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Abstract - The paper presents the results of experimental verification of the simplified set of scaling 
parameters for which the particle density as well as the cold model length scale may be chosen independently. 
The tests were carried out on two large scale 1/10 and 1/20 geometrically similar cold models of the Lagisza 
966 MWth supercritical CFB boiler. The proposed set of dimensionless quantities allowed the Lagisza 966 
MWth CFB boiler to be closely modeled by cold models. However, the agreement between the hot bed and cold 
model's suspension density distributions is better for the 1/10 scale cold model. That suggests that the choice of 
the scale of a cold model is not without effect on the macroscopic movements of solids in the riser. Moreover, 
the study shows that a simplification of the scaling laws which excludes the very important solid-to-gas density 
ratio can give acceptable results over a wide range of boiler loadings. 
Keywords: Fluidization; Similitude; Modeling; Dimensionless numbers. 

 
 
 

INTRODUCTION 
 

The main environmental advantage of Circulated 
Fluidized Bed (CFB) technology is its ability to burn 
a diverse range of difficult low grade fuels of varying 
quality with low emissions of NOx, low-cost sulfur 
capture during combustion in the furnace itself, as 
well as low CO and CxHy emissions due to turbulent 
conditions and good mixing (Nowak and Mirek, 
2013). Although CFB boilers have been investigated 
extensively for a long time because of their undenia-
ble advantages, it is still impractical to design and 
operate them based on theoretical models (Qi et al., 
2008). Due to the complex flow behavior that charac-
terizes gas-solid systems, a complete description of 
circulating fluidized bed hydrodynamics remains a 
challenging task (Detamore et al., 2001). In the ab-
sence of alternative methods, scaling rules developed 
over the last two decades proved to be a reasonable 
tool for the scale-up and scale-down of fluidization 
processes (Sierra et al., 2009). As has been noted by 

Horio (1996), there have been three different ap-
proaches to the scaling law of fluidized beds: classical 
dimensional analysis (e.g., Buckingham π-theorem), 
differential equations (or, more specifically, non-di-
mensionalization of the continuum equations that 
describe multiphase flows) and theoretical solutions 
and experimental correlations. 

Taking into consideration the second approach and 
differential equations derived by Anderson and Jack-
son (1967), Glicksman and coworkers (1994) formu-
lated the following set of dimensionless quantities 
describing the state of the full hydrodynamic similar-
ity between two unlike CFB systems: 
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All these groups, respectively, refer to the Froude
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number FrH based on the gas superficial velocity U0, 
the solid to gas density ratio, the particle Reynolds 
number Rep, the Reynolds number ReH based on the 
riser height, the dimensionless solids flux, the particle 
sphericity φ , the particle size distribution and finally 
the geometrical characteristics. In formulation of the 
dimensionless quantities in Eq. (1) a general assump-
tion has been made that particle to particle and parti-
cle to wall coefficients of restitution and friction, 
electrostatic forces and cohesion can be neglected 
(van der Meer et al., 1999). As follows from the set 
of scaling relationships, Eq. (1), apart from the re-
quirement for geometric similarity, particle sphericity 
and particle size distribution, there are eight parame-
ters 0( , , , , ), , ,p f p sU  H  g  ρ  ρ  μ  d  G  of importance to 
flow in the combustion chamber of a CFB boiler. Five 
of the above eight parameters called dependent ones 

0( , , , , ),p p sH ρ  d  G U  cannot be chosen independently. 
Their values are the result of the scaling calculations. 
The remaining three parameters ( , , )f gρ μ called in-
dependent ones, can be chosen independently. The 
full set of scaling parameters requires that the small-
scale unit needs to be roughly 0.25 the size of a CFB 
boiler and operated with particles of a density of 3.82 
ρp (where ρp denotes here the particle density in a 
boiler) (Glicksman, 2003). Therefore, in scaling ex-
periments where the only aim is to reflect the 
macroscopic flow pattern and the conditions in the 

boiler’s combustion chamber satisfy the relationship 
Rep ≤ 15 (van der Meer et al., 1999), the set of scaling 
groups can be reduced to the following form 
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The use of the set of scaling relationships in Eq. 

(2) allows the reduction of the number of dependent 
parameters from five to three and the increase of the 
flexibility in the scaling process. Thanks to this, it is 
possible to choose independently the cold model size 
as well as of the density of the particles in the scale 
model. In practice, the existence of two independent 
parameters leads to a question about the influence of 
the scale of a cold model as well as the density of an 
inert material, on the macroscopic movements of 
solids and the riser solids hold-up by volume inside 
the combustion chamber of a CFB boiler. 

The use of a particulate material of a density lower 
than that resulting from the set of scaling groups in 
Eq. (1) in scaling experiments has been the subject of 
studies by many authors (Horio, 1996; Leckner et al., 
2011; Kolar and Leckner, 2006; Mirek, 2011; Glicks-
man et al., 1987; Glicksman et al., 1993). Those stud-
ies have shown that a wide range of particulate mate-
rials of densities ranging from 1410 to 8800 kg/m3 
can be used in scaling experiments (see Table 1). 

 
 

Table1: Particulate materials and scale factors used in scaling experiments. 
 

 Scaled model References 

ρp, kg/m3 dp, μm Scale factor 

Plastic 
1410 144.5; 99.5 0.25; 0.0625 Glicksman et al. (1993) 
1440 136 - Bricout and Louge (2004) 

FCC 1500 67 - Qi et al. (2008) 
FCC Catalyst 1780 46.4 0.25 Horio (1996) 

Sand 
2368 125 0.17 Kolar and Leckner (2006) 
2710 461 - Qi et al. (2008) 

Glass beads 
2500 71.4 0.05 Mirek (2011) 
2530 97 - Bricout and Louge (2004) 
2558 81.6; 88.3; 112.3; 78.7 0.25; 0.0625 Glicksman et al. (1993) 

Iron 7860 56 0.11 Leckner et al. (2011) 

Steel 
8027 46 0.11 Leckner et al. (2011) 
8097 200 0.25 Glicksman et al. (1987) 
7300 58; 49.5 0.25; 0.0625 Glicksman et al. (1993) 

Bronze 
8563 73.4; 69.5 0.17 Kolar and Leckner (2006) 
8800 60 0.11 Sterneus et al. (2002) 
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As has been reported by Kolar and Leckner 
(2006), the use of a particulate material of an arbi-
trary density is not without an effect on the quality of 
the scaling process. Measurements taken on a trans-
parent 12 MWth boiler model (of scale of 1/6) operat-
ing at Chalmers University have clearly shown that 
the use of bronze particles (ρp = 8563 kg/m3, dp = 
73.4 μm, 69.5 μm) allows a better matching of the 
static pressure curves to be achieved, compared with 
sand particles (ρp = 2368 kg/m3, dp = 125 μm). A 
similar conclusion has been reported by Glicksman 
et al. (1993). Based on the results of the viscous limit 
scaling using different particle densities (glass parti-
cles: ρp = 2558 kg/m3, dp = 112.3 μm; plastic parti-
cles: ρp = 1410 kg/m3, dp = 144.5 μm; steel parti-
cles: ρp = 7300 kg/m3, dp = 57.7 μm), they found that 
the solid density profiles of the two hot and cold (the 
length ratio - 1/4 of the combustor) beds matched 
fairly well, especially for steel powder used as the 
inert material. 

The second parameter, whose value can be theo-
retically assumed at an arbitrary level, is the cold 
model scale. It has been noted that when the full set 
of scaling parameters is used, a cold model of an 
atmospheric combustor has linear dimensions approx-
imately one-quarter those of the combustor (Glicks-
man, 2003). Nevertheless, as follows from Table 1, a 
wide range of scale factors ranging from 0.05 to 0.17 
have been used by many researchers in scaling ex-
periments. Kolar and Leckner (2006) carried out the 
scaling experiments on a 1/6 scaled-down version of 
a 12 MWth CFB boiler operating at Chalmers Uni-
versity. The authors did not comment on the choice 
of the cold model length scale but claim that it is not 
possible to match all the nine scaling parameters 
simultaneously between the boiler and the cold 
model. From their point of view, particle size distri-
bution as well as fluidizing velocity play a signifi-
cant role in matching all scaling requirements. The 
operational characteristics of a 1/9 scaled-down plas-
tic model used by Sterneus et al. (2002) have been 
calculated based on the following set of dimension-
less numbers: 
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As with work carried out by Kolar and Leckner 

(2006), the authors did not comment on the choice of 
the cold model length scale, but treat it as an input 
parameter for calculation of all small-scale equiva-
lents. As a consequence, the gas velocity in the scale 
model is lower and is equal to 1/3 of the boiler ve-

locity (Sterneus et al., 2002). In the scaling experi-
ments carried out by Glicksman et al. (1993), the 
operating conditions for a 1/16 cold model were 
calculated based on a simplified set of scaling rela-
tionships of the following form: 
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As follows from experimental studies, the simpli-

fied set of dimensionless parameters in Eq. (4) al-
lowed the atmospheric CFB boiler Studsvik 2.5 MWth 
(cross-section: 0.7×0.6 m) to be closely modeled by 
the 1/16 cold model. Moreover, as has been noted by 
Glicksman et al. (1993), the average solid fraction 
profiles between the 1/4 scale cold model and the 
1/16 scale cold model are in excellent agreement. 
This means that the simplified set of parameters in 
Eq. (4), which includes the gas to solid density ratio, 
can give acceptable results over a wide range of par-
ticle densities and bed sizes, even when the cross-
section of a cold model is as small as 0.044×0.037 m. 
In summary, there are two things that most of the 
above-mentioned works have in common:  

 in modeling of circulating fluidized bed hy-
drodynamics using the simplified set of dimension-
less parameters, the choice of a cold model's length 
scale smaller than 1/4 is made without giving any 
reason, 

 in modeling of large scale hot combustors with 
relatively small cold models, the solid to gas density 
ratio, particle size distribution and the fluidizing 
velocity play a significant role. 

However, this brings up two questions:  
 are there any other simplified sets of scaling 

parameters, especially excluding the solid to gas 
density ratio, that allow a cold model to model the 
macroscopic flow pattern occurring in the atmos-
pheric CFB boiler? 

 how does the scale of the cold model influence 
the vertical distribution of the inert material flowing 
inside the combustion chamber? 

The purpose of the present paper is experimental 
verification of the simplified set of scaling parame-
ters for which the particle density as well as the cold 
model length scale may be chosen independently. 
The unique feature of the current effort is that the 
experimental investigation has been conducted on 
two large scale 1/10 and 1/20 geometrically similar 
cold models of the Lagisza 966 MWth supercritical 
CFB boiler operating at the company TAURON 
Wytwarzanie SA - The Lagisza Power Plant, Poland. 
Of particular interest is the influence of the cold 
model length scale on the average solid fraction pro-
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files between the Lagisza 966 MWth CFB boiler and 
the 1/10 and the 1/20 scale cold models. 
 
 

DESCRIPTION OF THE SIMPLIFIED 
SCALING LAWS 

 
The use of three dimensionless groups for simi-

larity between circulating fluidized beds is justified 
only for small Reynolds numbers (Red< 4) (Glicks-
man et al., 1993). In this case, the simplified set of 
scaling relationships can be written as follows: 
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             (5) 

 
As can be noted from the comparison of dimen-

sionless groups in Eqs. (1) and (5), in the simplified 
set of Eq. (5) the density ratio ρp/ρf has been ex-
cluded. The exclusion of this group is only justified 
when the similarity between macroscopic flow fields 
is more important than the sizes of clusters. Given 
that for CFBs the terminal velocity is a more appro-
priate parameter than minimum fluidization velocity, 
the set Eq. (5) can be re-expressed in the form pro-
posed by van der Meer et al. (1999): 
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As the measurement of the external solids circula-

tion flux sG  in the Lagisza 966 MWth CFB boiler is 
very difficult to accomplish, it is alternatively as-
sumed that the set of Equations (6) can be substituted 
with the set of the following form: 
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As can be easily noticed, the Froude number and 

the ratio 0/ ( )s pG ρ U  in the set Eq. (6) have been 
substituted with the particle Reynolds number and 
the Archimedes number, respectively. Introducing 
the Archimedes number allows the direct determina-
tion of particle size on the scaling model and, as a 
consequence, the determination of the superficial 
velocity U0 from the condition of equality of particle 
Reynolds numbers. Due to the fact that the Lagisza 
966 MWth CFB boiler operates within the viscous 
flow range (Rep<15), in the set of criterial numbers 
in Eq. (7) the density ratio ρp/ρf was omitted. When 
determining the dimensionless terminal velocity of 

particles in the boiler, U*, and the terminal velocity, 
ut, the drag coefficient Cd was calculated using the 
relationship given by Cheng, (2009): 
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where ݀∗ refers to the dimensionless particle diame-
ter, defined as follows: 
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EXPERIMENTAL STUDY 
 
Operational Tests - Lagisza 966 MWth Supercriti-
cal CFB Boiler 
 

A reference facility for the cold model studies 
was the Lagisza 966 MWth supercritical CFB boiler 
operating at the company TAURON Wytwarzanie 
SA - The Lagisza Power Plant, Poland (Figure 1).  

The size of the combustion chamber at the grid 
level is 27.6 m long and 5.3 m wide.The depth of the 
combustion chamber grows with increasing distance 
from the grid. At the height of 8.95 m, the combus-
tion chamber widthis 10.6 m and does not change 
with a further increase of the distance from the grid. 
The total height of the combustion chamber is 48 m. 
During the tests, the boiler was fired with bituminous 
coal (Ziemowit coal mine, Poland) with properties 
given in Table 2. 

The proximate analysis of the bituminous coal 
was carried out with the help of the LECO TruSpec 
CHNS analyzer in accordance with PN-G-04584 and 
PN-G-04571 Standards. The low heating value (LHV) 
of the bituminous coal was determined with the help 
of the C 2000 basic IKA calorimeter in accordance 
with Standard PN-81/G-04513. The moisture, vola-
tile matter and the ash contents of the coal have been 
determined in accordance with PN-80/G-04511, PN-
G-04516:1998 and PN-80/G-04512/Az1:2002 Stand-
ards. The inert material samples were taken from the 
dense combustion chamber region at the hight of 8.3 
m from the grid. These samples contained the broad-
est particle diameters spectrum and have been used 
for further cold model studies.A detailed description 
of the sampling method can be found in (Mirek, 
Ziaja, 2011). The operational tests were carried out 
for steady boiler operation conditions under the loads 
and with the primary (PA) to secondary air (SA) ratios 
as shown in Table 3.  
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the higher values of superficial velocity cause higher 
values of solids suspension density along the height 
of the boiler’s combustion chamber. 

The use of the simplified set of scaling relation-
ships in Eq. (7) allows an increase in flexibility in the 
scaling process. The number of dependent parameters 
can be reduced from five to three while maintaining 
the fluidization regime, macroscopic movements of 
solids and the distribution of solids suspension den-
sity along the height of the combustion chamber. 
Thanks to this, a large number of experiments can be 
performed for designing new CFB boilers and for 
modifying those whose performance can be im-
proved. This requires, however, that the tests be car-
ried out for small Reynolds numbers. 
 
 

NOMENCLATURE 
 
A cross-sectional area (m2) 
Ar Archimedes number  

3 2( /)p f p fd gρ ρ ρ μ−  (-) 
Cd drag coefficient (-) 

pd  particle diameter (m) 

*d  dimensionless particle diameter (-) 

32d  Sauter mean particle diameter (m) 

50d  mass mean particle diameter (m) 
D  riser hydraulic mean diameter 4 /A P   

(m) 
g  acceleration of gravity (m/s2) 
h height (m) 
H combustion chamber height (m) 
Hb boiler's combustion chamber height (m) 
Hm cold model's combustion chamber height 

(m) 
FrH Froude number based on H  

2
0 / ) U gH  (-) 

sG  external solids circulation flux (kg/m2s) 
kx, ky, kz scale factor in x, y and z directions (-) 
L  width of the core region along the line of 

measurements (m) 
1 2,L L  cross-sectional bed dimensions (m) 

MCR Maximum Continuous Rating (%) 
bm  mass flow of solids in the boiler (kg/s) 

mm  mass flow of solids in the cold model 
(kg/s) 

0U  superficial gas velocity (m/s) 

0bU  superficial gas velocity in the boiler (m/s) 

0mU  superficial gas velocity in the cold model 
(m/s) 

U* dimensionless velocity, ( )1/34 / (3 )  d dRe C  
(-)  

mfu  minimum fluidization velocity (m/s) 

tu  terminal velocity of particle (m/s) 
p pressure (Pa) 
P wetted perimeter of the cross-section (m) 
PSD particle size distribution 
PA/SA primary/secondary air ratio (-) 

HRe  Reynolds number based on the riser height 
H (-) 

pRe  particle Reynolds number (-) 

T temperature (K) 
x coordinate of the combustion chamber 

height (m) 
 
Greek Letters 
 

bρ solids suspension density (kg/m3) 
fρ gas density (kg/m3) 
pρ particle density (kg/m3) 

ϕ particle sphericity (-) 
μ gas viscosity (Pa s) 
ε static porosity (-) 
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