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Abstract - Genome-scale metabolic models based on a combination of genome sequence and biochemical 
information have strongly influenced the field of systems biology. However, basic principles of the operation 
of metabolic networks, in particular the central metabolism can be easily studied in smaller metabolic (core) 
models. Komagataeibacter hansenii ATCC 23769 has been used for bacterial nanocellulose (BNC) biosynthesis, 
and the recent availability of its genome sequence allowed the development of a metabolic model. The core 
metabolic model was constructed from an initial draft metabolic reconstruction including 74 reactions and 68 
metabolites that provides insights for a better understanding of K. hansenii metabolic pathways. The applicability 
of the model is finally demonstrated by applying the FBA approach, and the in silico simulation successfully 
predicted the minimal medium and the growing abilities on different substrates. This core model can facilitate 
system-level metabolic analysis as well as developments for improving BNC production.
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INTRODUCTION

Metabolic models have a promising ability to describe 
cellular phenotypes accurately and to relate the annotated 
genome sequence to the physiological functions of a 
cell (Covert et al., 2001; Kim et al., 2015). There is an 
extensive diversity of unexplored metabolism encoded 
into the genomes of microorganisms and a huge gap in 
understanding the link between the genetic information 
and the resulting phenotype (Blank and Ebert, 2013; 
Mahadevan et al., 2011). Metabolic models are based 
on a network of chemical reactions that characterize the 
vast metabolic network of an organism (Almaas et al., 
2004; Shimizu, 2009; Wiechert, 2002). These networks 

may be used to generate metabolic states for a given set 
of environmental conditions.

Genomes of several bacterial strains have been 
sequenced and annotated, providing information that 
has been used alongside biochemical and physiological 
data to reconstruct metabolic networks (Huang et al., 
2014; Loira et al., 2012; Terzer et al., 2009; Zhang and 
Hua, 2015). A comprehensive protocol was developed 
to describe each step necessary to build a high-quality 
genome-scale metabolic reconstruction (Thiele and 
Palsson, 2010). This protocol was properly structured 
for large-scale metabolic networks and well-studied 
organisms when several experimental evidences are 
available to allow the required significant manual curation 
(Becker et al., 2007; Cheng et al., 2009). Although 
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well-curated genome-scale models were developed, 
some microorganisms do not have sufficient information 
available about their metabolic features. In this case, 
reducing those models to a certain core or module while 
keeping key elements or/and important functional 
properties, i.e., to construct metabolic core models, can be 
a suitable way to study and understand basic principles of 
the central metabolism. In core models, the reactions and 
pathways are chosen to represent the most well-known 
and widely studied metabolic pathways (Orth, 2010). 
However, for the construction of a core and representative 
model for organisms with little reported information 
on their metabolic capabilities, some adaptations in the 
current protocol were necessary.

The combination of metabolic network reconstruction 
and constraint-based modeling provides a rich information 
set from which one can build mathematical models of 
biological interest (Barabási and Oltvai, 2004). Moreover, 
computational tools have been developed to predict 
fluxes in biochemical networks, thereby integrating 
different fields such as systems biology, bioinformatics 
and metabolic engineering (Fernández-Castané et al., 
2014; Ishii et al., 2004; McCloskey et al., 2013). Flux 
Balance Analysis (FBA) has been successfully applied 
to obtain growth predictions, theoretical product yields 
and for a global estimation of flux distribution within the 
metabolism of different organisms (Grafahrend-Belau 
et al., 2014; Reed, 2012). Critical steps in FBA are the 
reconstruction of a metabolic network, followed by mass 
balance, imposition of constraints, choice of a suitable 
(biologically relevant) objective function and linear 
optimization (Angeles-Martinez and Theodoropoulos, 
2016; Orth et al., 2010; Raman and Chandra, 2009). 
Simulation results can be a useful guide for metabolic 
engineering (Liu et al., 2014; Simeonidis and Price, 
2015). Currently, a popular tool for investigating complex 
metabolic models is the constraint-based reconstruction 
and analysis (COBRA), a MATLAB(r) (MathWorks Inc.) 
toolbox (Becker et al., 2007; Schellenberger et al., 2011). 
Our group has developed a set of computational systems 
biology tools, called GEnSys (Genomic Engineering 
System), which comprises several modules that allow 
analysis and simulation of biochemical reaction networks, 
for instance, flux balance analysis (FBA) (Bagnariolli et 
al., 2010).

Komagataeibacter hansenii ATCC 23769 (formerly 
Gluconacetobacter hansenii) (Iyer et al., 2010; Yamada 
et al., 2012) produces, as a result of the fermentation 
process, a microstructured nanocellulose with high purity 
(Benziman et al., 1980; Deinema and Zevenhuizen, 1971; 
Ross et al., 1991). Bacterial nanocellulose (BNC) is a 
potential material for medical applications and it has been 

commonly applied as wound dressing and temporary skin 
replacement (Cheng et al., 2009; Hutchens et al., 2007; 
Jorfi and Foster, 2015; Jozala et al., 2016). Given the 
importance of bacterial nanocellulose-based biomaterials 
in tissue engineering, an in silico core metabolic model of 
K. hansenii can provide new strategic insights into the BNC 
synthesis and be useful in the study of typical synthesis 
conditions, such as different growth media, environmental 
conditions and formation of bioproducts. K. hansenii is 
not the most commonly studied model bacterium for 
BNC production, such as K. xylinum, however it has the 
ability, as well, to produce nanocellulose (Ramana et al., 
2000; Ruka et al., 2012; Zeng et al., 2011).

Here, a core metabolic model of K. hansenii ATCC 
23769 was developed, based on the draft assembly of 
the genome of this bacterium (GenBank accession no. 
CM000920 and taxonomy ID: 714995) (Iyer et al., 2010). 
Through simulation, relevant physiological scenarios were 
studied. The FBA approach was performed to simulate 
different conditions and maximize specific reactions to 
understand the effects of nanocellulose production and 
distribution of cellular fluxes by varying three carbon 
sources: glucose, mannitol and glycerol under minimal 
nutritional requirements. These carbon sources were 
chosen because they are known to lead to differences in 
the nanocellulose microstructure, which have different 
fiber densities (Mikkelsen et al., 2009; Ruka et al., 2012). 
This in silico model can facilitate system-level metabolic 
analysis and allow experiments with K. hansenii growing 
in a defined medium that enables controlled experiments 
since the exact composition of nutrients is known.

MATERIALS AND METHODS

Draft reconstruction

The reconstruction process of the K. hansenii core 
metabolic model involved the following steps, as 
outlined in Figure 1: (1) creation of a draft model (draft 
reconstruction); (2) reconstruction of a detailed model 
(manual curation to build the core model); (3) conversion 
into a mathematical format (FBA; mathematical 
formulation); (4) analysis of the network (model 
simulation).

The annotated data of the draft genome sequence 
of K. hansenii (NCBI ID 714995; ACCESSION NZ 
CM000920, 3636659 bp) (Iyer et al., 2010) were used in 
two different platforms that can map genes to reactions 
in an automated manner and allow exporting all reactions 
and metabolites to a SBML file, to create two different 
drafts models. The first one was the software Pathway 
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Tools (SRI International), version 16.5 (Karp et al., 2002, 
2009; Paley et al., 2012) that gives a raw draft model file 
as a result. The second one was the web-based resource, 
called Model SEED (Devoid et al., 2013), where the 
assembled genome sequence is annotated by the RAST 
server, which provides a semi-automated curation of the 
draft model. The set of reactions from the drafts contains 
incorrect or unbalanced stoichiometry, missing reactions 
and mistakes from the annotated sequence and neither of 
these approaches replace a careful manual curation. The 
resources used during the reconstruction are summarized 
in Table 1.

Manual curation

The basic principles of the operation of metabolic 
networks, in particular of the central metabolism, can 
sometimes be more easily studied in smaller scale models, 
known as core models (Hädicke and Klamt, 2017). As 
the goal is to construct a core model that represents the 
central metabolism of K. hansenii in detail, the reactions 
and metabolites involved in glycolysis, pentose phosphate 
pathway, Entner-Doudoroff pathway, tricarboxylic acid 
cycle, and key reactions of the electron transport chain were 
included in the model. To improve network connectivity 
and decrease the number of dead-end metabolites, the 

reactions not inferred in the automatic drafts models were 
added during manual curation. Such reactions include: 
(1) spontaneous reactions; (2) extracellular transport 
reactions; (3) intracellular transport reactions; and (4) 
exchange reactions, which allows specific molecules 
through the system and environment and (5) reactions 
of cellulose biosynthesis common to microorganism 
producers.

Biochemistry textbooks and biochemical digital 
databases, including KEGG (Kanehisa et al., 2006, 2010), 
BRENDA (Scheer et al., 2011), ExPASy (Gasteiger et 
al., 2003) and the platform IMG (Integrated Microbial 
Genomes) (Markowitz et al., 2012) were used to verify 
the reactions. A biochemical thermodynamics calculator, 
eQuilibrator (Flamholz et al., 2012), was used to check 
the reversibility and stoichiometry of the reactions. The 
metabolic reactions in the model were organized into 
two compartments (cytoplasm and extracellular) based 
on the localization of associated enzymes. Then, we 
organized the reactions into pathways/subsystems. For 
each metabolite, the charge, formula and identification 
were compiled from the KEGG database.

The last step was the incorporation of a biomass 
reaction. In order to represent growth, the core K. hansenii 
model includes a biomass reaction, which drains precursor 

Figure 1. Schematic illustration of the network reconstruction. The four steps used in the present work are: 1) creation 
of a draft model using automated resources, 2) manual curation to construct the core model, 3) conversion of the model 
into a mathematical format and, 4) biological analysis of the network through simulations.
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metabolites from the network. The biomass composition 
data for K. hansenii used in this study was obtained from 
the literature (Edirisinghe et al., 2016). The reaction of the 
biomass included internal protons and water (Appendix 
- Table A1). The amount of water required is equal to 
the amount of hydrolyzed ATP to satisfy the ATP growth 
requirement. The ATP hydrolysis results in the production 
of one proton, while using NADPH as NADH consumes 
one proton, resulting in the production of protons in 
the biomass reaction. All precursors were added to 
the molecules to perform oxidation (NAD), reduction 
(NADPH) and provide energy (ATP), resulting in 1 mol 
of biomass, which is the amount of biomass produced 
with these compounds. Missing reactions (referred to as 
gaps) that resulted in dead-end metabolites and prevented 
the computational simulation of cell growth were 
identified and filled in. The procedure was continued until 
all the biomass components were include. This ensures 
that the reduced network contains at least all protected 
reactions and, additionally, a set of biosynthesis routes 
that produces all components consumed by the biomass 
synthesis reaction. In total, 74 reactions and their reactants 
have been protected in the central metabolism as listed in 
the Appendix (Tables A1 and A2).

The in silico minimal medium composition capable 
of supporting growth of K. hansenii chosen was the 
Yamanaka medium (Yamanaka et al., 1989), which is 
composed of 50 g∙L-1 (carbon source), 5 g∙L-1 (nitrogen 
source) and 3 g∙L-1 (phosphate source). Three different 
carbon sources (glucose, mannitol and glycerol) were used 
to calculate the carbon flux through different pathways. 
The uptake rates of nitrogen and phosphate sources were 
determined according to the composition of the medium 
and we used experimental data in continuous culture since 
the FBA approach assumes steady state and generates 

predictions that are consistent with continuous culture. 
Biomass concentration and dilution rate values were 
estimated to calculate and infer the maximum uptake rates 
of nitrogen ((NH4)2SO4) and phosphate sources (KH2PO4) 
in the model.

Flux Balance Analysis (FBA)

The metabolic flux distribution of the core model of K. 
hansenii was calculated using FBA. With this approach, 
it was possible to obtain the optimal solution for the 
intracellular fluxes by optimizing an objective function. 
The core model was converted into a mathematical 
representation known as a stoichiometric matrix. The 
stoichiometric matrix (S) consists of rows of metabolites 
and columns of reactions, and is the basis from which all 
constraints-based modeling is carried out. The converted 
core model is expressed as a stoichiometric model 
represented by a pseudo steady-state system of mass 
balance equations dc/dt = S ∙ v = 0, where v corresponds to 
a vector of all reaction fluxes in the network (Feist, 2009; 
Orth et al., 2010). To identify optimal solutions in the 
vast solution space, we defined FBA objective functions 
to solve the system of linear equations that represent the 
mass balance constraints. In this study, we evaluated 
four scenarios for biologically meaningful predictions: 
(i) maximization of biomass yield; (ii) maximization 
of nanocellulose synthesis, product of greatest interest 
derived from the bacterium K. hansenii; (iii) the 
maximization of the external metabolites to evaluate the 
balance consistency; and (iv) the ability to synthesize 
precursors of biomass by adding demand reactions. 
Moreover, metabolic flux distribution was estimated 
under limitations of some nutrients, such as phosphate and 
nitrogen source.

Table 1. Online resources for the reconstruction of the metabolic network of K hansenii.
RESOURCE URL
Genome sequence (NCBI) http://www.ncbi.nlm.nih.gov/genome/?term=gluconacetobacter%20hansenii
IMG – Integrated Microbial Genomes http://img.jgi.doe.gov/cgi-bin/w/main.cgi
Kyoto Encyclopedia of Genes and Genomes http://www.genome.jp/kegg/pathway.html
ExPASy Biochemical Pathways http://www.expasy.ch/cgi-bin/search-biochem-index
BRENDA http://www.brenda-enzymes.org
Uniprot http://www.uniprot.org/uniprot/?query=gluconacetobacter%20hansenii&sort=score
SEED http://pubseed.theseed.org
eQuilibrator http://equilibrator.weizmann.ac.il
SBML validator http://sbml.org/validator
MATLAB® http://www.mathworks.com
Pathway Tools version 16.5 http://bioinformatics.ai.sri.com/ptools
COBRA (Constraint-based reconstruction and analysis) toolbox http://opencobra.sourceforge.net/openCOBRA/Welcome.html
GNU linear programming toolkit (GLPK) http://glpkmex.sourceforge.net
SBMLToolbox version 4.0.1 http://www.sbml.org
libSBML library 4.0.1 http://sbml.org/Software/libSBML
rBioNet http://sourceforge.net/projects/opencobra/files/cobra/foundry/rBioNet
GEnSys Available upon request from the authors.
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The constraints for the upper and lower bounds of 
reversible and irreversible reactions were defined as -∞ 
≤ vi ≤ ∞ and 0 ≤ vi ≤ ∞, respectively. For irreversible 
reactions, the lower bound was set to zero and for 
reversible reactions, lower and upper bounds were 
typically set to arbitrarily large values. Besides defining 
the directions of all metabolic reactions, these constraints 
were used to specify a maximum flux through a given 
reaction or to specify a measured substrate uptake rate. 
Exchange reactions were added to enable uptake and 
secretion of extracellular metabolites for simulations. 
The stoichiometry and the reversibility of each reaction, 
together with the steady state assumption for the internal 
metabolites, allow defining a region of feasible flux 
distribution.

Model simulation

The core metabolic network of K. hansenii was built 
and loaded into MATLAB(r) (MathWorks Inc.) using 
functions available in the GEnSys toolbox (Bagnariolli 
et al., 2010). The GenSys Toolbox is available upon 
request. By using Flux Balance Analysis (FBA), we 
investigated the core metabolic network of K. hansenii 
through simulations. The flux values were expressed in 
mmol∙gDW-1∙h-1. For the simulation of aerobic growth 
on minimal medium, we allowed the following external 
metabolites to freely enter and leave the network: O2, H

+, 
CO2, H2O, NH4

+ and PO4
3-. With the minimal medium, 

each carbon source was allowed to enter into the in silico 
core model one by one by adding exchange reactions (if 
there was no corresponding one) for the sake of simulating 
the growth under different environmental conditions.

The core metabolic model construction is an integrated 
process. Through experimentally determined biochemical 
characteristics of K. hansenii combined with computer 
modeling provided advances to understand what happens 
inside a cell through in silico simulation (Figure 2).

From the annotated genome sequence, a core metabolic 
model of K. hansenii was constructed to comprehend the 
mechanisms and synthesis of bacterial nanocellulose. This 
core model can facilitate system-level metabolic analysis 
as well as developments for improving BNC production.

RESULTS AND DISCUSSION

Metabolic model reconstruction

The initial draft of the core reconstruction was built 
from the annotated genome of K. hansenii ATCC 23769. 
The chromosomal sequence contains 3,547,122 bp, with 
a GC content of 59%. The genome contains 3,351 genes, 
of which 3,308 are protein-encoding genes, accounting 
for 84% of the genome. There are 43 genes for tRNAs 
and two rRNA loci. The genes encoding proteins involved 
in cellulose synthesis are in operons consisting of acsAB 
(GXY_04277; GXY_08864), acsC (GXY_04282; 
GXY_08869) and acsD (GXY_04292). The two drafts 
generated by Pathway Tools and Model SEED were 
initial mapping processes that list the rough data of the 
metabolites and reactions of this organism. They were 
stored in both SBML and XLS formats and were used to 
manage all the consolidated data.

From a topological analysis, a metabolic network 
can be interpreted as a bipartite graph, consisting of two 
sets of nodes that represent metabolites and reactions, 
respectively. The two disjoint sets of nodes are connected 
by a set of (directed or undirected) edges, specifying 
which metabolites participate in a reaction. This graph 
represents the visualization of the stoichiometric matrix, 
known as sparse matrix, since most of the coefficients are 
zero (Figure 3).

Our results revealed a sparsity matrix, with 4,703 zero 
elements which correspond to 93.5% of sparsity. The 
non-zero (nz) elements or null space correspond to the 
density of the matrix, which is this case represents 6.5% 

Figure 2. Biochemical analysis and computer modeling to advance the understanding of what happens inside a cell. 
The core metabolic network is modified in the context of other physiological constraints to produce a mathematical 
model, which can be used to generate quantitatively testable hypotheses in silico. Depending on the culture conditions, 
K. hansenii is able to synthesize BNC with different shapes, such as membranes, spheres and vessels.
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was used to obtain a linear programming problem. The 
four physiological scenarios of interest were defined 
as objective functions: (i) maximization of biomass 
yield; (ii) maximization of nanocellulose synthesis; (iii) 
maximization of the external metabolites; and (iv) the 
ability to synthesize precursors of biomass by adding 
demand reactions. Each objective function was tested with 
the addition of constraints (Table 2) to identify which one 
was the most appropriate for predicting fluxes by FBA.

With the FBA technique, the carbon sources were 
chosen to evaluate the capability of K. hansenii to grow on 
each carbon source supplemented in the minimal medium. 
Glucose and mannitol uptake rates were 10 mmol∙gDW-

1∙h-1 and glycerol uptake rate was 20 mmol∙gDW-1∙h-1. 
Uptake rates were established based on the C-mol of 
each carbon source. Glucose and mannitol are six-carbon 
sources, while glycerol is a three-carbon source. The 
rates were obtained by dividing the concentration (g(L-

1) of each source by its molar mass (g(mol-1), and then 
multiplying it by the specific dilution rate (h-1) divided 
by biomass concentration (gDW(L-1). Also, for the correct 
mass balance of the model, glycerol needed to enter twice 
as much as the other carbon sources.

In order to analyze the metabolic flux for these 
different carbon sources at the same dilution rate and to 
prevent the wash out, a dilution rate of 0.05·h was chosen 
for the experiments, based on previous studies which 
revealed a high growth yield using a low dilution rate 
(Olijve and Kok, 1979). For simulation of aerobic growth 
on Yamanaka medium, the following external metabolites 
were allowed to freely enter and leave the network: O2, H

+, 
CO2, H2O, NH4

+ and PO4
3-, except for the carbon sources. 

Since the nutrients, such as nitrogen and phosphate, are 
not considered unlimited, the maximum uptake rates of 
nitrogen and phosphate were calculated to determine 
which combination results in an optimal growth of 
bacterial nanocellulose. A maximum uptake rate of 1.26 
mmol∙gDW-1∙h-1 and 0.78 mmol∙gDW-1∙h-1, for nitrogen 
and phosphate, respectively, were set as lower boundaries 
(-1.26 ≤ v ≤ 1000 mmol∙gDW-1∙h-1) and (-0.78 ≤ v ≤ 1000 
mmol∙gDW-1∙h-1). The oxygen uptake was set as a virtually 
unlimited flux (-1000 ≤ v ≤ 1000 mmol∙gDW-1∙h-1), 
because K. hansenii is an aerobic bacterium.

The COBRA Toolbox generated the Systems Biology 
Markup Language (SBML) file of the core model. The 
XML-based data format is presented in the Supplementary 
file I "sbml_coremodel". The FBA method computes the 
maximal growth yield achievable in the core metabolic 
model by maximizing the biomass reaction flux (v74). By 
maximizing the biomass reaction (Figure 4) the carbon 
flux was used for the bacterial growth, without any 
production of cellulose (reaction v5) (See reactions in the 

Figure 3. Sparse matrix of the K. hansenii core model. The matrix 
contains 329 non-zero elements (blue points), with 4,703 zero 
elements (white points). Its sparsity is 93.5%, and its density is 
6.5%.

(nz=329). A sparsity matrix indicates that most substrates 
participate in only a few reactions, whereas a small 
number of metabolites, such as ATP, NADPH, NADH, 
participate in a very large number of reactions. These 
more interconnected metabolites play important roles in 
the metabolic network: for example, the stability in the 
transport of such metabolites inside or outside the network 
can affect the organization of regulatory mechanisms. 
Generally, metabolic networks are considered to be sparse 
and sparsity has been used as a criteria for inferring linear 
network models.

In silico capabilities of the K. hansenii core metabolic 
model

Model simulations were carried out to obtain insights 
on the metabolic network and the flux distribution. The 
metabolic flux analysis combines a set of measured fluxes 
(often extracellular), with a constraint-based model to 
obtain an estimate of all the fluxes. In this case, the uptake 
and consumption rates for all three carbon sources and 
for nitrogen and phosphate sources were set, as shown in 
Table 2.

The network contains 79 metabolites and 74 fluxes. Of 
those, 68 are internal metabolites, resulting in 6 degrees 
of freedom and the stoichiometric matrix consisted of 
68 rows and 74 columns. The matrix included exchange 
reactions to allow metabolites to be taken up or excreted 
to the extracellular medium, and transport reactions to 
allow the uptake of metabolites. Because the number of 
measured fluxes is less than the degrees of freedom of the 
matrix, the solution space will have infinite solutions. To 
determinate the optimal solution, an objective function 
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appendix - Table A1). This is a biological representative 
scenario since there are strains that do not produce 
cellulose (Iguchi et al., 2000).

Flux distribution using glycerol as a carbon source 
revealed that the pentose phosphate pathway was not 
favored (Figure 4). The fraction of carbon directed to the 
pentose phosphate pathway was growth-rate dependent. 
The specific growth rates per hour were µ = 1.93 in 
glucose, and lower in mannitol, µ = 0.72 and µ = 0.84 in 
glycerol, under minimal nutritional requirements. These 
results indicated that the bacterium has the metabolic 
machinery needed to use all those carbon sources for 
growth competence. This is the first reported in silico 
prediction of K. hansenii metabolic capabilities under a 
minimal medium growth condition. We have tested the 
hypothesis that K. hansenii uses its metabolism to grow 
at a maximal rate using the core metabolic model. Based 
on this hypothesis, further studies should be performed 
to describe the quantitative relationship between glucose 
uptake rate, oxygen uptake rate, and maximal cellular 
growth rate.

The second scenario was the maximization of 
nanocellulose synthesis. In this case, we used this reaction 
of BNC production (v5) as objective function. During the 
analysis, the results revealed that this flux is a suitable 
objective function and predicts the theoretical yield of 
nanocellulose, since the biomass flux (cell growth) was 
zero under that constraint. Thus, the majority of the 
carbon flux is directed to the production of nanocellulose, 
and there was no carbon used to produce biomass. The 
theoretical nanocellulose yield was calculated per mol of 
carbon of the substrate consumed: 0.95 C-mol/C-mol of 
glucose, 0.5 C-mol/C-mol of mannitol and 0.6 C-mol/C-
mol of glycerol, on a Carbon-mol base. These results can 
be explained by the metabolism of K. hansenii. Glucose 
is easily transported through the cell membrane and 
incorporated into the nanocellulose biosynthetic pathway 
(Oikawa et al., 1995; Ross et al., 1991). Mannitol is known 
to be converted to fructose, and then metabolized by this 
organism to produce BNC, while glucose and fructose are 

transported through the cell membrane and incorporated 
into the cellulose biosynthetic pathway. Glycerol, a 
three-carbon sugar, on the other hand, is introduced into 
metabolic pathways at the triose phosphate level. The 
oxidation of triose phosphate is a primary reaction in this 
organism for the channeling of sugar carbon from the 
pentose phosphate pathway (PPP) into the tricarboxylic 
acid cycle (TCA cycle). Biosynthesis of bacterial 
nanocellulose depends on two amphibolic pathways 
(anabolism and catabolism): PPP for the oxidation of 
carbohydrates and TCA for the oxidation of organic acids 
and related compounds (Brown et al., 1976; Oikawa et al., 
1995; Ross et al., 1991).

This could explain the lower theoretical nanocellulose 
yield using mannitol and glycerol, compared to glucose as 
carbon source. In terms of BNC yields, there is a variation 
depending on the strain, the composition of the medium 
and the operating conditions, such as static or agitated 
culture, temperature, oxygen and pH (Jozala et al., 2016; 
Keshk and Sameshima, 2005; Ruka et al., 2012). The 
core model is consistent with experimental data, since 
this bacterium can synthesize BNC with all these carbon 
sources. The central metabolic pathway for the three 
carbon sources varies in many aspects like the pathway 
used for catabolism of carbon sources and production of 
extra-cellular metabolites, as shown in Figure 5.

The inability to metabolize glucose (GLC) via the 
Embden-Meyerhof pathway in K. hansenii lies in the 
fact that it lacks phosphofructokinase, which is required 
for glycolysis (Velasco-Bedrán and López-Isunza, 
2007; Zhong et al., 2014). Gluconeogenesis occurs 
from oxaloacetate (OAA) via pyruvate (PYR), because 
of the unusual regulation of the enzymes oxaloacetate 
decarboxylase and pyruvate phosphate dikinase. Thus, 
cellulose arises in this organism from a metabolic pool 
of hexose phosphate that is sustained directly by the 
phosphorylation of exogenous hexoses and indirectly via 
the pentose phosphate and the gluconeogenic pathways.

The glucose catabolism involves its conversion 
to glyceraldehyde-3-phosphate and pyruvate via the 

Table 2. Composition and boundary conditions of the minimal growth medium for the simulations. The carbon source uptake rates were set and the following 
external metabolites were allowed to freely enter and leave the network. All the equations are from extracellular [e] compartment to the cytoplasm [c].
Reaction description Equation LB * UB *
Carbon Source    
     Glucose [e]: glc-D -> 0 10
     Mannitol [e]: mann -> 0 10
     Glycerol [e]: glyc -> 0 20
O2exchange [e]: o2<-> -1000 1000
H2O exchange [e]: h2o <-> -1000 1000
Proton exchange [e]: h <-> -1000 1000
NH4

+exchange (Nitrogen source) [e]: nh4<-> -1.3 1000
PO4

-3exchange (Phosphate source) [e]: pi <-> -0.75 1000
CO2exchange [e]: co2<-> -1000 1000

*LB: lower bound; UB: upper bound; unit are given in mmol∙gDW-1∙h-1.
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Enter-Doudoroff enzymes 6-phosphogluconate dehydro-
genase and 2-dehydro-3-deoxyphosphogluconate aldo-
lase. Depending on physiological conditions, glucose is 
converted into 6-phosphogluconate (6PGC) by one of two 
routes, one of which is oxidative and the other is phos-
phorylative. The direct oxidative route involves oxida-
tion of glucose to gluconate (GLCN) and gluconokinase. 
Alternatively, the phosphorylative route involves uptake 
of glucose by an inducible transport system. Once inside 
the organism, glucose is phosphorylated by glucokinase 
and then converted to 6-phosphogluconate by glucose-6-
-phosphate dehydrogenase. One important metabolite that 
influenced the nanocellulose synthesis is the gluconic acid 
production, which our core model predicted, in accordan-
ce with previous studies (Hwang et al., 1999; Ishihara et 
al., 2002; Liu et al., 2016). Our results showed that the 
three carbon sources, glucose, mannitol and glycerol can 
be used by K. hansenii under minimal nutritional require-
ments. To the best of our knowledge, no previous studies 
reported a core metabolic model of K. hansenii ATCC 
23769. Two metabolic networks of Gluconacetobacter 
xylinus E25 were developed, the first by Ross (Ross et al., 
1991) consisted in 42 reactions, and the second by Zhong 
and co-workers (Zhong et al., 2013), adapted from Ross' 
model, consisted of 26 reactions. Zhong and coworkers 
(2013) performed a metabolic flux analysis (MFA) to 

compare the metabolic flux distribution. However, neither 
of these two networks was built based on the genome se-
quence and a flux balance analysis performed.

The third scenario related to the maximization of 
external metabolites evaluated the balance consistency. 
For example, to maximize carbon dioxide (CO2_out), 
10 mmol∙gDW-1∙h-1 of glucose was fed, resulting in 
60 mmol∙gDW-1∙h-1of CO2. This is stoichiometrically 
consistent, given that glucose has six carbons and the 
carbon dioxide molecule has only one. The mass balance 
was checked using all external metabolites.

In the fourth scenario, the ability to synthesize 
precursors of biomass by adding demand reactions was 
performed. To verify the fluxes distribution under nutrient 
deprived conditions, nitrogen, phosphate and oxygen 
uptake were limited, which means those fluxes were set 
to zero. Under oxygen limitation conditions the bacterial 
growth rate, nanocellulose production and all the other 
main function were null, as expected, confirming aerobic 
functionality. Limitation of nitrogen and/or phosphate 
sources was shown to be insufficient to prevent bacterial 
growth. According to Ross (Ross et al., 1991), in 
Acetobacter xylinum washed cells, deprived of a nitrogen 
source, production of nanocellulose continues when 
supplied with an adequate carbon substrate and does not 
depend on net protein synthesis. The excess of available 

Figure 4. Representation of the most important metabolic fluxes resulting from FBA analysis using the biomass 
reaction as the objective function. By maximizing this reaction, we proved that all carbon flux was used for bacterial 
growth without any production of BNC. Glucose as carbon source presented the highest specific growth rates per hour, 
μ = 1.93. Mannitol and glycerol showed lower growth rates, μ = 0.72 and μ = 0.84, respectively.
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Figure 5. Representation of the core metabolic network of K. hansenii and the input of three carbon sources: glucose 
(GLC), mannitol (MANN) and glycerol (GLYC). The microfibrils of BNC and biomass are represented as output. 
Metabolite abbreviations and reaction details are provided in the Appendix (Tables A1 and A2).
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carbon substrate and limitations in other nutrients, such 
as nitrogen or phosphate, could promote nanocellulose 
synthesis. Flux consistency implies that each one of the 
metabolite precursors was produced by the bacterium. 
By including a demand reaction (reaction that consumes 
the compound without producing anything) for each 
metabolite of the biomass reaction, and optimizing 
demand reaction fluxes, results revealed that the core 
model could predict each of the biomass constituents, for 
all carbon sources used.

CONCLUSIONS

In this study, a core metabolic model of K. hansenii 
ATCC 23769 was developed. The network was 
constructed by using automatic reconstruction and an 
iterative process of manual curation based on genomic and 
bibliome databases. This curated core model accounts for 
68 metabolites and 74 reactions and represents an up-to-
date database that encompasses the knowledge available 
in public databases, scientific publications and textbooks 
on the metabolism of this bacteria.

Flux balance analysis of the model was applied 
under different physiological scenarios and predicted 
quantitative relationships between input rates of 
nutrients, output rates of products and bacterial growth 
rate. A simplified model could answer simple biological 
questions and the central carbon metabolism addressed 
key metabolites. Moreover, the in silico core model 
successfully predicted the growing abilities on different 
substrates and gave insights of the use of minimal medium 
capable to support BNC production. With the increased 
interest in BNC, the in silico model presented here will 
be a valuable tool for fundamental research, serving as a 
starting point for metabolic engineering approaches. The 
core model is one important step for understanding the 
nanocellulose production process and contributes to the 
general knowledge of microbial function and physiology 
with computational analysis.
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Table A1. List of all biochemical reactions of the core model network.

Abbrev RxN Description Equation Equation EC GENE Subsistem

v1_gli   glucose transport in/out via 
diffusion reversible GLC_x -> GLC D-glucose_out ->D-glucose      

v2_o2   O2 transport via diffusion O2_x -> O2 Oxygen_out  <=> Oxygen      
v3_co2   CO2 transport via diffusion CO2_x <-> CO2 Carbon dioxide_out <=>Carbon dioxide      

v4_bio   biomass transport out BIOMASS -> 
BIOMASS_x biomass -> biomass_out      

v5_cell   cellulose transport out CELL -> CELL_x cellulose ->Cellulose_out      
v6_
mann   mannitol transport in/out 

via diffusion reversible MANN_x -> MANN mannitol_out-> mannitol      

v7_nh4   nitrogen transport NH4_x <-> NH4 ammonium_out<=> ammonium      

v8_glyc   glycerol transport in/out 
via diffusion reversible GLYC_x -> GLYC Glycerol_out  -> Glycerol      

v9_h2o   water transport H2O_x <-> H2O water_out <-> water      
v10_
glcn   gluconate - gluconic acid 

transport GLCN -> GLCN_x Gluconate -> Gluconate_out      

v11_h   proton transport H_x <-> H hidrogen_out <-> hidrogen      

v12_pi   phosphate transport PI_x + ATP + H2O -> PI 
+ ADP + H

phosphate_out + atp + water <-> phosphate + 
adp + proton      

v13 R00299 glucokinase GLC + ATP -> ADP 
+ G6P

ATP + D-glucose <->ADP + D-Glucose 
6-phosphate 2.7.1.2 GXY_05501, GXY_13683(putative) Glycolysis/Gluconeogenesis

v14 R00741 phosphoglucoisomerase G6P <-> F6P D-Glucose 6-phosphate <=> D-Fructose 
6-phosphate 5.3.1.9 GXY_02166 Glycolysis/Gluconeogenesis

v15 R00762 fructose difosfatos FDP + H2O -> F6P + PI Fructose 1,6-bisphosphate + H2O => 
D-Fructose 6-phosphate + Orthophosphate 3.1.3.11 GXY_08300 (glpX) Glycolysis/Gluconeogenesis

v16 R01068 fructose-bisphosphate 
aldolase FDP <-> DHAP + G3P Fructose 1,6-bisphosphate <=> Glycerone 

phosphate + D-Glyceraldehyde 3-phosphate 4.1.2.13 GXY_08305, GXY_09124 Glycolysis/Gluconeogenesis

v17 R01015 triosephosphate isomerase DHAP <-> G3P Glycerone phosphate<-> D-Glyceraldehyde 
3-phosphate 5.3.1.1 GXY_10284 Glycolysis/Gluconeogenesis

v18 R01061
glyceraldehyde 

3-phosphate 
dehydrogenase 

G3P + NAD + PI -> 13-
DPG + NADH_x + H

D-Glyceraldehyde 3-phosphate  + NAD+  + 
Orthophosphate<=> 3-Phospho-D-glyceroyl 

phosphate + NADH + H+
1.2.1.12 GXY_04003 Glycolysis/Gluconeogenesis

v19 R01512 phosphoglycerate kinase 13-DPG + ADP + PI <-> 
ATP + 3-PG

3-Phospho-D-glyceroyl phosphate + ADP <-> 
ATP + 3-Phospho-D-glycerate 2.7.2.3 GXY_03998 (pgk) Glycolysis/Gluconeogenesis

v20 R01518 phosphoglycerate mutase 3-PG <-> 2-PG 3-Phospho-D-glycerate <=> 2-Phospho-D-
glycerate 5.4.2.1 GXY_02671,GXY_12768 Glycolysis/Gluconeogenesis

v21 R00658 phosphopyruvate 
hydratase/enolase 2-PG <-> PEP + H2O 2-Phospho-D-glycerate <=> 

Phosphoenolpyruvate + H2O 4.2.1.11 GXY_10254 (eno) Glycolysis/Gluconeogenesis

v22 R00200 pyruvate kinase PEP + ADP + H -> ATP 
+ PYR

Phosphoenolpyruvate + ADP => ATP + 
Pyruvate 2.7.1.40 GXY_00359 Glycolysis/Gluconeogenesis

               

v23 R00209 pyruvate dehydrogenase 
complex

PYR + NAD + COA -> 
ACCOA_x + NADH_x 

+ CO2

Pyruvate + NAD+ + CoenzimaA<=> Acetyl-
CoA + CO2 + NADH + H+

(2.3.1.12 
and 

1.8.1.4 
and 

1.2.4.1)

(GXY_16242 OR GXY_10329 
OR GXY_07680) - (GXY_03931 

OR(GXY_03931  AND GXY_03943) 
- (GXY_15912 OR (ilvH AND 

GXY_00049) OR (GXY_10324 AND 
GXY_10319) OR (GXY_13548 OR 

GXY_15937)

Glycolysis/Gluconeogenesis

v24 R00206 pyruvate phosphate 
dikinase

PYR + ATP + PI -> AMP 
+ PEP + PPI

ATP + Pyruvate + Orthophosphate <=> AMP + 
Phosphoenolpyruvate + Diphosphate 2.7.9.1 GXY_08205 Glycolysis/Gluconeogenesis

v25 R00217 oxaloacetate decarboxylase OAA + ADP + PI -> PYR 
+ ATP + CO2

Oxaloacetate + ADP + phosphate -> pyruvate 
+ ATP + CO2 4.1.1.3   Glycolysis/Gluconeogenesis

v26 R00345 phosphoenolpyruvate 
carboxylase

PEP + H2O + CO2 -> 
OAA + PI + H

Phosphoenolpyruvate + H2O + CO2 -> + 
Oxaloacetate + Orthophosphate 4.1.1.31 GXY_12143 Glycolysis/Gluconeogenesis

v27 R08639 phosphoglucomutase G6P -> G1P  D-Glucose 6-phosphate -> D-Glucose 
1-phosphate 5.4.2.2 GXY_09809 Glycolysis/Gluconeogenesis

APPENDIX



882 Samara Silva de Souza, Julia de Vasconcellos Castro and Luismar Marques Porto

Brazilian Journal of Chemical Engineering

Abbrev RxN Description Equation Equation EC GENE Subsistem

v28 R00289 uridine glucose 
pyrophosphorylase

G1P + UTP + H -> UDPG 
+ PPI

D-Glucose 1-phosphate + UTP + H <=> UDP-
glucose + Diphosphate 2.7.7.9 GXY_10109 Starch and sucrose 

metabolism

v29 R02889 cellulose  - UDP forming UDPG -> UDP + CELL UDP-glucose-> UDP + Cellulose 2.4.1.12 GXY_04277, GXY_08869 Starch and sucrose 
metabolism

v30     GLC + Q8 + H2O -> 
GLCN + Q8H2

D-Glucose + Ubiquinone + H2O => Gluconate 
+ Ubiquinol      

v31 R01737 gluconokinase/gluconate 
dehydrogenase

GLCN + ATP -> ADP + 
6-PGC + H

D-Gluconic acid/gluconate + atp ->ADP + 
6-Phospho-D-gluconate 2.7.1.12 GXY_02201,GXY_12403 pentose phosphate

v32 R00835 glucose-6-phosphate 
dehydrogenase

G6P + NADP_x <-> 
6-PGL + NADPH

D-Glucose 6-phosphate + NADP+ <=> 
D-Glucono-1,5-lactone 6-phosphate + NADPH 

+ H+
1.1.1.49 GXY_01616,GXY_02176,GXY_11509 pentose phosphate

v33 R02035 6-phosphogluconolactonase 6-PGL + H2O  -> 6-PGC D-Glucono-1,5-lactone 6-phosphate + H2O => 
6-Phospho-D-gluconate 3.1.1.31 GXY_02191,GXY_10154 pentose phosphate

v34 R01528 6-phosphogluconate 
dehydrogenase 

6-PGC + NADP_x -> 
RU5P + CO2 + NADPH

6-Phospho-D-gluconate + NADP+ -> 
D-Ribulose 5-phosphate + CO2 + NADPH 1.1.1.44 GXY_04594 pentose phosphate

v35 R02036 phosphogluconate 
dehydratase

6-PGC -> 2-DDG6P 
+ H2O

6-Phospho-D-gluconate => 2-Dehydro-3-
deoxy-6-phospho-D-gluconate + H2O 4.2.1.12 GXY_03863 pentose phosphate

v36 R05605
2-dehydro-3-

deoxyphosphogluconate 
aldolase 

2-DDG6P -> G3P + PYR 2-Dehydro-3-deoxy-6-phospho-D-gluconate 
=> D-Glyceraldehyde 3-phosphate + Pyruvate 4.1.2.14 GXY_03858 pentose phosphate

v37 R01529 epimerase RU5P <-> XU5P D-Ribulose 5-phosphate <=> D-Xylulose 
5-phosphate 5.1.3.1   pentose phosphate

v38 R01056 isomerase RU5P <-> R5P  D-Ribulose 5-phosphate<=>  D-Ribose 
5-phosphate 5.3.1.6 GXY_02196 pentose phosphate

v39 R01827 transaldolase S7P + G3P <-> E4P + F6P

Sedoheptulose 7-phosphate + 
D-Glyceraldehyde 3-phosphate => 

D-Erythrose 4-phosphate + D-Fructose 
6-phosphate

2.2.1.2 GXY_02166 pentose phosphate

v40 R01641 transketolase R5P + XU5P <-> S7P 
+ G3P

 D-Ribose 5-phosphate + D-Xylulose 
5-phosphate =>Sedoheptulose 7-phosphate + 

D-Glyceraldehyde 3-phosphate
2.2.1.1 GXY_02161,GXY_04008 pentose phosphate

v41 R01067 transketolase E4P + XU5P <-> F6P 
+ G3P

 D-Erythrose 4-phosphate + D-Xylulose 
5-phosphate  <=>D-Fructose 6-phosphate + 

D-Glyceraldehyde 3-phosphate
2.2.1.1 GXY_02161,GXY_04008 pentose phosphate

v42 R00868 mannitol 2-dehydrogenase MANN + NAD <-> FRU 
+ NADH_x + H

Mannitol + NAD+ <=> D-Fructose + NADH 
+ H+ 1.1.1.67 GXY_02161 manitol

v43 R00760 fructokinase FRU + ATP  -> ADP + 
F6P + H

ATP + D-Fructose => ADP + D-Fructose 
6-phosphate 2.7.1.4 GXY_10569  

v44 R00847 glycerol kinase GLYC + ATP -> ADP + 
GLYC3P

Glycerol + ATP=> ADP + Glycerol 
3-phosphate 2.7.1.30 GXY_08295 Glycerophospholipid 

metabolism 

v45 R00842 glycerol-3-phosphate 
dehydrogenase

GLYC3P + NAD <->  
DHAP + NADH_x + H

Glycerol 3-phosphate + NAD<=> Glycerone 
phosphate + NADH 1.1.1.94 GXY_04966 Glycerophospholipid 

metabolism 

v46 R00351 citrate synthase ACCOA_x + H2O + 
OAA -> CIT + COA + H

 Acetyl-CoA + H2O + Oxaloacetate=> Citrate 
+ CoA 2.3.3.1 GXY_10922 TCA cycle

v47 R01325 aconitate hydratase 1 CIT -> ACON-C + H2O Citrate => cis-Aconitate + H2O 4.2.1.3 GXY_01403 TCA cycle

v48 R01900 aconitate hydratase 2 ACON-C + H2O  <-> 
ICIT cis-Aconitate + H2O <=>  Isocitrate 4.2.1.3 GXY_01403 TCA cycle

v49 R00267 isocitrate dehydrogenase ICIT + NADP_x <-> AKG 
+ CO2 + NADPH + H 

Isocitrate + NADP+ <=> 2-Oxoglutarate + 
CO2 + NADPH + H+ 1.1.1.42 GXY_08180 TCA cycle

v50 R01197 2-oxoglutarate synthase
AKG + NAD + COA -> 
SUCCOA + NADH_x 

+ CO2
  1.2.7.3   TCA cycle

v51 R00405 succinyl-CoA synthetase  SUCCOA + ADP + PI 
<-> ATP + SUCC + COA

ADP + orthophosphate + succinyl-CoA => 
ATP + succinate + CoA 6.2.1.5 GXY_05758, GXY_05763 TCA cycle

v52 R00408 Succinate dehydrogenase SUCC + FAD  <-> 
FADH2 + FUM Succinate + FAD <=> FADH2 + Fumarate 1.3.99.1 GXY_01598 - sdhB TCA cycle

v53 R01082 fumarase FUM + H2O <-> MAL-L Fumarate + H2O<-> (S)-Malate 4.2.1.2 GXY_13863, GXY_02031 TCA cycle

v54 R00342 malate dehydrogenase MAL-L + NAD <-> 
NADH_x + OAA + H

(S)-Malate + NAD+ => Oxaloacetate + 
NADH2 + H+ 1.1.1.37   TCA cycle

v55 R00253 glutamine synthetase ATP + GLU-L + NH4 -> 
ADP + PI + GLN-L + H

ATP + L-Glutamate + NH4 -> ADP + 
Orthophosphate + L-Glutamine 6.3.1.2 GXY_02336 nitrogen metabolism

v56 R00256 glutaminase GLN-L + H2O -> GLU-L 
+ NH4  L-Glutamine + Water => L-Glutamate + NH4 3.5.1.2 GXY_12733; carB nitrogen metabolism

v57 R00114 glutamate synthase 
GLN-L + AKG + 

NADPH + H -> 2GLU-L 
+ NADP_x

 L-Glutamine + 2-Oxoglutarate + NADPH + 
H+ => L-Glutamate + NADP+ 1.4.1.13 GXY_04844, gxy_04839 nitrogen metabolism

v58     GLN-L_x + H_x <-> 
GLN-L + H

 L-Glutamine_out + proton => L-Glutamine 
+ proton     transport

v59     GLU-L_x + H_x <-> 
GLU-L + H

 L-Glutamate_out + proton => L-Glutamate 
+ proton     transport

v60   adenylate kinase AMP + ATP <-> 2ADP AMP + ATP <-> 2ADP 2.7.4.3 GXY_12943 purine metabolism

v61   ATP maintenance 
requirement

ATP + H2O -> ADP + 
PI + H ATP + H2O -> ADP + PI + H      

v62   ATP synthase  - Complex 
V

ADP + PI + 4H_x -> ATP 
+ H2O + 3H ADP + PI + 4H_x -> ATP + H2O + 3H 3.6.3.14

GXY_00619, GXY_00624, 
GXY_00629, GXY_00634, 
GXY_15649, GXY_15672, 
GXY_15677, GXY_15682

oxidative phosphorilation

v63   inorganic diphosphatase PPI + H2O -> 2PI + H Diphosphate + H2O -> 2 ortophosphate + H 3.6.1.1 GXY_01896  
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v64   NAD transhydrogenase NAD + NADPH  -> 
NADH_x + NADP_x

NAD + NADPH + H-> NADH + NADP+H_
out 1.6.1.2    

v65   nucleoside-triphosphatase 
(UTP)

UTP + H2O -> UDP + 
H + PI UTP + H2O -> UDP + H + PI 3.6.1.5   purine metabolism

v66   nucleoside-diphosphate 
kinase (ATP:UDP)

ATP + UDP -> ADP 
+ UTP ATP + UDP -> ADP + UTP 2.7.4.6 ndk purine metabolism

v67   Complex I (NADH 
desidrogenase)

Q8 + NADH_x + 5H -> 
Q8H2 + NAD + 4H_x

Ubiquinone + NADH + 5H => Ubiquinol + 
NAD + 4H 1.6.5.3

GXY_08325,GXY_11983,GXY_1
1988,GXY_11993,GXY_12583,G

XY_15579
oxidative phosphorilation

v68   Complex II (succinate 
desidrogenase)

Q8 + SUCC -> Q8H2 
+ FUM

Ubiquinone + Succinate -> Ubiquinol + 
Fumarate 1.3.5.1   oxidative phosphorilation

v69   Ubiquinol Oxidase 
(citocromo bd oxidase)

2Q8H2 + 4H + O2 -> 
2Q8 + 2H2O + 4H_x

2Ubiquinol + 4H + Oxygen => 2Ubiquinone + 
2H2O + 4H_out 1.10.3.10 GXY_05121,GXY_05126,GXY_0513

1,GXY_05136 oxidative phosphorilation

v70   Complex IV (citocromo c 
oxidase)

O2 + 
4FERROCYTOCHROME 

+ 4H  -> 
4FERRICYTOCHROME + 

2H2O + 4H_x

Oxygen + 4 reduced-cytochrome-c => 
4oxidized-cytochrome-c + 2H2O + 4H_out 1.9.3.1 GXY_04894,GXY_07135 oxidative phosphorilation

v71   Complex III (citocromo 
bc1)

Q8H2 + 
2FERRICYTOCHROME 

+ 2H  -> Q8 + 
2FERROCYTOCHROME 

+ 4H_x

Ubiquinol + 2 oxidized-cytochrome-c -> 
Ubiquinone + 2 reduced-cytochrome-c  1.10.2.2 GXY_00569,GXY_00574,GXY_16474 oxidative phosphorilation

v72    
NADH_x + 0.5O2 + 

2.5ADP + 2.5PI + 3.5H -> 
3.5H2O + NAD + 2.5ATP

NADH_x + 0.5O2 + 2.5ADP + 2.5PI + 3.5H 
-> 3.5H2O + NAD + 2.5ATP     oxidative phosphorilation

v73    
FADH2 + 0.5O2 + 

1.5ADP + 1.5PI + 2.5H -> 
2.5H2O + FAD + 1.5ATP

FADH2 + 0.5O2 + 1.5ADP + 1.5PI + 2.5H -> 
2.5H2O + FAD + 1.5ATP      

v74   biomass reaction

41.257ATP + 0.205G6P + 
0.0709F6P + 0.8977R5P 
+ 0.8977E4P + 0.129G3P 

+ 1.496*3-PG + 
0.5191PEP + 28.328PYR 

+ 3.747ACCOA_x + 
1.078AKG + 1.786OAA 

+ 1.822NADPH + 
3.547NAD + 41.257H2O 

-> 41.257ADP + 
41.257PI + 3.747CoA+ 

1.822NADP + 46.626H + 
BIOMASS

      biomass

               
    BIOMASS COMPOSITION  
    Metabolites Coefficient    
    NADPH -1.822    
    D-Erythrose4-phosphate -0.8977    
    NADH 3.547    
    Phosphoenolpyruvate -0.5191    
    NADP 1.822    
    NAD -3.547    
    H2O -41.257    
    Acetyl-CoA -3.747    
    ADP 41.257    
    CoA 3.747    
    ATP -41.257    
    Pyruvate -2.832    
    3-Phosphoglycerate -1.496    
    Oxaloacetate -1.786    
    Phosphate 41.257    
    D-fructose-6-phosphate -0.0709    
    ribose-5-phosphate -0.8977    
    H+ 46.626    
    Glyceraldehyde3-phosphate -0.129    
    2-Oxoglutarate -1.078    
    D-glucose-6-phosphate -0.205    
    Biomass 1    
    EXCHANGE REACTIONS  
    EX_co2(e) CO2 exchange co2_out[e] <=>  
    EX_glc-D(e) glucose exchange glc-D_out[e] <=>  
    EX_glyc(e) glycerol exchange glyc_out[e] <=>  
    EX_h(e) H+ exchange h_out[e] <=>  
    EX_h2o(e) H2O exchange h2o_out[e] <=>  
    EX_mann(e) mannitol exchange mann_out[e] <=>  
    EX_nh4(e) NH4 exchange nh4_out[e] <=>  
    EX_pi(e) phosphate exchange pi_out[e] <=>  
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    EX_o2(e) oxygen exchange o2_out[e] <=>  
               
    DEMAND REACTIONS    
    DM_g6p Glucose -6-phosphate demand  
    DM_f6p Fructose-6-phosphate demand  
    DM_r5p Ribose-5-phosphate demand  
    DM_e4p Erythose-4-phosphate demand  
    DM_g3p Glyceraldehyde -3-phosphate demand  
    DM_3-pg 3-Phospho-D-glycerate demand  
    DM_pep Phosphooenolpyruvate demand  
    DM_pyr Pyruvate demand  
    DM_accoa Acetyl-CoA demand  
    DM_akg 2-oxoglutaratedemand  
    DM_oaa Oxaloacetate demand  

Table A2. List of all metabolites of the core model network.
Abbrev. Description Neutral Formula Charged formula Charge KEGG ID Compart-ment PubChem ID

13dpg 3-Phospho-D-glyceroyl 
phosphate C3H8O10P2 C3H4O10P2 -4 C00236 cytosol 3535

2ddg6p 2-Dehydro-3-deoxy-6-
phospho-D-gluconate C6H11O9P C6H8O9P -3 c04442 cytosol 7071

2pg D-Glycerate 2-phosphate C3H7O7P C3H4O7P -3 C00631 cytosol 3904

3pg 3-Phospho-D-glycerate C3H7O7P C3H4O7P -3 C00197 cytosol 3497

6pgc 6-Phospho-D-gluconate C6H13O10P C6H10O10P -3 c00345 cytosol 3638

6pgl D-glucono-1,5-lactone-6-
phosphate C6H11O9P C6H9O9P -2 c01236 cytosol 4457

ac Acetate C2H4O2 C2H3O2 -1 C00033 cytosol 3335

acald Acetaldehyde C2H4O C2H4O 0 C00084 cytosol 3384

accoa Acetyl-CoA C23H38N7O17P3S C23H34N7O17P3S -4 C00024 cytosol 3326

acon-C Cis-Aconitate C6H6O6 C6H3O6 -3 C00417 cytosol 3707

actp Acetyl phosphate C2H3O5P C2H5O5P -2 C00227 cytosol 3527

adp ADP C10H15N5O10P2 C10H12N5O10P2 -3 C00008 cytosol 3310

akg 2-oxoglutarate C5H6O5 C5H4O5 -2 C00026 cytosol 3328

amp AMP C10H14N5O7P C10H12N5O7P -2 c00020 cytosol 3322

atp ATP C10H16N5O13P3 C10H12N5O13P3 -4 C00002 cytosol 3304

biomass Biomass     0 [] cytosol []

biomass_out Biomass_out     0 [] extracellular []

cell Cellulose or 1,4-beta-D-glucan C6H10O5 C6H10O5 0 c00760 cytosol 4022

cell_out Cellulose or 1,4-beta-D-glucan C6H10O5 C6H10O5 0 c00760 extracellular 4022

cit Citrate C6H8O7 C6H5O7 -3 C00158 cytosol 3458

co2 carbon dioxide CO2 CO2 0 C00011 cytosol 3313

co2_out carbon dioxide_out CO2 CO2 0 C00011 extracellular 3313

CoA Coenzime A C21H36N7O16P3S C21H32N7O16P3S -4 C00010 cytosol 3312

dha Glycerone or 
Dihydroxyacetone C3H6O3 C3H6O3 0 c00184 cytosol 3484

dhap Glycerone phosphate/ 
Dihydroxyacetone phosphate C3H7O6P C3H5O6P -2 C00111 cytosol 3411

e4p D-Erythrose 4-phosphate C4H9O7P C4H7O7P -2 c00085 cytosol 3574

f6p D-Fructose 6-phosphate C6H13O9P C6H11O9P -2 c00016 cytosol 3385

fad Flavin adenine dinucleotide C27H33N9O15P2 C27H31N9O15P2 -2 C01352 cytosol 3318

fadh2 FADH2 C27H35N9O15P2 C27H33N9O15P2 -2 C00354 cytosol 4556

fdp Fructose 1,6-bisphosphate C6H14O12P2 C6H10O12P2 -4 C00125  cytosol 3647

Ferricytochrome 
c Oxidized cytochrome c C42H44FeN8O8S2R4 C42H44FeN8O8S2R4 0 C00126 cytosol 3425

Ferrocytochrome 
c Reduced cytochrome c C42H44FeN8O8S2R4 C42H44FeN8O8S2R4 0 c00095 cytosol 3426

fru D-fructose C6H12O6 C6H12O6 0 C00122 cytosol 3395

fum fumarate C4H4O4 C4H2O4 -2 C00103 cytosol 3422

g1p D-glucose 1-phosphate C6H13O9P C6H11O9P -2 C00118 cytosol 3403

g3p Glyceraldehyde 3-phosphate C3H7O6P C3H5O6P -2 C00092 cytosol 3418

g6p D-glucose 6-phosphate C6H13O9P C6H11O9P -2 c00031 cytosol 3392
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glc-D D-glucose C6H12O6 C6H12O6 0 c00031 extracellular 3333

glc-D_out D-glucose_out C6H12O6 C6H12O6 0 c00257 cytosol 3333

glcn D-gluconic acid or 
D-gluconate C6H12O7 C6H11O7 -1 c00257 cytosol 3556

glcn_out D-gluconic acid or 
D-gluconate C6H12O7 C6H11O7 -1 C00064 cytosol 3556

gln-L L-glutamine C5H10N2O3 C5H10N2O3 0 C00025 cytosol 3364

glu-L L-glutamate C5H8NO4 C5H9NO4 -1 c00116 cytosol 3327

glyc Glycerol or 
1,2,3-Trihydroxypropane C3H8O3 C3H8O3 0 c00116 extracellular 3416

glyc_out Glycerol or 
1,2,3-Trihydroxypropane C3H8O3 C3H8O3 0 c00093 cytosol 3416

glyc3p Glycerol 3 -phosphate C3H9O6P C3H7O6P -2 C00080 cytosol 3393

h H+ /proton H H 1 C00080 extracellular 3380

h_out H+/proton_out H H 1 C00001 cytosol 3380

h2o water H2O H2O 0 C00001 extracellular 3303

h2o_out water_out H2O H2O 0 c00311 cytosol 3303

icit Isocitrate C6H8O7 C6H5O7 -3 C15972 cytosol 3605

mal (S)-Malate / Malic Acid C4H6O5 C4H4O5 -2 c00392 cytosol 3449

mann D-mannitol C6H14O6 C6H14O6 0 c00392 extracellular 3682

mann_out D-mannitol_out C6H14O6 C6H14O6 0 C00003 cytosol 3682

nad Nicotinamide adenine 
dinucleotide C21H28N7O14P2 C21H26N7O14P2 -1 C00004 cytosol 3305

nadh Nicotinamide adenine 
dinucleotide - reduced C21H29N7O14P2 C21H27N7O14P2 -2 C00006 cytosol 3306

nadp Nicotinamide adenine 
dinucleotide phosphate C21H28N7O17P3 C21H25N7O17P3 -3 C00005 cytosol 3307

nadph
Nicotinamide adenine 

dinucleotide phosphate - 
reduced

C21H30N7O17P3 C21H26N7O17P3 -4 C01342 cytosol 3308

nh4 Ammonium NH3 NH4 1 C01342 extracellular 4547

nh4_out Ammonium_out NH3 NH4 1 c00007 cytosol 4547

o2 Oxygen O2 O2 0 c00007 extracellular 3309

o2_out Oxygen_out O2 O2 0 C00036 cytosol 3309

oaa Oxaloacetate C4H4O5 C4H2O5 -2 C00074 cytosol 3338

pep Phosphoenolpyruvate C3H5O6P C3H2O6P -3 c00198 cytosol 3374

pgl D-glucono-1,5-lactone /
Gluconic lactone C6H10O6 C6H10O6 0 C00009 cytosol 3498

pi orthophosphate H3O4P HO4P -2 c00013 cytosol 3311

ppi Diphosphate or pirofosfato H4P2O7 HO7P2 -3 C00022 cytosol 3315

pyr pyruvate C3H4O3 C3H3O3 -1 c00399 cytosol 3324

q8 Ubiquinone C14H18O4 C14H18O4 0 c00390 cytosol 3689

q8h2 Ubiquinol C14H20O4 C14H20O4 0 C00117 cytosol 3680

r5p D-Ribose 5-phosphate C5H11O8P C5H9O8P -2 C00199 cytosol 3417

ru5p D-Ribulose 5-phosphate C5H11O8P C5H9O8P -2 C00281 cytosol 3499

s7p Sedoheptulose 7-phosphate C7H15O10P C7H13O10P -2 C05382 cytosol 7756

succ succinate C4H6O4 C4H4O4 -2 C00042 cytosol 3344

succoa Succinyl-CoA C25H40N7O19P3S C25H35N7O19P3S -5 C00091 cytosol 3391

udp Uridine 5'-diphosphate C9H14N2O12P2 C9H11N2O12P2 -3 c00015 cytosol 3317

udpg UDPglucose C15H24N2O17P2 C15H22N2O17P2 -2 c00029 cytosol 3331

utp Uridine triphosphate C9H15N2O15P3 C9H11N2O15P3 -4 C00075 cytosol 3375

xu5p D-Xylulose 5-phosphate C5H11O8P C5H9O8P -2 C00231 cytosol 3530
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