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Abstract - Under certain conditions, a fully developed turbulent flow in a straight pipe may show a secondary 
flow; for instance, when non-circular cross-section or non-uniform wall roughness around the perimeter of the 
duct are considered. In horizontal pipe particle-laden gas flow, the non-uniform forcing of the flow by the 
solids entrained in the gas core may also drive a secondary flow, even with uniform wall roughness along the 
circumferential direction. In this paper, the effects of wall roughness, particle size and particle mass loading 
ratio on the secondary flow developing in a horizontal pipe of circular cross-section under turbulent 
conditions are analysed. The computations are based on the Euler-Lagrange approach accounting for wall 
roughness and inter-particle collisions (i.e., four-way coupling). In the case of inertial particles, if inter-
particle collisions are disregarded, the secondary flow consists of two recirculation cells with an upward flow 
near the vertical (symmetry) axis and a downward flow close to the walls. On the other hand, when inter-
particle collisions are accounted for, the pattern depends on the particle concentration profile: with relatively 
smooth walls (low roughness), two recirculation cells are found, but with rough walls four recirculation cells 
are generated. For smaller particles, a transition between two and four recirculation cells in the secondary 
flow is observed by increasing the mass loading ratio. 
Keywords: Secondary flow; Pneumatic conveying; Four-way coupling; Horizontal pipe; Turbulence. 

 
 
 

INTRODUCTION 
 

It is known that, under certain conditions, a fully 
developed turbulent flow in a straight pipe may show 
a secondary flow. For instance, two conditions under 
which secondary flow will occur are a non-circular 
cross-section (Speziale, 1982) and non-uniformwall 
roughness around the perimeter of the duct (Darling 
and McManus, 1968). In horizontal pipe particleladen 
gas flow, however, the non-uniform forcing of the 
flow by the solids entrained in the gas core may also 
drive a secondary flow, even if uniform wall 
roughness along the circumferential direction is 

considered (Huber and Sommerfeld, 1998). These 
authors realized, using the Euler-Lagrange approach 
in a straight circular pipe, that the strength of the 
secondary flow was related with the degree of wall 
roughness: higher roughness implies more intense 
secondary flow. They explained the phenomena by 
the combination of pipe curvature and the 
resuspension effect of wall roughness, which result in 
a ‘focusing’ of the particle trajectories towards the 
pipe centerline. These effects are associated with a 
locally higher momentum transfer from particles to 
the gas phase in the bottom section, inducing a 
secondary flow in the pipe cross-section.  
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Belt et al. (2004) studied the secondary flow in a 
horizontal pipe flow of circular cross-section in a 
simplified test case with LES. In that configuration, 
the effect of particles is introduced with a non-
uniform distribution of fixed particles in one-phase 
turbulent horizontal pipe flow. They found a 
secondary flow with direction opposed to the one 
induced by a non-uniform wall roughness and 
showed that it can be explained by the changes in the 
Reynolds stresses due to the presence of particles. 
Following these authors, these changes are caused by 
‘direct’ and ‘indirect’ effects. The direct effects are 
due to the particle-fluid interaction (acting locally 
around the particles) and the indirect effects due to 
the global modification of the mean axial velocity 
profile, promoted by the changes in the shear stress 
required to compensate the drag of the particles, 
which in turn promotes a change in the production of 
turbulent kinetic energy and Reynolds stresses. In a 
later paper, the same authors (Belt et al., 2005), 
using DNS in conjunction with a non-uniform 
distribution of fixed point-particles with linear 
(Stokes) drag, investigated the relation between the 
indirect turbulence modification promoted by the 
particles and the occurrence of secondary flow. They 
concluded that it is determined by the pattern of 
radial and circumferential Reynolds stresses, whose 
gradients are the dominant terms in the divergence of 
the Reynolds stress tensor. They also compared 
different configurations of particle forcing and 
showed that there are two main mechanisms 
determining the pattern of the Reynolds stresses in 
the pipe cross-section: a ‘blockage’ effect, associated 
with the global modification of the mean axial 
velocity profile, and a ‘roughness-like’ effect, 
associated with the changes in the Reynolds stress 
promoted by the presence of a cloud of particles, 
similar to the Reynolds stress modification induced 
by a rough wall. The ‘blockage’ tends to reduce 
whereas the ‘roughness’ tends to increase the 
production of turbulent kinetic energy and Reynolds 
stresses, so the pattern of the secondary flow 
depends on the distribution and intensity of the 
particle forcing. Recently, Daalmans (2005) 
performed LDA measurements with a non-uniform 
distribution of fixed particles in a horizontal pipe 
flow, allowing them to validate the conclusions from 
the DNS simulations. Nevertheless, these previous 
studies, although important from a basic point of 
view, can be regarded as a modified single-phase 
flow and do not provide much insight about the 
effect of the particle dynamics on the pattern of the 
secondary flow. Moreover, the simplifications in 
such DNS computations are rarely met in two-phase 

industrial flows. For instance, keeping the particles 
fixed implies disregard of the effect of inter-particle 
interactions on the secondary flow pattern. Also, the 
assumed particle Reynolds numbers lower than one 
are only rarely encountered in relevant two-phase 
flows. Therefore, it is needed to investigate the 
influence of the dynamics of the particle phase on 
the secondary flow pattern developing in a circular 
pipe, a task that is performed in the present paper.  

The present paper numerically quantifies the 
effect of wall roughness, particle size and particle 
mass loading ratio on the secondary flow developing 
in a horizontal pipe of circular cross-section under 
turbulent conditions. The computations are based on 
the Euler-Lagrange approach accounting for wall 
roughness and inter-particle collisions (i.e., four-way 
coupling), discussing the effect of them on the 
pattern of secondary flow. As a matter of fact, the 
strength of the secondary flow increases with wall 
roughness and mass loading ratio as was observed by 
Huber and Sommerfeld (1998). Also, the pattern of 
the secondary flow depends on the wall roughness: 
for low roughness we find two recirculation cells, 
whereas for higher roughness four cells are obtained. 
Unfortunately, up to now the authors are not aware 
of any experiment devoted to measure and quantify 
the secondary flow induced by moving particles, so 
this paper presents only the numerical results. 
 
 

SUMMARY OF NUMERICAL APPROACH 
 

The numerical scheme adopted to simulate the two-
phase flow developing in a horizontal channel has been 
the fully coupled stationary and three-dimensional 
Euler/Lagrange approach (Laín et al., 2002). The fluid 
flow was calculated based on the Euler approach by 
solving the Reynolds-averaged conservation equations 
in connection with the k − ε turbulence model 
equations, which were extended in order to account for 
the effects of the dispersed phase, i.e., two-way 
coupling (Kohnen and Sommerfeld, 1997). The time-
dependent three-dimensional conservation equations 
for the fluid may be written in the general form (using 
tensorial notation) as: 
 
( ) ( ) ( )i ik ,k p,t ,i ,i

U S Sφ φρφ + ρ φ = Γ φ + +       (1) 

 
where ρ is the liquid density, Ui are the Reynolds-
averaged velocity components, and Γik is an 
effective transport tensor. The usual source terms 
within the continuous phase equations are 
summarized in Sφ, while Sφp represents the 
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additional source term due to phase interaction. 
Table 1 summarizes the meaning of these quantities 
for the different variables φ, where P is the mean 
pressure, μ the dynamic gas viscosity and 

' '
jl j lR u u= the components of the Reynolds stress 

tensor. The simulation of the particle phase by the 
Lagrangian approach requires the solution of the 
equation of motion for each computational particle. 
This equation includes the particle inertia, drag, 
gravity-buoyancy, slip-shear lift force and slip-
rotational lift force. 
 
Table 1: Summary of terms in the general equation 
for the different variables that describe the gas 
phase k − ε model. 
 

φ  ikΓ  Sφ  

1 0 0 

jU  ( )T ikμ + μ δ  ( )

( )
, j jk i,k ,i

2
T k,k j3 , j

P U

k U g

− + Γ

− ρ + μ + ρ

 

k  ( )T
ik

k

μ
σ

μ + δ  P − ρε  

ε  ( )T
ik

μ
σε

μ + δ  
2

1 2c P / k c / kε εε − ρ ε  

ij i, jP R U= −ρ  

2k
T cμ ε

μ = ρ  

( ) ( )2
ij T k,k T i, j j,i3

R k U U Uρ = ρ + μ − μ +  

1 2c 0.09c 1.44c 1.92μ ε ε= = =  

k 1.0 1.3εσ = σ =  

  
The Basset history term, the added mass and the 

fluid inertia are negligible for high ratios of particle to 
gas densities (Crowe et al., 1998). The change of the 
angular velocity along the particle trajectory results 
from wall collisions and the viscous interaction with 
the fluid (i.e., the torque T). Hence, the equations of 
motion for the particles are given by: 
 

p i
p i

dx
u

dt
=                (2) 

 

( )p i 3
p p D i p i p4

p p

p i ls i lr  i
p

du
m m c u u u u

dt D

m g 1 F F

ρ
= − − +

ρ
⎛ ⎞ρ

− + +⎜ ⎟⎜ ⎟ρ⎝ ⎠

    (3) 

p i
p i

d
I T

dt
ω

=                                        (4) 

 
Here, xp i are the coordinates of the particle 

position, up I are its velocity components, ui = 
Ui+ui’ are the components of the instantaneous 
velocity of the gas, Dp is the particle diameter and 
ρp is the density of the solids. mp = (π/6)ρpD3p is the 
particle mass and Ip = 0.1mpD2p  is the moment of 
inertia for a sphere. The drag coefficient is obtained 
using the standard correlation: 
 

( )1 0.687
p p p

D
p

24 Re 1 0.15Re  Re 1000
c     

0.44                                Re 1000 

−⎧ + ≤
⎪= ⎨

>⎪
⎩

   (5) 

 
where Rep = ρDp|u − up|/μ is the particle Reynolds 
number.  

The slip-shear force is based on the analytical 
result of Saffman (1965) and extended for higher 
particle Reynolds numbers according to Mei (1992): 
 

( )p1/2
ls p s ls

u u
F 1.615D Re c

⎡ ⎤− × ω⎣ ⎦= μ
ω

      (6) 

 
where ω =  ×u is the fluid rotation, Res = ρD2 
p|ω|/μ is the particle Reynolds number of the shear 
flow and cls = Fls/Fls,Saff  represents the ratio of the 
extended lift force to the Saffman force: 

 

( )

( )

pRe /100.5 0.5
p

ls
0.5

p p

1 0.3314 e +0.3314 Re 40
c

0.0524 Re                              Re 40 

−⎧ − β β ≤
⎪

= ⎨
⎪ β >⎩

 (7)  

 
And β is a parameter given by β = 0.5Res/Rep 

(0.005 < β < 0.4). 
The applied slip-rotational lift force is based on 

the relation given by Rubinow and Keller (1961), 
which was extended to account for the relative 
motion between particle and fluid. 
 

( )p3
lr p lr p

r

Re
F D c u u

8 Re
π ⎡ ⎤= ρ Ω × −⎣ ⎦                          (8) 

 
With Ω = 0.5 ×u−ωp and the Reynolds number 

of particle rotation is given by Rer = ρD2p|Ω|/μ. The 
lift coefficients clr considered are those according to 
the proposal of Lun and Liu (1997), given by: 
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r
p

p
ls

r
p p

p

Re                                           Re 1Re
c

Re 0.5220.178 0.822Re    1<Re 1000 Re
⎛ ⎞
⎜ ⎟
⎝ ⎠

⎧ ≤⎪⎪= ⎨
−⎪ + <

⎪⎩

  (9) 

 
For the torque acting on a rotating particle the 

expression of Rubinow and Keller (1961) was 
extended to account for the relative motion between 
fluid and particle and higher Reynolds numbers: 
 

5
p

R
D

T c
2 2

⎛ ⎞ρ
= Ω Ω⎜ ⎟

⎝ ⎠
              (10) 

 
where the coefficient of rotation is obtained from 
Rubinow and Keller (1961) and direct numerical 
simulations of Dennis et al. (1980) in the following 
way: 
 

r
r

R

r0.5
r r

64                     Re 32Re
c     

12.9 128.4+       32< Re 1000 Re Re

π⎧ ≤⎪⎪= ⎨
⎪ <
⎪⎩

   (11)   

 
The equations to calculate the particle motion are 

solved by integration of the differential equations 
(Eqs. 2-4). For sufficiently small time steps and 
assuming that the forces remain constant during this 
time step, the new particle location and the linear and 
angular velocities are calculated. The time step for 
the particle tracking was chosen to be 50 % of the 
smallest of all relevant time scales, such as the 
particle relaxation time, the integral time scale of 
turbulence and the mean inter-particle collision time, 
which is enough to avoid numerical instabilities 
(Göz et al., 2004). 

Following the approach of Sommerfeld et al. 
(1993), the instantaneous fluctuating fluid velocities 
seen by the solids are built according to the 
following Langevin equation: 
 

( ) ( )n 1 n 2
i P,i i f P,i iu ' R t, r u' 1 R t, r dW+ = Δ Δ + σ − Δ Δ     (12) 

 
where the superscripts denote the time step and the 
subscripts the spatial component. Δt is the 
aforementioned Lagrangian time step and Δr is the 
distance between the fluid particle and the actual 
solid particle after the time Δt. σf =(2k/3)1/2 is the 
rms value of the fluid velocity and dWi denote 
independent Wiener processes with zero mean and 
unit variance. 

The correlation functions RP, i have Lagrangian 
and Eulerian components: 
 

( ) ( ) ( )P,i L E,iiR t, r R t R rΔ Δ = Δ Δ       (13) 
 
where no sum is understood in the repeated index i. 

The Lagrangian correlation is an exponential 
depending on the Lagrangian integral time scale TL: 
 

( )
2
f

L L T
L

tR t exp ;  T C
T

⎛ ⎞Δ σ
Δ = − =⎜ ⎟ ε⎝ ⎠

     (14) 

 
with CT = 0.24. The Eulerian correlation functions 
are expressed as: 
 

( ) ( ) ( ){ } ( )

( )

( )

i j
EE,ij ij2

E

E E

r r
R r f r g r g r

r

rf r exp ;
L

r rg r 1 exp
2L L

Δ Δ
Δ = Δ − Δ + Δ δ

Δ

⎛ ⎞Δ
Δ = −⎜ ⎟

⎝ ⎠

⎛ ⎞ ⎛ ⎞Δ Δ
Δ = − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

  (15) 

 
with the Eulerian length scale LE = CLTLσf  and  
CL = 3.0. 

When a particle collides with a wall, the wall 
collision model provides the new particle linear and 
angular velocities and the new location in the 
computational domain after rebound. The applied 
wall collision model, accounting for wall roughness, 
is described in Sommerfeld and Huber (1999). The 
wall roughness seen by the particle is simulated 
assuming that the impact angle is composed of the 
particle trajectory angle plus a stochastic 
contribution due to wall roughness, sampled from a 
normal distribution with a standard deviation Δγ, 
which depends on the structure of wall roughness 
and particle size. In the present calculations, using 
monodispersed particles of two different diameters, 
the value of Δγ is varied in order to study its effect 
on the secondary flow induced by the solid particles.  

Suggested by former experiments (Sommerfeld 
and Huber, 1999), the particle-wall restitution, ew, 
and friction, μw, coefficients depend on the impact 
angle α. In this study, and suggested by the 
mentioned experiments, they are expressed as: 
 

( )

( )

w

w

e max 0.8,1 0.01 ;

max 0.1,0.4 0.015

= − α

μ = − α
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Inter-particle collisions are modelled by the 
stochastic approach described in detail by 
Sommerfeld (2001). This model relies on the 
generation of a fictitious collision partner and 
accounts for a possible correlation of the velocities 
of colliding particles in turbulent flows. For the 
particle-particle collisions, the restitution coefficient 
has been taken as a constant equal to 0.9 and the 
static and dynamic friction coefficients were chosen 
to be 0.4. 
 
 

INFLUENCE OF PARTICLES ON THE 
CARRIER FLOW 

 
The standard expression for the momentum 

equation source term due to the particles has been 
used. It is obtained by time and ensemble averaging 
of the particle trajectories for each control volume in 
the following form: 
 

( )

ipU k k
cv k

n 1 n
p i p i i Lk k pn

1S m N
V

u u g 1 t
+

= − ×

⎧ ⎫⎛ ⎞ρ⎪ ⎪⎡ ⎤ ⎡ ⎤− − − Δ⎜ ⎟⎨ ⎬⎣ ⎦ ⎣ ⎦ ⎜ ⎟ρ⎪ ⎪⎝ ⎠⎩ ⎭

∑

∑
       (16) 

 
where the sum over n indicates averaging along the 
particle trajectory (time averaging) and the sum 
over k is related to the number of computational 
particles passing the considered control volume 
with the volume Vcv. The mass of an individual 
particle is mk and Nk is the number of real 
particles in one computational particle. ΔtL is the 
Lagrangian time step, which is used in the solution 
of Eq. (3). 

The source term in the conservation equation of k 
variable is expressed in the Reynolds average 
procedure as: 
 

jp jpk j U j US u S U S= −          (17) 

 
While the source term in the ε-equation is modeled 
in the standard way: 
 

p 3 kpS C S
kε ε
ε

=              (18) 

 
with Cε3 = 1.8 and the sum is implicit in the 
repeated sub-index j. 

FLOW CONFIGURATION AND SIMULATION 
CONDITIONS 

 
The chosen flow configuration has been the 

horizontal pipe two-phase flow of Tsuji and 
Morikawa (1982). The cylindrical glass pipe had a 
total length of 4000 mm and an inner diameter of 
30.5 mm. The test section was situated at 3560 mm 
from the entrance. Tsuji and Morikawa used plastic 
pellets with density ρp = 1020 kg/m3 and diameters 
of 0.2 and, 3.5 mm in their experiment. Full details 
about the experimental facility and measurement 
technique can be found in the original paper (Tsuji 
and Morikawa, 1982). From that set of experiments, 
the case with gas bulk velocity U0 =10 m/s, particles 
of diameter 0.2 mm and mass loading ratio η0 =2.2 
has been selected as a base case. 

The x-axis coincides with the pipe symmetry axis, 
the y-axis is aligned with the gravity direction and the 
z-axis is orthogonal to both. The curved surfaces of the 
cylinder are defined to be walls in the simulation 
whereas the left side was specified as an inlet and the 
right part as an outlet boundary condition. The inlet 
profile for the mean horizontal gas velocity was 
uniform corresponding to the experimental bulk 
velocity, i.e., 10 m/s. The inlet values for the turbulent 
quantities were also uniform and made equal to 1 m2/s2 
for the turbulent kinetic energy. However, its exact 
value is not very relevant as long as the single-phase 
flow reaches a fully developed state (i.e., L/D > 131) 
before the measuring location. 

Solid particles are injected at the inlet with the same 
mean velocity as the fluid bulk velocity and with a 
prescribed mass loading. The injection velocities are 
sampled from a Gaussian distribution with fixed mean 
and rms velocities. The exact values employed were the 
following: for the horizontal velocity, mean = 10 m/s 
and rms = 0.5 m/s; for the vertical and azimuthal 
velocities, mean = 0 m/s and rms = 0.5 m/s. The 
particles experience particle-wall and inter-particle 
collisions along their trajectories and they leave the 
computational domain at the outlet. 

All the calculations shown here have been 
performed with a structured five-block mesh (with 
hexahedral elements) of 400 control volumes along 
the pipe length and 400 control volumes in the pipe 
cross-section, giving a total number of 160,000 
control volumes. Such a resolution was found to be 
sufficient for producing grid-independent results as 
is shown in Fig. 1, where the profile of mean gas 
velocity is presented versus the grid density (80000, 
160000 and 240000 control volumes). From that 
figure, it can be seen that the profiles for the fine and 
finest grid are coincident, while for the coarser grid 
some differences can be appreciated. 
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Figure 1: Dependency of the two-phase flow mean 
gas velocity with grid density (results for the base 
case of Tsuji and Morikawa (1982)). 

 
A converged solution of the strongly coupled 

two-phase flow system is obtained by successive 
solution of the Eulerian and Lagrangian part, 
respectively. Initially, the flow field is calculated 
without particle phase source terms until a converged 
solution is achieved. Thereafter, a large number of 
parcels are tracked through the flow field (typically 
240,000) and the source terms are sampled. In this 
first Lagrangian calculation, inter-particle collisions 
are not calculated, since the required particle phase 
properties are not yet available. Hence, for each 
control volume the particle concentration, the local 
particle size distribution and the size-velocity 
correlations for the mean velocities and the rms 
values are sampled when a computational particle 
crosses this location. These properties are updated 
each Lagrangian iteration in order to allow correct 
calculation of inter-particle collisions. From the 
second Eulerian calculation, the source terms of the 
dispersed phase are introduced using an under-
relaxation procedure (Kohnen et al., 1994). For the 
present calculations typically about 25 to 35 
coupling iterations with an under-relaxation factor 
between 0.5 and 0.1 were necessary in order to get 
full convergence. It should be pointed out that the 
cases with the highest loading ratios needed stronger 
under-relaxation resulting in an increase of the 
number of Euler-Lagrange iterations. A typical run 
took around three days on a 3.8 GHz Intel Pentium 
IV processor. 
 
 

RESULTS AND DISCUSSION 
 

In first place the performance of the presented 
numerical approach is briefly illustrated for the base 
case from the Tsuji and Morikawa experiments, i.e., 

gas bulk velocity U0 =10 m/s, particles of diameter 
0.2mm and mass loading ratio η0 =2.2. Figure 2 
presents the results for the mean velocities of both 
phases (gas and particles) at the location x = 3.56 m 
from the entrance, obtained with four-way coupling 
(i.e., considering inter-particle collisions) and a wall 
roughness parameter Δγ = 1.5o. In the particle mean 
velocities the results obtained using two-way 
coupling (i.e, disregarding inter-particle collisions) 
are also presented, showing the expected behaviour 
that the particle conveying velocity is slightly lower 
when inter-particle collisions are considered. The 
calculations show reasonably good agreement with 
the measurements. In this respect, the values of the 
present computations are similar to others found in 
the literature, e.g. Zhu et al. (2004). 

 

 
Figure 2: Mean velocities for the fluid (upper graph) 
and particles (bottom graph) in the base case 
considered of the Tsuji and Morikawa (1982) 
experiment. Δγ = 1.5o. 

 
The emphasis of the actual study is the secondary 

flow induced in the gas phase by the particles, as has 
been mentioned in the introduction. In all the 
presented simulations, the inlet conditions for the gas 
phase and particles are exactly the same (i.e., mean 
and fluctuating velocities). As it can be readily seen 
from Figure 3, the single-phase flow presents no 
secondary flow at all, showing perfectly concentric 
mean velocity contours, which indicates that the flow 
is already fully developed at the measuring location.  
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Figure 3: Mean gas velocities for the 
single-phase flow at the location 3.56 m 

from the pipe inlet. U0 = 10 m/s. 

Figure 4: Cross-sectional projection of particle  
trajectories for the 200 μm particles.Δγ = 10 o (up)  

and Δγ = 1.5 o (bottom). 
 

Figure 5: Vertical projection of particle trajectories for the 200 μm particles. Δγ = 10 o (up) and Δγ = 1.5 o (bottom). 
 

In the following, the pattern of the induced 
secondary flow in the gas phase by the particles is 
examined under different situations. In short, the 
influence of the following physical parameters is 
evaluated: particle diameter, Dp; wall roughness 
parameter, Δγ; degree of coupling between the phases, 
two-way versus four-way coupling; and particle mass 
loading ratio η. All the results are presented for the 
cross-section located at 3.56 m from the pipe inlet and 
bulk conveying velocity U0 = 10 m/s. The Figures 6 to 
13 present the results in the same format: the upper 
contour plot comprises the gas mean axial velocity 
and the streamlines of the secondary flow, the middle 
graph shows the mean axial particle velocity and the 
lower plot presents the normalized particle mass 
concentration along the cross-section. 

In the first case, a particle diameter of Dp = 200 μm 
and particle mass loading ratio η0 = 2.2 are considered 
(i.e., the same as in the Tsuji and Morikawa 
experiments). Figures 6 and 7 show the results 
obtained considering inter-particle collisions (i.e., four-
way coupling) with roughness parameters Δγ = 1.5 o 
and 10 o, respectively. These particles are quite inertial; 
therefore, it is expected that their dynamics are 
governed by particle-wall and inter-particle collisions, 
the turbulent fluid-particle interaction playing a minor 
role. The secondary flow in Figure 6 (top) clearly 

presents two fairly symmetric recirculation zones with 
the maximum mean fluid velocity displaced towards 
the upper half of the pipe cross-section. 

This effect is due to the fact that wall roughness 
is low and hence unable to resuspend the particles 
efficiently (Laín et al., 2002). Consequently, the 
particle concentration (Figure 6, bottom) has its 
maximum in the lower half of the pipe cross-section 
due to the gravitational settling. Moreover, the pipe 
wall curvature results in a ‘focusing’ of the rebound 
particle trajectories towards the pipe centreline, 
which explains the high values of particle mass 
concentration near and below the pipe symmetry 
axis. Additionally, the higher concentration in this 
area supports the occurrence of inter-particle 
collisions. These effects are related to a locally 
higher momentum transfer to the gas phase in the 
lower half and the secondary flow develops in the 
pipe cross-section. However, the intensity of this 
secondary flow is, in this case, quite low, around   
0.2 % of the gas bulk velocity. The mean particle 
axial velocity contour plot (Figure 6, middle) 
resembles that of the gas phase, having its maximum 
in the upper half of the pipe cross-section. 

Figure 7 presents the results with a roughness 
parameter Δγ = 10 o, i.e. considerably higher wall 
roughness, keeping the rest of the conditions equal to 
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those in Figure 6. The top graph in Figure 7 shows 
that the induced secondary flow has four 
recirculation zones instead of the two seen before. 
This fact is due to the more even distribution of the 
particles across the pipe section (Figure 7, bottom). 
In this case the particles bounce from wall to wall 
(see Figs. 4 and 5), also experiencing inter-particle 
collisions, resulting in an enhancement of 
momentum loss of the particles and, hence, a lower 
value of the mean particle velocity (Figure 7, 
middle) with respect to the lower roughness case. 
Therefore, the number of particle wall collisions with 
the upper wall is increased (being comparable to that 
with the lower wall) inducing the two extra 
recirculation cells in the gas secondary flow. A clear 
saddle node can be seen, which is slightly displaced 
towards the left side. Moreover, due to the quasi-
uniform concentration of particles, the maximum of 
the mean axial gas and particle velocities is located 
in the pipe center. However, the contours of mean 
velocity are elongated along the horizontal direction. 

Another feature is that the particle mean velocity 
is nearly uniform across the pipe cross-section. 

An intermediate wall roughness is considered in 
Figures 8-9, i.e. Δγ = 5 o. In this case, the comparison 
of the flow patterns obtained with two-way (Figure 8) 
and four-way (Figure 9) coupling is addressed. When 
inter-particle collisions are accounted for, the flow 
picture is similar to that presented in Figure 7. 
However, because of the lower roughness, the 
particle concentration is less uniform and, hence, the 
number of particle-wall collisions with the lower 
wall is higher that with the upper wall. This results in 
two upper recirculation cells whose size is smaller 
than that of the lower cells. The picture when only 
two-way coupling is taken into account is very 
different (figure 8). In such case, and due to the 
curved walls and gravitational settling, the particles 
are concentrated in the lower part near the pipe 
center, the concentration being quite low in the 
vicinity of the upper wall. Eventually, only two 
recirculation cells appear in the cross section and the 
maximum mean axial fluid velocity is displaced 
towards the upper half of the pipe cross-section. The 
particle phase mean axial velocity tends to be 
relatively uniform, with its lower value also near the 
upper wall due to the low concentration in this area. 

Next, we consider a smaller particle diameter, 
namely Dp = 50 μm, keeping fixed a roughness 
parameter of Δγ = 10 o. This implies, of course, that 
the particle number density increases regarding the 
previous situations. Moreover, these smaller particles 
will interact with the gas turbulence more effectively, 
i.e., the particle motion will be governed by particle-

wall as well as inter-particle collisions, and turbulent 
fluid-particle interaction effects. Therefore, it is 
expected that they will follow better the fluid phase 
dynamics than the larger particles, whose motion was 
mainly governed by particle-wall interactions and 
inter-particle collisions. With the smaller particles, the 
effect of varying the mass loading ratio of particles, η, 
on the secondary flow is examined below.  

Figure 10 shows the results obtained for a mass 
loading ratio η0 = 2.2 with four-way coupling. 
Consequently, the influence of the particle diameter on 
the secondary flow can be illustrated. In this case, due 
to the relatively strong fluid-particle interaction and 
gravitational settling, the particles tend to be focused in 
a more or less circular area located in the lower half of 
the pipe cross-section (Figure 10, bottom), instead of 
being uniformly distributed (as was the case with the 
large particles). The wall collision frequency with the 
upper side is remarkably smaller than with the lower 
side. Consequently, the maximum mean axial velocity 
of both phases, gas and particles, is displaced towards 
the upper half of the pipe cross section. Similarly to 
the situation presented in Figure 6, the secondary flow 
consists of two large recirculation cells with strength 
of 1 % of the bulk gas velocity.  

If the particle mass loading ratio is doubled, i.e., 
η = 2η0, the results in Figure 11 are obtained. The 
particle mean axial velocity and concentration 
contours are similar to the previous case; however, 
the increasing number of inter-particle collisions 
decreases the normalized particle concentration in 
the vicinity of the lower wall (Figure 11, bottom). As 
there are more particles in the pipe core region, the 
effective number of collisions of particles with the 
upper wall increases. This results in a higher 
momentum transfer from the particle to the gas in 
that area, which originates an incipient recirculation 
cell (Figure 11, top) in the upper part of the pipe 
cross-section. If the particle mass loading is further 
increased, i.e., η = 4η0, two upper recirculation cells 
appear in the secondary flow pattern (Figure 13, top). 
When only two-way coupling is taken into account, 
the situation is very different (Figure 12). On the one 
hand, the particles are concentrated near the lower 
wall, originating two very clear recirculation cells 
with a strength around 2.5% of the fluid bulk 
velocity, and the contours of the mean gas axial 
velocity are quite distorted. This behavior is the 
same found by Belt et al. (2005) using DNS in a pipe 
flow, keeping the particles fixed in what they call the 
‘far’ distribution configuration. As turbulent fluid-
particle interaction is the main governing mechanism 
in this case, the mean particle axial velocity profile 
follows that of the gas phase.  
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Figure 6: Streamlines of the secondary flow and gas mean axial velocity (top). Particle mean axial velocity  

(middle). Normalised particle mass concentration (bottom). Δγ = 1.5 o. Dp = 200 μm. Four-way coupling. 

 
Figure 7: Streamlines of the secondary flow and gas mean axial velocity (top). Particle mean axial velocity  

(middle). Normalized particle mass concentration (bottom). Δγ = 10 o. Dp = 200 μm. Four-way coupling. 

 
Figure 8: Streamlines of the secondary flow and gas mean axial velocity (top). Particle mean axial velocity  

(middle). Normalized particle mass concentration (bottom). Δγ = 5 o. Dp = 200 μm. Two-way coupling. 

   
Figure 9: Streamlines of the secondary flow and gas mean axial velocity (top). Particle mean axial velocity  

(middle). Normalized particle mass concentration (bottom). Δγ = 5 o. Dp = 200 μm. Four-way coupling. 
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Figure 10: Streamlines of the secondary flow and gas mean axial velocity (top). Particle mean axial velocity (middle). 

Normalized particle mass concentration (bottom). Δγ = 10 o. Dp = 50 μm. Four-way coupling. η = η0. 

  
Figure 11: Streamlines of the secondary flow and gas mean axial velocity (top). Particle mean axial velocity (middle). 

Normalized particle mass concentration (bottom). Δγ =10 o. Dp = 50 μm. Four-way coupling. η = 2η0. 

Figure 12: Streamlines of the secondary flow and gas mean axial velocity (top). Particle mean axial velocity (middle). 
Normalized particle mass concentration (bottom). Δγ = 10 o. Dp = 50 μm. Two-way coupling. η = 4η0. 

 
Figure 13: Streamlines of the secondary flow and gas mean axial velocity (top). Particle mean axial velocity (middle). 

Normalized particle mass concentration (bottom). Δγ = 10 o. Dp = 50 μm. Four-way coupling. η = 4η0. 
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CONCLUSIONS 
 

The Euler-Lagrange approach has been used to 
numerically study the pattern of the secondary flow 
induced in horizontal pipe cross-sections by the 
presence of particles. Inter-particle collisions as well 
as particle-rough wall interactions have been taken 
into account in the computations. In particular, two 
different particle diameters have been used: 200 μm 
and 50 μm, with a density of 1020 kg/m3. The 
dynamics of the large particles, being quite inertial, 
are mainly governed by particle-wall and inter-particle 
collisions, whereas in the case of smaller particles the 
turbulent fluid-particle interaction plays a significant 
role. When inter-particle collisions are disregarded, 
the secondary flow consists of two recirculation cells 
with an upward flow near the vertical (symmetry) axis 
and a downward flow close to the side walls, for all 
the cases considered here. The strength of this 
secondary flow increases with roughness and with 
particle number density. When inter-particle collisions 
are accounted for, the pattern depends on the particle 
concentration profile: with relatively smooth walls 
(low roughness), two recirculation cells are found, but 
with rough walls four recirculation cells are generated 
due to the more uniform particle distribution within 
the pipe cross-section. In the case of low roughness 
(or disregarding inter-particle collisions), the particle 
motion is governed by collisions with the bottom of 
the pipe, hence focusing is only found in the lower 
cross-section. When the particles are better dispersed 
due to higher wall roughness, the collision frequency 
with the upper wall also increases, so particles are also 
focused in the upper part of the pipe cross-section. In 
this case, four recirculation cells are developed. For 
the smaller particles, increasing the mass loading 
ratio, and therefore the number of inter-particle 
collisions, a transition between two and four 
recirculation cells in the secondary flow is observed. 
The maximum strength found in this study for the 
secondary flow is around 2.5 % of the gas bulk 
velocity.  
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NOMENCLATURE 
 
c    model constant (-)
cD   drag coefficient  (-)
D   diameter  m
F   force N
g   gravity  m/s2

I   moment of inertia kg m2

k   turbulent kinetic energy m2/s2

m   mass  kg
P   mean pressure  Pa
R   Reynolds stress tensor  m2/s2

Re   Reynolds number (-)
S   source term equation 
t   time s
T   torque  kg m2/s2

u   instantaneous velocity  m/s
U   mean velocity m/s
x   position  m
 
Greek Letters 
 
β  parameter slip-shear force  (-)
Δγ  wall roughness parameter (-)
Γ  Diffusion tensor 
δ Kronecker delta (-)
ε  dissipation rate  m2/s3

η  mass loading ratio (-)
μ  dynamic viscosity  kg m−1s−1

φ  generic variable 
 production term  kg m2/s3

ρ  density kg/m3

ω  angular velocity  s−1

Ω  relative angular velocity s−1

 
Subscripts 
 
p  particle  
i  tensor subscript  
cv  control volume  
L  Lagrangian quantity  
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