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Abstract  -  In the present work, some numerical and computational aspects of COSMO-based activity 
coefficient models were explored. The residual contribution in such models rely on the so called self-consistency 
equation. This equation does not have a closed-form solution and is usually solved by the successive substitution 
method. The performance of a classical Newton-Raphson method was tested in solving the self-consistency 
equation. The results obtained by the Newton implementation and by successive substitution agreed within 
the convergence tolerance. The CPU times for solving the model using both methods also were compared. 
Contradicting the usual experience, it was observed that the Newton method becomes slower than successive 
substitution when the number of components (or number of COSMO segments) in the mixture increases. An 
analysis of the number of floating point operations required showed the same, Newton’s method will be faster 
only for small systems.
Keywords: COSMO-RS; COSMO-SAC; F-SAC; Newton; Quasi-Newton.

INTRODUCTION

Accurate prediction of mixture behavior and phase 
equilibrium properties are of great importance in the 
design, efficient operation, control and optimization 
of industrial plants. Currently the predictive activity 
coefficient models of greater success are UNIFAC 
(Fredenslund et al.,  1975) and its variations, at least 
for engineering purposes. However, UNIFAC and its 
variants require a large amount of experimental data 
for the determination of their parameters. 

In this sense, the a priori COSMO-based models, 
such as COSMO-RS (Klamt,  1995) and variations, 
are interesting alternatives for the prediction of 
activity coefficients in mixtures and phase equilibria 
calculations. For example in the work of Gerber 
and Soares  (2013), the freely available version of 
Dortmund’s modified UNIFAC Jakob et al. (2006) and 
COSMO-SAC models performances for predicting 

experimental infinite dilution activity coefficient data 
were compared. The results showed that COSMO-
SAC provided more reliable predictions for multi- 
functional or more complex molecules. 

The increasing popularity of COSMO-based 
models led to continuous modifications proposed 
in the literature – e.g., COSMO-SAC (Lin and 
Sandler,  2002), COSMO-RS(Ol) (Grensemann 
and Gmehling,  2005), and F-SAC (Soares and 
Gerber,  2013;  Soares et al.,  2013). The COSMO 
(COnductor-like Screening MOdel) theory was 
first developed by Klamt and Schuurmann  (1993) 
in order to compute the effects of solvents and 
solvation energies. Based on COSMO methodology, 
Klamt  (1995) developed the COSMO-RS (Realistic 
Solvation) model. This model enabled the translation 
from an ideal state (complete solvated molecule in 
a perfect conductor) to the real solution, when in 
contact with other molecules. 
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Each molecule is considered as a collection 
of surface segments and the chemical potential is 
calculated for the segments using the interaction 
energies between the segments. Then, the chemical 
potential for each molecule is computed by summing 
the segment energies. 

Consider, for example, one possible contact for 
benzene and acetone molecules, as shown in Figure 1. 

For each contact between the two molecules, 
the conductor is partially excluded. Eventually, 
the molecules in solution are completely put in 
contact with each other and the real solution state is 
achieved. It is evident that there are infinite possible 
arrangements for these contacts, therefore, a statistical 
thermodynamics treatment is necessary. 

Using the COSMO-SAC (Lin and Sandler, 2002) 
nomenclature, the activity coefficient of a segment 
Γm, resulting from the statistical thermodynamics 
treatment, either in a pure liquid or mixture, is given 
by: 

such as Wilson, NRTL, UNIQUAC and UNIFAC 
variants. While the classical models are explicit 
equations, COSMO-based models relying on 
Equation 1 do not have a closed form expression. 
This equation is also known as the self-consistency 
equation (Klamt,  1995;  Klamt et al.,  1998;  Lin and 
Sandler, 2002; Grensemann and Gmehling, 2005). 

It is noteworthy that Equation 1 is actually a system 
of equations, consisting of one equation for each 
molecular segment m. Each molecule can have dozens 
of different segments, leading to a very large system of 
equations to be solved in mixtures of several different 
substances. Further, the actual computation of activity 
coefficients requires the solution of a system like 
Equation 1 for each pure compound and one for the 
mixture. In Figure 2 the actual segment centers (small 
balls) are shown for some typical molecules when using 
the JCOSMO package of Gerber and Soares (2010). 

The freely available COSMO-SAC FORTRAN 
code of Virginia Tech (available at http://www.
design.che.vt.edu/VT-Databases.html) represents all 
molecules with a fixed maximum number of segments 
(51 segments per molecule) with surface charge 
densities σ equally distributed in the range from 
-0.025 to 0.025 e/Å2. However, as can be observed 
in Figure 2, the total number of segments obtained in 
the COSMO calculation (small balls) usually is much 
more than 51. This is actually treated by averaging 
and merging segments with similar surface charge 
densities as a single segment with equivalent area. 
As a side effect of this procedure, frequently there are 
segments with zero area (surface charge densities not 
observed in the molecule). 

When the maximum number of segments is fixed 
at 51 segments per molecule within the limit of 
±0.025 e/Å2, segments differing by less than Δσ51 
= 0.001 e/Å2 are not distinguished. If the maximum 
number of segments per molecule is reduced to only 
11 segments, Δσ11 = 0.005 e/Å2. Typically this 
information is omitted and a continuous histogram of 
area vs. apparent surface charge density σ is presented, 
as shown in Figure 3-(a). These histograms are known 
as σ–profiles. 

However, the representation of σ–profiles in 
COSMO-type codes is actually discrete, as shown in 

Figure 1. Representation of two molecules in contact 
according to COSMO-RS theory.

Figure 2. COSMO surface charge density segment centers (small balls) for some molecules.
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where pn is the probability of finding a segment n 
either in a pure liquid or mixture; and ΔWm,n is the 
interaction energy for the contact between segments 
m and n. 

Solving Equation 1 for the activity coefficient 
represents a particular difference between COSMO-
type and classical activity coefficient models, 

(1)
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Figure  3. Typical continuous (smoothed) σ–profile 
(a); actual representation with Δσ51=0.001 e/Å2  (b); 
and Δσ11=0.005 e/Å2 (c).

(a) Continuous

(b) Δσ51 = 0.001 e/Å2 (51 seg.)

(c) Δσ11 = 0.005 e/Å2 (11 seg.)

Figure 3(b) and 3(c). As more segments per molecule 
are considered, less information from the COSMO 
computation is lost, but the CPU cost and memory 
usage for solving the model are increased. 

In the COSMO-SAC and F-SAC implementations 
of our group, within the JCOSMO package (Gerber 
and Soares,  2010), the merging of segments with 
similar surface charge densities is optional and Δσ 
can be configured. Further, segments with zero area 
are not taken into account. Thus, different molecules 
can end up with different numbers of segments. This 
makes the implementation more complex, but reduces 
the computational cost and memory usage. 

In the works of Klamt  (1995);  Klamt et 
al. (1998); Lin and Sandler (2002), only a few of the 
computational issues regarding the methods for solving 
the self-consistency equation are explored. According 
to Klamt  (1995) and;  Klamt et al.  (1998), the self-
consistency equation must be solved by numerical 
iteration. The authors report the use of a successive 
substitution method. 

Lin and Sandler (2002) also give no details on the 
numerical procedures for solving the self-consistency 
equation. One may suppose a successive substitution 
is used to solve Equation 1. Moreover, the COSMO-
SAC FORTRAN code of Virginia Tech is implemented 
with a simple successive substitution method as well. 

In the recent F-SAC model (Soares and 
Gerber, 2013; Soares et al., 2013), the numerical issues 
in solving the self-consistency are almost not explored 
as well. The F-SAC demonstration FORTRAN 
code, freely available at https://github.com/lvpp also 
implements the same successive substitution as in the 
code of Virginia Tech. 

Therefore, in the present work the computational 
and numerical characteristics of COSMO-type models 
are further explored. The performance of a classical 
Newton-Raphson implementation (Press et al., 1992) is 
tested in the solution of Equation 1. Numerical results 
and computational costs of the Newton method and of 
the classical successive substitution are compared for 
different mixtures. 

Further, one particular problem with the freely 
available COSMO-based codes is the difficulty to 
map from the formulations available in the literature 
to the actual implementations. Thus, in the appendix 
a more complete description of the COSMO-SAC 
(Lin and Sandler,  2002) and F-SAC(Soares and 
Gerber,  2013;  Soares et al.,  2013) formulations is 
given with equations and variables organized as in the 
actual freely available codes of Virginia Tech (http://
www.design.che.vt.edu/VT-_Databases.html) and 
the F-SAC demonstration FORTRAN code (https://
github.com/lvpp) and as in the implementations of 
our group, within the JCOSMO package(Gerber and 
Soares, 2010). 

SOLUTION OF THE SELF-CONSISTENCY 
EQUATION

Successive Substitution
In the work of Klamt  (1995) a successive 

substitution implementation is used to solve the self-
consistency equation, Equation 1. According to the 
author, the method starts with an unitary initial guess 
for all segments and updates it iteratively. To avoid 
numerical oscillations, the activity coefficient values 
are updated by the average of the previous and the new 
values. This procedure can slow down the convergence, 
but still leads to convergence within milliseconds in 
regular personal computers. 

In the COSMO-SAC and F-SAC implementations 
of our group, a similar methodology is used. In order 
to apply a successive substitution method in Equation 
1, one can eliminate the logarithm on both sides, as 
follows: 
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By doing this, the activity coefficient of one 
segment Γm can be updated as a function of the other 

Γ Γ
∆

m n n n

W
RTp e
m n

=












∑
− −

,
1

Figure 4. Successive substitution method fluxogram.

n segments. Figure 4 shows a simplified fluxogram of 
the algorithm, while a pseudo-code form is given in 
Algorithm 1. 

As described in the fluxogram in Figure 4, the 
algorithm starts by setting the activity coefficient of all 
segments as 1.0 (initial guess). The initial guess was 
chosen as 1.0 for all segments because it corresponds 

(2)
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to the ideal solution case. Then, for each segment a 
new value of Γm is calculated using Equation 2. These 
updated values are always reused, and the method 
continues until the difference between the new and the 
current values of the Euclidian norm of the segments 
vector is smaller than a given tolerance. 

From the Algorithm 1, the number of floating 
point operations (FLOP) for each iteration can be 
roughly estimated by simply counting the number of 
operations. It is noteworthy that, in our implementation, 
the matrix with elements given by exp(-ΔWm,n/RT) is 
computed only once for a given temperature and then 
stored. Thus, for each element of the sum in Equation 
2 (inside the n-loop), only 2 multiplications and 1 
addition are needed. This results in approximately 
3 . nseg FLOP per segment, where nseg is the total 
number of segments in mixture. 

For the m-loop, the number of FLOP per segment 
resulting from the n-loop must be first summed with 
5 additional operations: 3 accounting for line 14 (the 
−1 exponent, the sum and the division by 2); and 2 for 
line 15 (the 2 exponent and the sum). Then, it should 
be multiplied by the number of segments, resulting in 
3 . nseg2 + 5 . nseg FLOP per segment. 

For the total number of operations, the latter number 
of FLOP per segment needs to be summed with 4 more 
operations, due to the expressions in lines 17, 18 and 
23. This results in an upper limit of 3 . nseg2 + 5 . nseg 
+ 4 total FLOP per iteration. 

Newton-Raphson
As noted in the previous sections, successive 

substitution is reported as the method of choice 
for most implementations when solving the self-
consistency equation given by Equation 1. Naturally, 
it could be solved by another numerical method, for 
instance, Newton’s method. 

In the present paper, a classical Newton method 
is proposed as an alternative for solving the self-
consistency equation. The Newton method, also called 
Newton-Raphson, is widely known and used for 
engineering purposes. For continuous functions, with 
continuous derivatives, and when given a good initial 
guess, usually this method converges very rapidly 
(Press et al., 1992). 

The Newton method for a generalized vectorial 
system F(x) = 0 can be given by:

In order to apply Newton’s method in Equation 1, 
one can eliminate the ln on both sides and put it in a 
residual form, as follows: 
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For each element of the Jacobian matrix, Equation 
5 needs to be differentiated with respect to the activity 
coefficient of a given segment Γj: 
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where Am,n = pn exp(-ΔWm,n/RT); and the partial 
derivative ∂Γm/∂Γj = 1 when m = j and ∂Γm/∂Γj = 0 
otherwise. 

The Newton-Raphson method, as described by 
Equation 3 may, therefore, be applied to solve the 
vectorial system given by Equation 5 by using the 
Jacobian matrix with elements as in Equation 6. It is 
noteworthy that this Jacobian matrix will be dense, 
with all elements as potential non-zero elements. 

In this paper, the classical Newton algorithm as 
given by the Numerical Recipes (Press et al., 1992) was 
implemented within the computer program JCOSMO 
described in Gerber and Soares (2010). Figure 5 shows 
the proposed algorithm fluxogram. The pseudo-code 
for this implementation is shown in Algorithm 2. 

Basically, the method works as follows: first, 
the activity coefficient of all segments are set as 1.0 
(initial guesses). Again, the initial guess was chosen as 
1.0 for all segments because it corresponds to the ideal 
solution case. Then, the function (Equation 5) and the 
Jacobian (Equation 6) are calculated. Finally, the new 
activity coefficients for all segments are calculated in 
the matrix operation given by Equation 3. The method 
continues until the difference between the new and the 
current values of the Euclidian norm of the segments 
vector is smaller than a given tolerance. 

Again, the number of FLOP for each iteration can 
be estimated by counting the number of operations 
necessary in the method given in Algorithm 2. For the 
n-loop, 2 multiplications (line 12) and 1 addition (line 13) 
are needed. This results in 3 .nseg operations per segment. 

(3)

(4)

(5)

(6)
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Figure 5. Newton method fluxogram implemented in this work.
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For the m-loop, the 3 . nseg operations (n-loop) 
must be multiplied by nseg and summed with the 3 
additional operations: 1 multiplication and 1 subtraction 
in line 16; and 1 summation in line 17. This results in 
3 . nseg2 + 3 . nseg operations per iteration. The latter 
number must be summed with the FLOP necessary for 
solving the linear expression in Equation 3 (line 19), 
by LU decomposition and solution. In the Numerical 
Recipes (Press et al., 1992), the author estimates a total 
of (2∕3) . nseg3 floating point operations for the linear 
system solution (by LU), resulting in (2∕3) . nseg3 + 3 
. nseg2 + 3 . nseg FLOP per iteration. 

Finally, the number obtained before is summed 
with 2 .nseg + 4 (convergence check, lines 21 – 28). 
This results in an overall FLOP of (2∕3) .nseg3 + 3 
.nseg2 + 5 .nseg + 4 per iteration. 

RESULTS AND DISCUSSION

In this section it was verified whether the Newton 
and the successive substitution methods lead to the 
same results, within a given tolerance. Furthermore, 
the number of iterations and computational times 
necessary for converging with each method are 
compared. For both numerical methods, the activity 
coefficient of all segments started with the value of 1.0 
(initial guesses). Since the objective is to compare the 
methods for solving the self-consistency equation, no 
combinatorial contribution was considered in the tests. 

Table 1 shows the results for a mixture of acetone 
+ chloroform, at T = 298  K, with mole fraction of 
acetone equal to 0.519. In the COSMO-SAC model 
implementation used in this work (Gerber and 
Soares,  2010), the molecules have 25 (acetone) and 
20 (chloroform) segments. In the F-SAC formulation 
of Soares and Gerber  (2013);  Soares et al.  (2013), 
these molecules have only 5 segments each. Activity 
coefficient calculations were also performed for 
several other systems, with different temperatures and 
compositions, but are not shown here. 

It can be observed in Table 1 that the calculated activity 
coefficients for the tested system, using both successive 
substitution and Newton-Raphson, for each considered 
model, agreed with each other within a given tolerance 
of at least 10−7. It is noteworthy the poor performance 
of COSMO-SAC when compared to the experimental 
data of Mueller and Kearns (1958). F-SAC, on the other 

hand, perfomed better, mainly because it was previously 
calibrated (Soares et al., 2013) with experimental data for 
the considered mixture (acetone/choloform). However, 
evaluating the performances of the COSMO-SAC and 
F-SAC models against experimental data is out of scope 
of the present work. 

Similar to the results reported in Table 1, both 
methods (successive substitution and Newton-Raphson) 
produced essentially the same numerical results for 
all tests presented in this section. Nevertheless, no 
attempt was made to prove either the existence or the 
unicity of the solution of Equation 1 in this work. As 
expected, the Newton method required fewer iterations 
for convergence in all tests. However, contradicting 
the usual experience, higher computational times (not 
shown) were observed for the Newton method. 

Further tests for other systems with different 
numbers of components (and then different number of 
segments) revealed that the Newton method becomes 
slower (in terms of CPU time) than successive 
substitution for systems with more than a certain 
number of segments. For all tests reported in this work, 
only the solution of Equation 1 for the mixture is taken 
into account, since the solution of Equation 1 for pure 
compounds should produce analogous responses (with 
respect to the number of segments). Such results can 
be observed in Figure 6 when using the COSMO-SAC 

Table 1. Newton and successive substitution (S. Subst.) results using COSMO-SAC and F-SAC for acetone (1)/
chloroform (2), at T = 298.15 K, with mole fraction of acetone equal to 0.519, Δσ51 = 0.001 e/Å2 and a tolerance of 
ϵ = 10−8. Experimental data (Mueller and Kearns, 1958): lnγ1 = -0.1820112 and lnγ2 = -0.2966690.

Figure 6. Successive substitution and Newton method 
average computational times for solving the “self-
consistency” equation against the mixture number of 
segments.
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implemented in the JCOSMO program (Gerber and 
Soares, 2010). 

All the calculations were performed on a 4GB 
RAM Intel core i5 personal computer, running 
Ubuntu 14.04 LTS. The average computational times 
for solving the self-consistency equation by the 
successive substitution and Newton methods in Figure 
6 were computed for the following equimolar mixtures 
at T = 298  K: cyclohexane + n-octane; cyclohexane 
+ n-octane + benzene; cyclohexane + n-octane + 
benzene + toluene; cyclohexane + n-octane + benzene 
+ toluene + chloroform; cyclohexane + n-octane + 
benzene + toluene + chloroform + acetone; chloroform 
+ diethyl ether; cyclohexane + water; and benzene + 
toluene + water. 

This set of mixtures covers a broad variety of 
deviations, ranging from negative deviations, nearly 
ideal mixtures (γi ≈ 1), up to highly positive deviations 
(hydrocarbon/water). In Table 2 the numbers of 
COSMO segments considered for each molecule are 
listed for different values of Δσ. 

As can be observed in Table 2, the simple 
cyclohexane + n-octane mixture presents 21 segments 
already, when using Δσ51. However, as mentioned in 
the Introduction, the COSMO-SAC implementation 
of our group actually allows the maximum number of 
segments per molecule to be configured. Therefore, in 
order to create mixtures with less than 21 segments, 
the mixtures were also computed with Δσ11 and the 
results are shown in Figure 6, in the range from 6 to 
25 segments. 

The results in Figure 6 for equimolar mixtures 
contradict the usual experience that the Newton 
method is faster than successive substitution. Actually, 
it is widely known that the rates of convergence are 
linear and quadratic for Successive Substitution and 
Newton methods, respectively (Press et al., 1992). 

In fact, only a few (3 to 5) iterations were required 
by the Newton method in all tests, while more than 20 
iterations, on average, were observed for successive 
substitution, indicating a higher convergence rate for 
Newton. The difference is in the computational cost of 
each iteration. 

As described in the previous section, solving 
Equation 1 by successive substitution takes 3 . nseg2 

+ 5 . nseg + 4 FLOP per iteration, where nseg is the 
mixture number of segments. Considering an average 
of 20 iterations for solving each system, successive 
substitution requires about 20 . (3 .nseg2 + 5 .nseg + 
4) FLOP. On the other hand, considering an average of 
only 4 iterations for the Newton method, it takes about 
4 . [(2/3) . nseg3 + 3 . nseg2 + 5 . nseg + 4] FLOP. 
Figure 7 shows these expected FLOP results. 

It is observed that the results are qualitatively 
consistent with the numerical outcomes obtained in 
Figure 6. Even though the FLOP counting is only an 
approximation of the computational effort, it helps to 
understand the observed behavior. With this analysis, 
one can conclude that the Newton method, particularly 
for COSMO-based models, will usually be slower than 
a simple successive substitution method. Further, the 
substitution method will be even more efficient as the 
number of components (or segments) increases. 

In order to investigate situations with even higher 
values of γi, similar tests were also performed for 
infinitely dilute systems (equimolar mixtures were 
considered in previous tests). The tested systems 
were cyclohexane, acetone, chloroform, cyclohexane 
+ n-octane, cyclohexane + toluene, cyclohexane + 
n-octane + toluene, cyclohexane + n-octane + toluene + 
benzene, cyclohexane + n-octane + toluene + benzene 
+ chloroform, cyclohexane + n-octane + toluene + 
benzene + chloroform + acetone, all infinitely dilute in 
water, at T = 298 K, with both Δσ11 and Δσ51. 

These infinitely dilute mixtures produce a highly non-
ideal response, with the natural logarithm of the activity 
coefficients ranging from 2 to 9. The computation times 
for these cases are shown in Figure 8. 

As can be observed in Figure 8, the main difference 
from Figure 6 is where the computation time curves 
cross. It is expected that highly non-ideal systems 

Table 2. Number of segments for each molecule used 
in the numerical comparison shown in Figure 6.

Figure 7. Number of FLOP required for solving the 
“self-consistency” equation versus the mixture number 
of segments.
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would require more iterations to converge. In fact, 
while about 20 iterations were required to solve the 
problems in Figure 6 (equimolar mixtures), about 45 
iterations were necessary in Figure 8 (infinitely dilute) 
for successive substitution. On the other hand, only 
about 5 iterations were required for converging all 
systems in Figure 8 when using the Newton’s method. 

Further, as can observed in the Formulation 
section, the FLOP numbers are directly dependent on 
the number of iterations required for each method. 
Therefore, one concludes that as the non-idealities 
become higher, the number of segments where the 
methods become equivalent will increase. However, 
the conclusion that the Newton method, particularly 
for COSMO-based models, will usually be slower than 
a simple successive substitution method as the number 
of components (or segments) increases is maintained 
and confirmed for highly non-ideal systems. 

Such results can also be observed for the theoretical 
FLOP results, shown in Figure 9. These results use the 
same basis considered in Figure 7, but with the number 
of iterations updated to 45 and 5 for the successive 
substitution and the Newton method, respectively. 

We have also investigated if different temperatures 
would lead to different computation times. Thus, 
simulations for higher temperatures, 373  K and 
423  K, were also performed. The obtained results 
were essentially the same (not shown for the sake of 
conciseness). 

One possible theoretical explanation for the observed 
anomalous behavior of the successive substitution 
and Newton methods when solving COSMO-based 
models is the particular form of Equations 2, 5 and 6. 
As can be observed in the Jacobian matrix, the second 
term on the right hand side of Equation 6 will only be 
different from zero in its diagonal. Nonetheless, this 

matrix will always be dense. However, assuming that 
the summation ∑n Am,n . Γn >>. Γm . Am,j then the 
Jacobian matrix has diagonal elements much larger 
than the off-diagonal terms. Under these assumptions, 
one could simply approximate the Jacobian matrix by 
a diagonal matrix with elements given by: 

Figure 8. Successive substitution and Newton method 
average computational times for solving the “self-
consistency” equation against the mixture number of 
segments for infinitely dilute systems in water.

Figure 9. Number of FLOP required for solving the 
“self-consistency” equation versus the mixture number 
of segments for infinitely dilute systems in water.
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When applying Equation 8 in Equation 3 one gets: 
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being essentially the equation used in the successive 
substitution method described in the section Successive 
Substitution. 

Therefore, in this particular problem, the successive 
substitution method actually works as a quasi-Newton 
method with the Jacobian replaced by a diagonal 
matrix approximation. Then, the method has improved 
convergence rate properties without the cost of solving 
a dense linear system per iteration. 

Features like symmetry can be exploited in the 
Newton-Raphson method. However, for our particular 
problem, unless it is a fortuitous case, the Jacobian 
matrix will never be symmetrical, given that pn and 
Γn are not symmetric vectors (see Equation 6). Also, 
because of the summation in the self-consistency 
equation (see Equation 5), one segment activity 
coefficient within the mixture depends on the other 
segments, therefore, the resulting Jacobian matrix 
will always be dense. A drop tolerance for elements in 
the Jacobian matrix could also be used; the effort per 
iteration would be reduced but the number of iterations 
will probably be higher. This was left for future work. 

CONCLUSIONS

In this work, a Newton-Raphson method was tested 
in the solution of the so-called self-consistency equation 
of the residual contribution of COSMO-based models. 
The implementation was checked by comparing 
the activity coefficient results for several mixtures, 
using the Newton and the previously implemented 
successive substitution methods. The results agreed 
within a tolerance of 10−7 for the activity coefficients 
when a convergence tolerance of 10−8 was set. 

As expected, the Newton-Raphson method showed 
a higher convergence rate for all our tests. However, 
it was observed that this method becomes slower (in 
terms of CPU time) than successive substitution when 
the number of components (or segments) in the mixture 
increases. This apparent contradiction is also verified 
by an analysis of the required floating point operations 
(FLOP). The Newton method FLOP cost depends on 
the cubic power of the number of segments, while the 
substitution method cost grows with the square of the 
number of segments. On the one hand the substitution 
method requires more iterations than the Newton 
method, but on the other hand this is not sufficient to 
counter-balance the extra effort per iteration. 
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APPENDIX

COSMO-SAC formulation
In the COSMO-SAC model (Lin and Sandler, 2002), 

the activity coefficient for the liquid phase γi can be 
calculated as: 

The probability of finding a segment m in a mixture 
s (σ–profile of mixture) is: 

ln ln lnγ γ γi i
comb

i
res= +

where ln  γicomb and ln  γires are, respectively, the 
combinatorial and the residual contributions. 

The combinatorial contribution is given by the 
Staverman-Guggenheim formula, as described by 
Lin and Sandler  (2002). While the combinatorial 
contribution is well known, the residual contribution 
is more complex. Here we provide a formulation 
particularly useful when trying to understand the freely 
available FORTRAN codes of Virginia Tech  (2015) 
and LVPP  (2015) and the implementations of our 
group, within the JCOSMO package(Gerber and 
Soares, 2010). 

The residual contribution is calculated as the 
difference between the free energy to restore the 
charge around the solute molecule in solution, s, and 
to restore the charge in a pure liquid, i: 

ln ln lnγi
res

m i

m
i
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m
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iQ
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= −( )

∈
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where aeff is the standard segment surface area, which 
is the same for all molecules and is one of the universal 
parameters in this model; lnΓms is the logarithm of the 
activity coefficient of a segment m in solution and lnΓmi 
in pure liquid, given by the “self-consistency” equation: 
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And the probability of finding a segment m in a 
pure liquid i (σ–profile of the pure compound) is: 

p Q
Qm

i m
i

i=

where Qi
m is the surface area of the segment m of 

molecule i; and Qi = Sm∈i Q
i
m is the total cavity surface 

area of molecule i. 
Finally, the interaction energy for each contact 

between segments m and n can be computed under 
different assumptions. Using the formulation of Lin 
and Sandler (2002), it is computed as a function of the 
segment charges σm and σn: 
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where α′ is the constant for the misfit energy; ϵ0 = 
2.395 × 10-4 (e2 mol)/(kcal Å) is the permittivity of 
vacuum; fpol is the polarization factor; chb is a constant 
for hydrogen bonding (HB); σhb is the sigma-value 
cutoff for hydrogen bonding; σacc and σdon are the larger 
and smaller values of σm and σn. 

As stated before, the actual computation of activity 
coefficients is accomplished by solving Equation 13a 
one time for each pure compound and Equation 13b 
for the mixture. 

F-SAC formulation
The F-SAC (Soares and Gerber,  2013;  Soares et 

al.,  2013) formulation is actually almost identical to 
the formulation present in the COSMO-SAC model. 

(11)

(12)

(13a)

(13b)

(14)

(15)

(16)

(17)
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The differences lie on the σ–profiles and the interaction 
energy, as described below. 

In F-SAC, instead of using COSMO calculations to 
obtain the σ–profiles for the molecules, it is proposed 
that each molecule is subdivided into functional groups 
(group contribution theory) and each functional group 
has its own empirically calibrated σ–profile: 

where T0 is a reference temperature, taken as 323.15 K; 
βm,n is given by the following combining rule for each 
contact between the segments m, n: 

σ σk k k k kQ Q Q− − + +( ) ( ) ( ){ }, ; , ; ,0 0

where the σ-profile of each functional group is 
represented by three empirical parameters: Qk+, Qk− 
and σk+. Qk+ represents the functional group area of 
the positive segment; Qk− is functional group area of 
the negative segment; and σk+is the charge density of 
the positive segment. With these definitions, the neutral 
area Qk0 is given by the remaining area of the group 
surface area: Qk0 = Qk − Qk+ − Qk−; and, by a charge 
balance to keep each group neutral, the group negative 
charge density can be computed as σk− = −σk+Qk+∕Qk−. 

The interaction energy for each contact between 
segments m and n was modified in Possani et 
al. (2014a,b) and is given by: 
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with βm, βn being the electrostatic temperature 
dependence parameters for the group segments m, 
n, respectively; and EHB accounts for hydrogen bond 
(HB) formation with its temperature dependence given 
by the following expression : 

θ β
m n
HB T Te m n

HB
o

,
,= − −( )

where the pairwise parameter  should be adjusted 
with temperature dependent experimental data for each 
HB acceptor-donor pair and EHB

0 is the HB formation 
energy when T = T0.

Finally, extensions are easily implemented by 
improving the calculation of the interaction energy 
ΔWm,n. For instance, in the work of Flôres et 
al. (2016) a new contribution for dispersion forces was 
introduced.
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