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Abstract - This paper describes the modelling and control of a pH neutralization process using a Local Linear 
Model Tree (LOLIMOT) and an adaptive neuro–fuzzy inference system (ANFIS). The Direct and Inverse 
model building using LOLIMOT and ANFIS structures is described and compared. The direct and inverse 
models of the pH system are identified based on experimental data for the LOLIMOT and ANFIS structures. 
The identified models are implemented in the experimental pH system with IMC structure using a GUI 
developed in the MATLAB -SIMULINK platform. The main aim is to illustrate the online modelling and 
control of the experimental setup. The results of real-time control of an experimental pH process using the 
Internal Model Control (IMC) strategy are also presented. 
Keywords: LOLIMOT; ANFIS; Internal Model Control; pH process. 

 
 
 

INTRODUCTION 
 

Control of pH plays a very important role in 
chemical industries, such as wastewater treatment, 
polymerization reactions, fatty acid production, bio-
chemical processes, etc. Modelling and control of a 
pH process is a very challenging and extremely com-
plex task, because the slope of the process nonlinear-
ity can be very steep around the neutralization region 
and small changes in the influent stream concentra-
tion can result in tremendous changes in pH 
(Rodrigues and Loparo, 2004). It is very difficult to 
achieve high performance and robust control using 

conventional PID control schemes. Conventional 
PID controllers must be tuned with predictive 
capability in order to ensure closed-loop stability for 
the full range of operating conditions. This means 
that the plant will not operate at high efficiency. To 
improve the efficiency of the control scheme, some 
advanced control techniques like model-based con-
trol have been proposed. Some of the model-free 
control techniques like reinforcement learning 
(Syafiiea et al., 2007) and universal learning network 
(Han et al., 2006) also have been proposed. Once the 
accurate modeling of a nonlinear process is com-
pleted (Billings, 1980), the internal model control 



 
 
 
 

484                             G. Petchinathan, K. Valarmathi, D. Devaraj and T. K. Radhakrishnan 
 

 
Brazilian Journal of Chemical Engineering 

 
 
 
 

(Nahas et al., 1992) and model predictive control 
(Richalet, 1993) schemes can be employed to im-
prove the closed loop performance of the system. 
Due to the complexity of the industrial process, a 
first- principles model cannot be applied and hence a 
more flexible type of model needs to be used. In 
recent decades, numerous schemes have been used 
for modelling and control of nonlinear processes. 
The genetic algorithm (GA) approach is used to find 
the optimal values of the model parameters and 
controller parameters for modelling and control of 
complex nonlinear process (Mwembeshi and Kent, 
2004 ; Valarmathi et al., 2009). The response time is 
high in the case of the GA based approach. The 
multi-layer artificial neural network (ANN) was 
introduced in the 1980s. It allows fast processing of 
large amounts of information. A large repository of 
literature using ANNs and their application in many 
different fields like modelling and control are avail-
able. The ANNs are also used in system identifica-
tion and control of pH processes (Sean, 1999; Wior 
et al., 2010; Sivaraman and Arulselvi, 2011). 
Radhakrishnan et al. (2009) proposed a GA and 
ANN approach for system identification and control 
of a pH process. The main problem with the neural 
based approach is that no human expertise can be 
stored. The fuzzy logic-based modelling (Babuska 
and Verbruggen 2003) approach has been widely 
used in many industrial processes. The main diffi-
culty related to fuzzy-based approach is that it needs 
prior knowledge about the operation of the process. 

To overcome the problems associated with 
individually using fuzzy and neural approaches, a 
large variety of Neuro-Fuzzy system (NFS) ap-
proaches was introduced in the 1990s. Jang (1993) 
introduced the adaptive neuro–fuzzy inference 
system (ANFIS), which belongs to a class of NFS. 
ANFIS is an adaptive network which permits the 
usage of neural network topology together with 
fuzzy logic. It not only includes the characteristics of 
both methods, but also eliminates some disadvan-
tages when used alone. Any linear or nonlinear 
function can be approximated using ANFIS. The 
NFS has the capacity to store human expertise and 
learning. In the last decade, NFS has been proposed 
for modelling and control of complex nonlinear 
industrial processes (Vieira et al., 2004; Rezaeeian et 
al., 2008; Wu et al., 2008; Navghare et al., 2011). 
The fast neural network LOLIMOT was introduced 
to determine the structure of a local linear input-
output model description from experimental data by 
Nelles (1999). The learning phase of this network is 
quite fast and more deterministic than a classical

neural network. The response time of a LOLIMOT 
network is much less. It was proposed for modelling 
of a heat exchanger (Fischer et al., 1998) and the 
combustion process of a diesel engine (Hafner et al., 
2000) and Van der Vusse reactor (Widjiantoro at al., 
2003). 

In this study, LOLIMOT and NFS are used to 
ascertain its effectiveness for modelling and control 
of an experimental pH neutralization process using 
MATLAB. The direct and inverse models are ob-
tained using both the techniques. The internal model 
control scheme is used for control of the process. 
 
 

EXPERIMENTAL SYSTEM: pH 
NEUTRALIZATION PROCESS 

 
The pH neutralization process considered in this 

work is technically realized in a constant volume 
mixing tank with two input streams and one output 
stream. The schematic diagram and experimental 
plant of the pH control system used in this study are 
shown in Figures 1 and 2, respectively. It consists of 
tanks for acid, base and water with the volume of 8.5 
litres and also has one mixing tank with the volume 
of 3.5 litres with constant speed stirrer. A level 
switch has been provided to maintain constant level 
in the acid and base tank. The flows of acid and base 
streams are regulated by normally closed type equal 
percentage pneumatic control valves. In this setup, 
the water tank acts as a disturbance tank and an 
electrically operated solenoid valve is used to change 
the water flow. The pH sensor (ABB - PT100 
100PSI 7-3) is located at the top of the mixing tank 
with a pH transmitter (ABB- AX400). The pH 
transmitter, signal conditioning circuit and Data 
Acquisition (DAQ) module with NI- VISA RS 232 
serial interface are connected to a personal computer 
(PC). Through this interface, bi-directional real time 
information like the actuating signal supplied by the 
controller and pH data for the control operation are 
passed. The DAQ module shown in Figure 3 is 
composed of I/V and V/I converter, 12 bit ADC and 
DAC and two channel analog input and output. The 
input channel of the DAQ module receives pH data 
from the pH transmitter - AX 400 in terms of mA, 
which is converted into 0-5 V by the I/V converter. 
This voltage is sent to the PC with a 12 bit resolution 
of the ADC. The output channel of the DAQ module 
receives the control signal from the PC through the 
DAC and V/I converter. The current signal from the 
V/I converter will actuate the pneumatic control 
valve through a current to pressure (I/P) converter. 
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Figure 1: Schematic diagram of the pH neutralization 
process. 
 

 
Figure 2: Experimental pH neutralization process. 

 

 
Figure 3: DAQ Module. 

The 0.2 g mol L-1 acid stream of acetic acid 
(CH3COOH) is pumped into the mixing tank at a 
constant flow rate (Fa) with 30% opening of the con-
trol valve. The 0.1 g mol L-1 base stream of sodium 
hydroxide (NaOH) is pumped into the mixing tank 
by a pneumatic control valve at a flow rate of Fb. 
The stirrer inside the mixing tank is used for mixing 
of the two streams. A neutral product and salt are 
produced by reaction between acid and base. The 
acid flow rate, Fa, introduces the disturbance in the 
process and the base stream flow rate, Fb, is used as a 
manipulated variable for control of the pH in the 
mixing tank. In this study, the maximum flow of acid 
and base streams is maintained around 1.2 L/min. 
The percentage of opening of the control valve is 
calibrated as flow rate for acid and base streams. 
 
 

MODELLING OF THE pH 
NEUTRALIZATION PROCESS 

 
Theoretical modelling of a pH process is too 

complex because of the severe nonlinear behaviour 
of the system. As to the characteristics of the 
experimental pH process, the nominal operating 
range of pH is from 5 to 12 and the nominal 
operating range of the base flow rate (Fb) is from 
20% to 100% because the minimum value of the 
base flow rate is only obtained at 20% of the opening 
of the control valve. Here, the base and acid flow 
rate are measured in terms of % of the respective 
control valve opening. For modelling of the pH 
neutralization process, the acid is pumped into the 
mixing tank at a constant flow rate (Fa) of 30% 
opening of the control valve and the control signal 
(base flow rate Fb) is varied in the range of 20% to 
70% opening of the control valve by a variable 
amplitude pseudo-random function. For more than 
70% opening of the base flow control valve, the pH 
value of the solution in the mixing tank reaches 
around 13 and does not reduce further upon variation 
of the base flow rate for a long period of time. 
Hence, the operating range of base flow rate Fb was 
fixed in the range of 20% to 70% opening of control 
valve. The training and validation data sets for this 
study were obtained in an open loop using perturba-
tions on the base flow-rate (Fb) as shown in Figure 8, 
from which variation of the pH was obtained from 5 
to 12.This region exhibits the nonlinear behaviour of 
the process. 

The data set for identification contained 10000 
samples with a sampling time of 10 sec. From the 
training and validation data sets, it can be seen that 
the rise and fall times are different and the time delay 
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of the system is constant and equal to one sampling 
period. The structures of the direct and inverse 
models for training are illustrated in Figures 4 and 5. 
These structures are the main solutions for training 
models illustrated in the literature (Deshpande and 
Ash, 1988; Hunt and Sbarbaro, 1991). The represen-
tation of a nonlinear dynamic system using the 
black–box approach at discrete time k + 1 is a non-
linear function of past inputs (nu) and past outputs 
(ny) and noise and is in the form of a NARX 
(Nonlinear Auto Regressive with Exogenous inputs) 
model, given by Eq. (1) 
 

( 1), ( 2)...... ( ),( ) ( )( 1), ( 2),..... ( )
y
u

y k y k y k ny k f e ku k u k u k n
− − −⎛ ⎞= +⎜ ⎟− − −⎝ ⎠

    (1) 

 
In the above equation, ny and nu represent the 

number of previous output samples used and the 
number of previous control (input) signal samples 
used, respectively. The direct and inverse models of 
the pH process are obtained with ny= nu= 2. The 
values of ny, nu and time delay (nk) are evaluated 
using the system identification toolbox of MATLAB 
based on statistical criteria, viz., the Akaike informa-
tion criterion (AIC) and Final Prediction Error (FPE) 
value, as shown in Table 1.  

 
Figure 4: Structure of the direct model for training. 

 
Figure 5: Structure of the inverse model for training. 
 

The prediction of the pH in the direct model of 
the process at time k is given by Eq. (2). 
 

( ) ( ( 1), ( 2),

( 1), ( 2))

ypred k f y k y k

u k u k

= − −

− −
        (2) 

 
The prediction of the control signal at time instant

k in the inverse model is given by Eq. (3) 
 

( ) ( ( ), ( 1), ( ),

( 1), ( 2))

upred k g y k y k r k

u k u k

= −

− −
        (3) 

 
where r(k) is the reference signal at time k. The local 
linear model tree (LOLIMOT) and neuro-fuzzy 
systems approaches like ANFIS were used to obtain 
the direct and inverse models of the nonlinear pH 
process. 
 
Table 1: FPE and AIC for different values of ny, 
nu and nk. 
 

Model nu ny nk FPE AIC 
M1 1 1 1 0.0023 -6.0731 
M2 2 2 1 0.0017 -6.3762 
M3 3 2 1 0.0017 -6.3520 
M4 3 3 1 0.0017 -6.3485 
M5 4 3 1 0.0018 -6.3421 
M6 4 4 1 0.0017 -6.3704 
M7 5 2 1 0.0018 -6.3096 
M8 5 5 1 0.0017 -6.3096 

 
Local Linear Model Tree 
 

Local Linear Model Tree (LOLIMOT) is one 
kind of fast local linear neural networks, because the 
learning phase is quite fast and more deterministic 
than a classical neural network. This network was 
introduced by Nelles (1999). The main idea of this 
network is to approximate the non-linear function 
with multiple piecewise linear models. It is an 
extended radial basis function network and it is 
obtained by replacing the output layer weights with a 
linear function of the network inputs. Thus, each 
neuron represents a local linear model with its 
corresponding validity function. In addition to this, 
the radial basis function network is normalized, that 
is, the sum of all validity functions for a specific 
input combination sums up to one. The local linear 
models are interpolated by Gaussian functions as the 
weighing functions. The Gaussian weighing func-
tions determine the regions of the input space where 
each neuron is active. The input space of the net is 
divided into M hyper-rectangles, each represented by 
a linear function (Hafner et al. 2000). 

The output y of the LOLIMOT network with p 
inputs puuu .........., 21 is calculated by summing up 
the contributions of all M local linear models. 
 

0 1 1 2 2
1

ˆ ( ......... )

( , , )

M

i i i ip p
i

i i i

y w w u w u w u

u c

=

= + + + +

Φ σ

∑
    (4) 
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where wik are the parameters of the ith linear regres-
sion model, u is the input vector and Φi is the nor-
malized Gaussian weighing function for the ith model 
with center coordinate ci and standard deviations σi. 
 

( )

1

, , i
i i i M

i
j

u c

=

ψ
Φ σ =

ψ∑
            (5) 

 
with  

2 2
1 1 2 2

2 2
1 2

2

2

( ) ( ) .......
1exp ( )2

i i

i i
i

p ip

ip

u c u c

u c

⎛ ⎞⎛ ⎞− −
+⎜ ⎟⎜ ⎟

σ σ⎜ ⎟⎜ ⎟ψ = −⎜ ⎟⎜ ⎟−
+⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟σ⎝ ⎠⎝ ⎠

    (6) 

 
The procedure of this network is split into two 

loops. In the outer loop, the structure of the local 
model network is optimized for the number of 
neurons and the partitioning of the input space. The 
network structure is optimized by a tree construction 
algorithm that determines the centers and standard 
deviations of the weighing functions (Figure 6). The 
inner loop estimates the parameters and structure of 
the local linear models by a local modelling tech-
nique (Pedram et al., 2006). 

The LOLIMOT network partitions the input 
space in hyper rectangles. The weighting function of 
the corresponding linear model is placed in the

center of each hyper rectangle. The standard devia-
tions are selected proportional to the size of the 
hyper rectangle. This creates the size of the validity 
region of a local linear model proportional to its 
hyper rectangle extension. A model may be valid 
over a wide operating range of one input variable but 
only in a small range of another one.  

At the outer loop of the each iteration, the local 
linear model with the worst local error in Eq. (7) is 
bisected into two new ones. Local error is the sum of 
the squared errors weighted with the corresponding 
weighing function Φi over all the data samples N. 
 

2

1

ˆ( ( )) ( ( ) ( ))
N

local i
j

J u j y j y j
=

= Φ −∑        (7) 

 
The possible cuts in all dimensions are tested and 

the one with the highest performance is selected as a 
new hyper rectangle. In the inner loop, the parame-
ters of the local linear models are calculated by a 
local weighted least-squares technique. Some unique 
features of the LOLIMOT network are, local estima-
tion of the local linear model parameters, considering 
only the worst local linear model for a split and 
freezing of the validity function values for extrapola-
tion. This network is very fast and robust. In 
addition, the computational demand increases only 
linearly with the number of local models due to the 
local estimation approach (Widjiantoro et al., 2003; 
Deshpande and Ash, 1988). 

 
 
 

 
 

Figure 6: Operation of the LOLIMOT training algorithm in the first four iterations. 
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Neuro-Fuzzy System 
 

A fuzzy inference system (FIS) can use human 
knowledge by storing its crucial components in a rule 
base, and perform fuzzy reasoning to infer the overall 
output value. The source of if-then rules and its 
membership function largely depend on a priori 
knowledge about the process. On the other hand, there 
is no logical way to transfer the knowledge of human 
experts to the knowledge base of a FIS. So, there is a 
need for adaptation of the rule base to generate the 
output within the specified error. The combination of 
FIS and ANN results in the NFS. The NFS takes 
advantage of the capacity that FIS has to store human 
expertise and the capacity of learning of the ANN 
(Vieira et al., 2004). The learning algorithm is applied 
to a FIS by forming a special ANN-like architecture 
known as an adaptive neuro-fuzzy inference system 
(ANFIS). In this paper, ANFIS was taken as the 
NFS, because of its robustness and fast convergence. 

The architecture of the ANFIS (Jang, 1993) is 
illustrated in Figures 7(a) and 7(b). Assume that the 
FIS under consideration has two inputs ,u x  and one 
output z. For a first-order Sugeno fuzzy model, a com-
mon rule set with two fuzzy if–then rules is as 
follows in Eq. (8). 
 
Rule 1:  
If u is A1 and x is B1, then 1111 rxqupz ++= , 
 

Rule 2:  
If u is A2 and x is B2, then 2222 rxqupz ++= .  (8) 
 

The reasoning mechanism for the Sugeno model 
is illustrated in Figure 7(a) and the corresponding 
equivalent ANFIS architecture is shown in Figure 
7(b). 

The output z in Figure 7(b) can be written as 
 

1 2
1 2

1 2 1 2

1 1 1 1 2 2 2 2

1 1 1 1 1 1

2 2 2 2 2 2

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

w wz z z
w w w w

w p u q x r w p u q x r

w u p w x q w r

w u p w x q w r

= +
+ +

= + + + + +

= + +

+ + +

     (9) 

 
The ANFIS architecture has five layers, as shown 

in Figure 7(b). The first layer has the membership 
functions for each input and rule, the second layer 
determines the firing strength of each rule, and the 
third layer normalizes the value of the firing 
strength. The nodes in the fourth layer are adaptive 
and perform the consequence of the rules. The 
parameters in this layer are referred to as consequent 
parameters. Finally, the overall output can be ex-
pressed as a linear combination of the resultant 
parameters in the fifth layer.  

  
(a) 

 
(b) 

Figure 7: (a) A two-input first-order Sugeno fuzzy model with two rules; (b): 
ANFIS architecture for a two-input first-order Sugeno fuzzy model with two rules. 
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The learning algorithm of ANFIS is composed of 
two phases. In the forward phase, the node output 
values go forward until layer 4 and the resultant pa-
rameters are identified by the least squares method. 
In the backward phase, the output errors are propa-
gated backward and the parameters are updated by 
the gradient descent method. 
 
LOLIMOT and ANFIS Structures for Modelling 
 

The ability of a LOLIMOT network to identify 
nonlinear systems was ascertained by Nelles (1999) 
and Widjiantoro et al. (2003). In general, the choice 
of model structure depends on the projected use of 
the model. In this study, the model is used for predic-
tion purposes. The local linear models are chosen to 
be the nonlinear ARX (NARX) model. The NARX 
requires past input signals and past real output sig-
nals as an input to form the predicted output. The 
structure of NARX is very simple and allows the use 
of linear optimization techniques.  

The standard ANFIS structure is used to obtain 
the direct and inverse model. The structure contains 
sixteen rules, four inputs with two bell-shaped mem-
bership functions and one output that is a linear func-
tion of the resultant parameters  

The good regressor for LOLIMOT and ANFIS 
based modelling is obtained via the process of itera-
tion with initial values. The regressor is taken as a 
row vector [nu ny nk]. Here, nu is the number of past 
input signals that affects the next output. ny is the 

number of past output signals and nk is the time 
delay. The initial value of the regressor is taken as [2 
2 1] for both techniques, similar to the orders used in 
the NARX model. The direct and inverse models are 
obtained with training and test data sets using the 
LOLIMOT and ANFIS techniques. The identifica-
tion procedures use a fuzzy control toolbox for use 
with MATLAB for the LOLIMOT and ANFIS mod-
els (Molsa, 2007). 
 
Comparison of the LOLIMOT and ANFIS Models 
 

The input – output data collected from the ex-
perimental pH process are shown in Figure 8. Out of 
the 10000 samples collected, 5000 samples of data 
are used for training and the remaining 5000 samples 
of data are used for validation. The number of train-
ing epochs is fixed. The stopping criterion for train-
ing is a minimum value of the mean square error 
(MSE). In this study, the minimum value of MSE 
was taken as 1e-6. The MSE was used as the criterion 
for the training and test data sets to compare the ac-
curacy of the model. The simulation results of the 
direct and inverse model are shown in Tables 2 and 
3, respectively. The simulation output of LOLIMOT 
and ANFIS based direct and inverse models are 
shown in Figures 9(a)-12(a). The enlarged versions 
of the simulation output of the LOLIMOT and 
ANFIS based direct and inverse models are pre-
sented in Figures 9(b)-12(b) to illustrate the differ-
ence between the mentioned variables. 

 

 
Figure 8: Training and Validation Data. 

 
Table 2: MSE for the Direct Model. 

 
MSE  Direct Model Training Testing 

LOLIMOT 1.620e-3 1.589 e-3 
ANFIS 1.744 e-3 1.739 e-3 
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Table 3: MSE for the Inverse Model. 
 

MSE  Inverse Model Training Testing 
LOLIMOT 10.11 10.24 
ANFIS 11.97 12.21 
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Figure 9(a): LOLIMOT direct model output after validation.  
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     Figure 9(b): Enlarged View of the LOLIMOT direct model output after validation. 
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Figure 10(a): ANFIS direct model output after validation. 
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Figure 10(b): Enlarged View of the ANFIS direct model output after validation. 
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Figure 11(a): LOLIMOT inverse model output after validation. 
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Figure 11(b): Enlarged view of the LOLIMOT inverse model output after validation. 

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-40

-20

0

20

40

60

80

Time (Samples)

 E
rr

or
 /

 A
ci

d 
F

lo
w

 r
at

e(
 %

)

y p

 

 
Original output 

Model output
Error

 
(a) 

Figure 12(a): ANFIS inverse model output after validation. 
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(b) 

Figure 12(b): Enlarged view of the ANFIS inverse model output after validation. 
 
 

From Tables 2 and 3, it can be seen that the 
LOLIMOT structure achieved a smaller MSE com-
pared to the ANFIS structure. The obtained models 
can also be compared in terms of complexity by meas-
uring the number of parameters, number of training 
epochs and training time. The results are summarized 
in Table 4 for the direct and inverse models. From 
Table 4, it can be seen that the number of parameters 
and training time are less in LOLIMOT compared to 
ANFIS because of the standard ANFIS structure. 
 

Table 4: Complexity comparison. 
 

Direct Model Inverse Model Properties LOLIMOT ANFIS LOLIMOT ANFIS
No. of 
parameters 19 104 37 104 

No. of 
training 
epochs 

100 50 50 50 

Training 
time (sec) 5 9 8 17 

 
 

CONTROL OF A pH NEUTRALIZATION 
PROCESS 

 
To test the obtained direct and inverse models for 

both the LOLIMOT and ANFIS architectures, the 
internal model control (IMC) strategy was used. The 
internal model control (IMC) method was introduced 
by Garcia and Morari (1985) and thorough research 
and development took place during the past decades 
(Garcia and Morari. 1985; Morari and Zafiriou, 
1989). The IMC method relies on the internal model 
principle, which states that if any control system 
contains within it, implicitly or explicitly, some 
representation of the process to be controlled, then a 
perfect control is simply achieved. In particular, if 
the control scheme has been developed based on the 
exact model of the process, then perfect control is 

theoretically possible. The IMC method includes     
an internal model and an internal model controller, 
which consists of the inverse internal model and    
a filter. It provides good tracking and robust 
performance.  

The standard structure of the IMC scheme, where 
the process model plays an explicit role in the 
control structure compared to the standard control 
loop, is shown in Figure 13. The IMC structure has 
some advantages over a conventional feedback con-
trol loop. For the nominal, the case plant (Gp) is 
equal to the plant model (Gpo); for instance, the 
feedback is affected only by the disturbance ‘d’, such 
that the system is effectively under open loop and 
hence no stability problems can arise. Also, if the 
process transfer function (Gp) is stable, the closed 
loop system is stable for any stable controller, 
Moreover, the controller can simply be designed as a 
feed-forward controller in the IMC scheme. 

 
 

Figure 13: Standard structure of the IMC scheme. 
 

In IMC design, controller GQ can be designed as a 
open loop controller, the ideal choice of the control-
ler is the inverse model of the process, which pro-
vides good tracking performance. The IMC structure 
used is shown in Figure 14, in which the inverse 
model is connected in series with the plant and the 
direct model (internal model) is connected in parallel 
with the plant. The differences between the model 
output and plant output is considered as error, e(k). 
The error, e(k) is fed back and subtracted from the 
set point or reference signal, r(k). 
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Figure 14: Structure of the Internal Model Control. 

 
Implementation of IMC in Real-Time Control Action 
 

The controllers are directly tested in the experi-
mental pH neutralization process, after the simula-
tion results are considered satisfactory. Figures 15

and 16 show the results of LOLIMOT and ANFIS 
internal model controllers for the experimental pH 
neutralization process. The real-time control action is 
performed for four different step changes in set point 
such as pH values of 7, 8, 9 and 11. The LOLIMOT 
and ANFIS based IMCs track the reference signal 
satisfactorily and produce reasonable control inputs.  

Minimization of the mean square error (MSE) 
was used as a metric measure function for comparing 
the results of these two approaches. In LOLIMOT 
based IMC, as shown in Figure 15, the control actions 
for the changes from 7 to 8, 8 to 9 and 9 to 11 are 
smooth and track the set point with small overshoot, 
but the pH change from 11 to 9 takes more time to 
settle down.  

 

 
Figure 15: IMC using the LOLIMOT based model. 

 

 
Figure 16: IMC using the ANFIS based model. 
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Overall results of the LOLIMOT based IMC are 
reasonable. For the ANFIS based IMC, as shown in 
Figure 16, the control actions for the changes from 7 
to 8 and 9 to 11 are reasonably good, but for changes 
from 8 to 9 and 11 to 9 some oscillations occur in 
output and also the settling time is high. From 
Figures 15 and 16, it can be seen that the output is 
close to the set point, which shows that the model 
can capture dynamics of the nonlinear process very 
well. From Table 5, it can be concluded that the 
LOLIMOT based IMC gave better performance than 
the ANFIS based IMC. 
 
Table 5: Performance comparison of the controllers. 
 

Controller MSE  
IMC - LOLIMOT  0.2235 
IMC - ANFIS  0.2475 

 
 

CONCLUSIONS 
 

In this study, modeling of the experimental pH 
process is based on LOLIMOT and ANFIS struc-
tures and real-time control action is performed using 
the IMC structure for both the models. In the direct 
and inverse modelling of the pH process, the MSE of 
the training and testing are close in the LOLIMOT 
and ANFIS structures. The error achieved is smaller 
when using a LOLIMOT than with ANFIS. The time 
taken for the training is also higher in ANFIS than 
LOLIMOT because the standard ANFIS structure 
used is not very flexible. The real time control action 
using IMC structure with both the approaches pro-
duced good results. However, the control action with 
the LOLIMOT model gives a slightly better result 
than the ANFIS model. In general, both the ap-
proaches are valid options for modelling of complex 
and non-linear real-time systems.  
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