y	 Cartesian co-ordinates, dimensionless

Greek letters
ρ	 Density of the fluid (kg/m3)
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τ	 Shear stress (Pa)
τij	 Shear stress (Pa)
μ	 Viscosity of the fluid (Pa.s)
εij	 Component of the rate of strain tensor (s-1)
θ	 Angular position measured from the front 	
	 stagnation point (degree)

Subscripts and superscripts
i, j	 x- and y- co-ordinates
∞	 Free stream condition
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