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ABSTRACT: This paper reviews general aspects of alkaline-carbonatitic rocks of Brazilian, Paraguayan and Bolivian terrains. Although 30 such oc-
currences are known in literature, only the major ones have been thoroughly investigated. The carbonatites are of Cretaceous age, with two well-defined 
Lower Cretaceous and Upper Cretaceous generation episodes. A clear tectonic control by ancient structural features such as archs, lineaments and faults 
characterizes most cases. The rocks exhibit a large compositional variation, in decreasing orders of abundance from calciocarbonatites to magnesiocar-
bonatites to ferrocarbonatites. In some complexes, they form multistage intrusions. C-O isotopes indicate that, in general, the carbonatites were affected 
by post-magmatic processes associated with the topographic level of emplacement and low-temperature H2O-CO2 rich fluids responsible for the increased 
amount of heavy carbon and oxygen. Sr-Nd isotopic compositions similar to those of coeval alkaline silicate rocks, ranging from depleted to enriched 
mantle sources, have been influenced by two distinct metasomatic events in Proterozoic at 2,0-1.4 Ga and 1.0-0.5 Ga. Sr-Nd-Pb-Os data seem related 
to an isotopically enriched source, their chemical heterogeneities reflecting a depleted mantle that was metasomatized by small-volume melts and by fluids 
rich in incompatible elements. Fractional crystallization and liquid immiscibility are believed to be the most effective processes in the formation of the 
Cretaceous carbonatites, with minor contribution of crustal contamination. Pb isotopic ratios yield evidence that HIMU and EM I mantle components 
played an important role in the genesis of the carbonatitic magma.
KEYWORDS: Carbonatites; Alkaline Rocks; Brazilian Platform.
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INTRODUCTION

Only a few review papers dealing specifically with 
Cretaceous carbonatites of the southeastern Brazilian Platform 
are known in literature. Studies by Rodrigues and Lima 
(1984), Berbert (1984), and Gomes et al. (1990) are among 
the first ones. More recently, papers such as those by Castorina 
et al. (1996, 1997), Comin-Chiaramonti et al. (2005c, 
2014) and a general review by Comin-Chiaramonti et al. 
(2007a), including some African occurrences in Angola and 
Namibia, became available. The associated silicate alkaline 
rocks, on the other hand, have more frequently been reviewed 
(Ulbrich & Gomes 1981, Woolley 1987, Morbidelli et al. 
1995, Comin-Chiaramonti et al. 2005a, 2005d, 2007b, 
2015, Brod et al. 2005, Gomes et al. 2011a, 2011b, 2013, 
Gomes & Comin-Chiaramonti 2017, etc.). 

According to Gomes and Comin-Chiaramonti (2017), 
a total of 30 carbonatite occurrences have been described, 

most of them in Brazilian terrains (23), but also in Paraguay 
(6) and Bolivia (1) (Table 1). Included are carbonate ocelli 
in a few occurrences of fine-grained and intrusive rocks. 
Carbonatites are predominantly represented by intru-
sive and hypabissal bodies, only two groups of volca-
nic occurrences having been described: the lava flows of 
Santo Antônio da Barra, in Goiás (Gaspar & Danni 1981, 
Moraes 1988), and those of Sapucai, in Paraguay (Comin-
Chiaramonti et al. 1992). Volcanic occurrences are scarcely 
present, probably due to intense erosion (Morbidelli et 
al. 1995, Comin-Chiaramonti et al. 2005c). Carbonatites 
concentrate in two well-delimited areas of the Brazilian 
territory: the Ribeira Valley in the southeast (Ruberti et 
al. 2005, Gomes et al. 2011a) and the Alto Paranaíba in 
the central-west (Araújo et al. 2001, Guarino et al. 2013). 
Over the last years, these rocks have also been described 
near the city of Bagé (Joca Tavares and Porteira bodies; 
Toniolo et al. 2013, Monteiro et al. 2016) and also in 
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Table 1. General information on the carbonatite occurrences of different regions of Brazil, Paraguay and Bolivia.

Continue...

Locality Occurrence Petrography Mineralogy Age References

BRAZIL

Ribeira Valley 

1 Barra do 
Itapirapuã

Dike, vein, 
breccia

Mg-ca, Fe-ca, Si-ca,
Ca-ca, Fe, S, L 

Do, Ank, Cc, Phl, Pr, Qz, 
Ap, Bas, Pa, Syn, AB, 

Ga, Sph

Lower 
Cretaceous 1-19

2 Ipanema Dike, vein Ca-ca
Gl, Sh, Di, S, Fe, Te

Cc, Phl, Op, Ap, Cpx, 
Amp, Ba, Sf

Lower 
Cretaceous

2-6, 12, 13, 15, 
18-26, 59

3
Itanhaém (Ilha 
das Cabras or 

Givura)
Dike Mg-ca Do, Ap, Phl, Pv, Gr, 

alterated mafics
Lower 

Cretaceous

2, 4-6, 18, 19, 
21, 23, 24, 27, 

28, 59

4 Itapirapuã Dike, vein, 
breccia

Ca-ca
NS, I-Mel, Ti Cc, Ap, AF, Ne, Mt, Pt Lower 

Cretaceous

2, 4-6, 12, 13, 
18,-19, 21, 23, 
24, 29-32, 59

5 Jacupiranga Plug, dike
Ca-ca, Mg-ca

Du, Py (Ja), I-Mel, Tr, E, 
Mz, Fe, Sd, S, A, AB

Cc, Do, Phl, Ol, Mt, Ap, 
Pr, Il, Pv, Pyr, Ga, Cl, 

Ne, Amp

Lower 
Cretaceous

2-6, 12-15, 
18,19, 21, 23, 
24, 33-48, 59

6 Juquiá 
(Serrote) Plug, dike

Mg-ca, Ca-ca
Py, AG, I-Mel, NS, S, Sd, 

AB, Te, Pho, Fe

Do, Ank, Cc, Phl, Mt, 
Ba, Ap, Mo, Anc, No

Lower 
Cretaceous

2-6, 12-15, 18, 
19, 21, 23, 24, 
41, 49-52, 59

7 Mato Preto Plug, breccia
Ca-ca, Fe-ca

NS, Ti, Pho, Ga, I, Mel, 
L, Ta

Cc, Ank, Mt, Ap, Pr, Ba, 
Fl, Qz, AF, Flca

Lower 
Cretaceous

1, 2, 4-8, 12-19, 
21, 24, 27, 53-

57, 59

8 Piedade Lower 
Cretaceous 12, 21, 58, 59

São Paulo Coast Line

9 Ilhas Dike Mg-ca, Si-ca Cc, Do, Phl, Ap, 
phyllosilicates n.d. 60

Cabo Frio Lineament 

10. Poços de 
Caldas Dike, breccia

Si-ca, ocelli in 
lamprophyre

NS, Ti, Pho, L, La, Lp, 
Cc, Pr, Phl Upper 

Cretaceous
2, 5, 21, 59, 

61-63

Santa Catarina 

11 Anitápolis Plug, dike, 
vein

Ca-ca, Mg-ca
Py, Biot, I-Mel, NS, 

Phos, Fe, Apt, Ne, L, Pho

Cc, Do, Ap, Mt, Ol, Phl, 
Pr, Bd, Qz, Al, Anc, 

Bas, Sf

Lower 
Cretaceous

2-6, 13-15, 18, 
19, 21, 23, 24, 

59, 64-69

12 Lages Plug, dike, 
vein, breccia

Fe-ca, Ca-ca
NS, Pho, Ba, Ne, Meli, 

Te, Pht, Ki

Ank, Cc, Ap, Phl, Qz, 
AF, Pr, Pyr, Syn, Bas

Upper 
Cretaceous

2-6, 13-15, 19, 
21, 23, 24, 59, 

70-74

Rio Grande do Sul 

13 Joca Tavares Plug? Ca Do (Cc), Ap, Op (Hm, 
Il), Ch n.d. 75, 76

14 Porteira Dike Ca Do, Ap., Flo, Op (Hm, 
Il), Ch n.d. 75, 76

Alto Paranaíba 

15 Araxá 
(Barreiro) Stock, dike Mg-ca, Ca-ca, Fe-ca

Gl, Py, Phos, Sil

Do, Cc, Ank, Str, Si, 
Mg, Bu, Mt Ap, Phl, AF, 

Anc, Pr, Mo, Sf

Upper 
Cretaceous

2-6, 13-15, 19, 
21, 23, 24, 59, 

77, 78 

16 Catalão I Dike
Mg-ca, Ca-ca, Si-ca

Phl, Du, Be, Phos, NS, 
Nel, Sil

Do, Cc, Mg, Ap, Phl, Mt, 
Ba, Ti, Mo, Zr, Pr, Sf, 

Fl, No

Upper 
Cretaceous

2-6, 13-15, 19, 
21, 23, 24, 59, 

79-81

17 Catalão II Stock
Ca-ca, Mg-ca

Py, Gl, Phos, Apt, Mgt, 
Fe, S, L, Sil

Cc, Phl, Ver, AF, Mt, 
Pr, Ba, Pyr, REE 

minerals 

Upper 
Cretaceous

2-6, 13-15, 
19, 21, 23, 24, 

59, 81 
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Table 1. Continuation.

Locality Occurrence Petrography Mineralogy Age References

18 Salitre Stock, dike, 
vein

Ca-ca, Mg-ca
Be, Py, Du, Phos, NS, 

S, Ti, T

Cc, Do, Ap, Mt, Phl, Ol, 
Pr, Zr, Ba, Sf

Upper 
Cretaceous

2-6, 13-15, 
21, 23, 24, 59, 

81-86

19 Tapira Stock, dike, 
vein

Ca-ca, Mg-ca
Be, Du, Pe, Py, Phos, S, 

T, Melil, Ka

Cc, Do, Ap, Phl, Mt, Pr, 
Il, Pv, Ti, Pyr

Upper 
Cretaceous

2-6, 13-15, 19, 
21, 23, 24, 59, 

81, 87-90

20 Serra Negra Plug
Ca-ca

Du, Be, Sh, Py (Ja), Ti, 
T, Fe

Cc, Mt, Ap, Pr, Pv, Bd Upper 
Cretaceous

2-6, 13, 21, 
23, 24, 59, 81, 

91-93

Goiás 

21 Caiapó Plug, breccia Mg-ca, Ca-ca, Fe-ca
I, L, Fe

Do, Cc, Ank, Si, Ap, 
Mt, Pr,  AF, Qz, REE 

minerals
n.d. 4-6, 13

22 Morro do 
Engenho Vein Ca

Py, Pe, AG, NS Cc, Phl n.d. 2, 4-6, 13, 90, 
94

23
Santo Antônio 
da Barra (Rio 

Verde)

Lava, 
breccia, plug

Si-ca, Ca-ca
Ana (?), Ka,  Pho, T, 

Phou, Mo, Br

Cc aggregate in 
vitreous matrix

Upper 
Cretaceous

4-6, 13, 21, 24, 
59, 90, 95-99 

PARAGUAY

Rio Apa 

24 Valle-mí Dike Ocelli in basanite Cc Lower 
Cretaceous

13, 14, 19, 41, 
100-106

Amambay 

25

Cerro 
Chiriguelo 

(Cerro
Corá)

Dike Ca-ca, Fe-ca
Fe, NS, T

Cc, Ap, AB, Qz, Phl, 
AF, Mt, Cpx, Zr, Ura, 

Syn, Hm, Pyr, Go

Lower 
Cretaceous

2, 5, 13, 14, 
19, 21, 41, 59, 
100, 102-111 

26 Cerro Sarambí Dike Ca-ca, Si-ca
Py, NS, Fe, Pho, T, L Cc, Qz, Fl, Ver, Op Lower 

Cretaceous

2, 5, 13, 14, 
19, 41, 100, 

102-106, 109, 
111, 112

Central 

27 Cerro Cañada Stock Ocelli in ijolite
AG, NS, I Cpx, Ol, Bi, Cc Lower 

Cretaceous 103-106, 

28 Cerro E Santa 
Elena Stock Ocelli in ijolite

Ga, I, Te, Ba, AB, Tph
Cpx, Ol, Mt, Amp, 

Bi, Cc
Lower 

Cretaceous 103-106-111,

29 Sapucai Lava Mg-ca Do, AF, Mt, Bi, Ap Lower 
Cretaceous

41, 103-106-
111, 113

BOLIVIA

Velasco

30 Cerro 
Manomó Dike Si-ca

NS, S, Gr, Tph, T
Si, Ank, Cc, Go, Li, Qz, 

Ap, Bas, Syn
Lower 

Cretaceous 2, 5, 114-116

Data sources: Barra do Itapirapuã: 1, Lapido-Loureiro & Tavares (1983); 2, Almeida (1983); 3, Berbert (1984); 4, Rodrigues & Lima (1984); 5, Woolley 
(1987); 6, Gomes et al. (1990); 7, Ruberti et al. (1997); 8, Speziale et al. (1997); 9, Andrade et al. (1999a); 10, Andrade et al. (1999b); 11, Ruberti et al. (2002); 
12, Ruberti et al. (2005); 13, Comin-Chiaramonti et al. (2005a); 14, Comin-Chiaramonti et al. (2005d); 15, Biondi (2005); 16, Ruberti (1998); 17, Ruberti et al. 
(2008); 18, Gomes et al. (2011a); 19, Comin-Chiaramonti et al. (2007a); Ipanema: 20. Leinz (1940); 21, Sonoki & Garda (1988); 22, Davino (1975); 23, Ulbrich 
& Gomes (1981); 24, Morbidelli et al. (1995); 25, Guarino et al. (2012); 26, Rugenski et al. (2006); Itanhaém: 27, Coutinho & Ens (1992); 28, Mariano (1989); 
Itapirapuã: 29, Gomes & Cordani (1965); 30, Gomes & Dutra (1969); 31, Gomes (1970); 32, Gomes & Dutra (1970); Jacupiranga: 33, Melcher (1966); 34, 
Amaral (1978); 35, Gaspar (1989); 36, Ruberti et al. (1988); 37, Roden et al. (1985); 38, Germann et al. (1987); 39, Menezes & Martins (1984); 40, Morbidelli et 
al. (1986); 41, Castorina et al. (1996); 42, Santos & Clayton (1995); 43, Huang et al. (1995); 44, Ruberti et al. (1991); 45, Gomes et al. (1996a); 46, Azzone et al. 
(2012); 47, Beccaluva et al. (2017); 48, Chmyz et al. (2017); Juquiá: 49, Born (1971); 50, Beccaluva et al. (1992); 51, Walter et al. (1995); 52, Azzone et al. (2013); 
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Caçapava do Sul (Passo Feio and Picada dos Tocos) and 
Lavra do Sul (Três Estradas) areas (Rocha et al. 2013, 
Toniolo et al. 2013, Maciel 2016, Cerva-Alves et al. 2017), 
all in the Rio Grande do Sul State. Because the last three 
intrusions are believed to be of Proterozoic age, with U-Pb 
zircon data indicating a ca. value of 603.2 ± 4.5 Ma for the 
Picada dos Tocos beforsite (Cerva-Alves et al. 2017), they 
are excluded of this study. Other important carbonatitic 
occurrences are the Amambay (Cerro Chiriguelo, Cerro 
Sarambí; Comin-Chiaramonti et al. 2014) and Velasco 
(Cerro Manomó; Comin-Chiaramonti et al. 2011) regions 
in Paraguay and Bolivia, respectively. Figure 1 shows the 
distribution of alkaline and alkaline-carbonatite occur-
rences in the three countries.

The present paper reviews general aspects of carbon-
atite bodies represented by not only well-defined struc-
tures and a variety of dikes and veins, but also small 
aggregates (ocelli) in coarse and fine-grained alkaline 
silicate rocks.

GEOLOGICAL SETTING

The most remarkable alkaline-carbonatite complexes 
of the southeastern Brazilian Platform usually show intru-
sive/subintrusive, subcircular or oval-shaped structures that 
are clearly discerned in aerial photographs and are indica-
tive of high emplacement energy. In general, carbonatites 
are found chiefly as stocks, plugs, dikes, dike swarms, and 
veins, forming occasionally complex systems (stockworks) 
as in Barra do Itapirapuã in the Ribeira Valley (Ruberti et 
al. 2002, 2008), where distinct events may be recognized 
from a network of multiple intrusions. Dikes and veins 

constitute single bodies or complex systems that cut asso-
ciated alkaline silicate rocks or penetrate country rocks. 
Occasionally, dikes conform to a radial or ring-like dis-
tribution. Sometimes, they correspond to more than one 
rock generation phase, like in Barra do Itapirapuã (Ruberti 
et al. 2002, 2008), Juquiá (Walter et al. 1995) and Cerro 
Chiriguelo (Censi et al. 1989) districts, for example. 
Carbonatites and their associated alkaline rocks are com-
monly emplaced into Precambrian groups (e.g., Açungui, 
Araxá, Canastra, etc.) and have quartzites, schists, granites 
and gneisses as their main country rocks. However, some 
complexes also intrude sedimentary rocks of different types 
and ages, the regional rocks consisting, in a few cases (e.g., 
Lages and Santo Antônio da Barra), of tholeiitic basalts of 
the Paraná Basin.

In most cases, the emplacement of alkaline-carbon-
atite complexes is controlled by ancient tectonic features 
that were reactivated in Mesozoic times, related mainly 
to regional structures such as arches, lineaments and 
rifts. These tectonic alignments have been active since 
Lower Cretaceous, as suggested by the distribution of 
earthquakes in southern Brazil (Berrocal & Fernandes 
1996). The most prominent tectonic lineaments are 
represented by deep, NW-trending parallel fractures 
clearly associated with arch structures (Almeida 1971) 
and, apparently, in some cases, by old NE-trending fault 
zones as in Itanhaém (Coutinho & Ens 1992) and Cerro 
Manomó (Comin-Chiaramonti et al. 2005d). In the 
Ribeira Valley, emplacement was tectonically related to 
the Ponta Grossa Arch (Algarte 1972), a NW-trending 
uplift structure active since Paleozoic times that consists 
of four different lineaments (Guapiara, São Jerônimo-
Curiúva, Rio Alonso and Piqueri; Almeida 1983). The 

Mato Preto: 53, Jenkis II (1987); 54, Santos (1988); 55, Santos et al. (1996); 56, Santos et al. (1990); 57, Comin-Chiaramonti et al. (2001); Piedade: 58, 
Knecht (1960); 59, Amaral et al. (1967); Ilhas: 60, Coutinho (2008); Poços de Caldas; 61, Ulbrich et al. (2002); 62, Vlach et al. (2003); 63, Ulbrich et al. 
(2005); Anitápolis: 64, Melcher & Coutinho (1966); 65, Rodrigues (1985); 66, Furtado et al. (1986); 67, Furtado (1989); 68, Comin-Chiaramonti et al. (2002); 
69, Scheibe et al. (2005); Lages: 70, Scheibe & Formoso (1982); 71, Scheibe (1986); 72, Traversa et al. (1994); 73, Traversa et al. (1996); 74, Barabino et al. 
(2007); Joca Tavares and Porteira: 75, Toniolo et al. (2013); 76, Monteiro et al. (2016); Araxá: 77, Issa Filho et al. (1984); 78, Traversa et al. (2001); Catalão 
I: 79, Carvalho & Bressan (1981); 80, Cordeiro et al. (2010); 81, Gomes & Comin-Chiaramonti (2005); Salitre: 82, Morbidelli et al. (1997); 83, Barbosa (2009); 
84, Barbosa et al. (2012a); 85, Barbosa et al. (2012b); 86, Haggerty & Mariano (1983); Tapira: 87, Guimarães et al. (1980); 88, Brod (1999); 89, Brod et al. 
(2000); 90, Brod et al. (2005); Serra Negra: 91, Mariano & Marchetto (1991); 92, Souza Filho (1974); 93, Grasso (2010); Morro do Engenho: 94, Pena (1974). 
Santo Antônio da Barra: 95, Gaspar & Danni (1981); 96, Moraes (1984); 97, Moraes (1988); 98, Sgarbi (1998); 99, Junqueira-Brod et al. (2002); Valle-mí: 
100, Livieres e Quade (1987); 101, Gibson et al. (1995a); 102, Gomes et al. (1996b); 103, Castorina et al. (1997); 104, Comin-Chiaramonti et al. (2007b); 105, 
Gomes et al. (2013); 106, Comin-Chiaramonti et al. (2014); Cerro Chiriguelo: 107, Comte & Hasui (1971); 108, Censi et al. (1989); 109, Comin-Chiaramonti 
et al. (1999); 110, Gibson et al. (2006); 111, Comin-Chiaramonti et al. (2007c); Cerro Sarambí: 112, Gomes et al. (2011b); Sapucai: 113, Comin-Chiaramonti 
et al. (1992); Cerro Manomó: 114, Fletcher et al. (1981); 115, Comin-Chiaramonti et al. (2005b); 116, Comin-Chiaramonti et al. (2011). Other references 
consulted are listed in Gomes and Comin-Chiaramonti (2017).
Rock abbreviations: A, ankaratrite; AB, alkali basalt; AG, alkali gabbro; Ana, analcimite; Apt, apatitite; Ba, basanite; Be, bebedourite; Biot, biotitite; Ca, 
carbonatite; Ca-ca, calciocarbonatite; Di, diorite; Du, dunite; E, essexite: Fe, fenite; Fe-ca, ferrocarbonatite; Fou, fourchite; Ga, gabbro; Gl, glimmerite; Gr, 
granite; I, ijolite; Ja, jacupiranguite; Ka, kamafugite; Ki, kimberlite; L, lamprophyre; Lp, lamproite; Mel, melteigite; Meli, melilitite; Melil, melilitolite; Mgt, 
magnetitite; MMzd, melamonzodiorite; Mo, monchiquite; Mz, monzonite; Ne, nephelinite; Nel, nelsonite; NS, nepheline syenite; Pc, picrite; Pe, peridotite; 
Phl, phlogopitite; Pho, phonolite; Phos, phoscorite; Pht, phonotephrite; Py, pyroxenite; S, syenite; Sd, syenodiorite; Sh, shonkinite; Si-ca, silicocarbonatite; 
Sil, silexite; T, trachyte; Ta, trachyandesite; Te, tephrite; Tph, trachyphonolite; Ti, tinguaite Tr, theralite; Ur, urtite; We, wehrlite.  
Mineral abbreviations: AF, alkali feldspar; Al, alstonite; Amp, amphibole; An, ancylite; Ank, ankerite; Ap, apatite; Ba, barite; Bas, bastnäesite; Bd, 
baddeleyite; Bi, biotite; Bu, burbankite; Caz, calzirtite; Cc, calcite; Ch, chlorite; Cl, clinohumite; Cpx, clinopyroxene; Do, dolomite; F, feldspar; Fl, fluorite; 
Flca, fluorocarbonates; Ga, galena; Go, goethite; Gr, garnet; Hb, hornblende; Hm, hematite; Il, ilmenite; Mg, magnesite;  Mt, magnetite; Mo, monazite; Ne, 
nepheline; No, norsethite; Ol, olivine; Op, opaques;  Pa, parisite; Phl, phlogopite; Pyr, pyrite; Pr, pyrochlore; Pt, pyrrhotite; Pv, perovskite; Sph, sphalerite; 
Str, strontianite; Qz, quartz; Sf, sulfide; Si, siderite; Sy, synchysite; Ti, titanite; To, thorite; Ura, uranpyrochlore; Ver, vermiculite; Zir, zirconolite; Zr, zircon.
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residual deposits of apatite, pyrochlore, vermiculite, 
anatase and REE carbonates and phosphates can be 
present (Biondi 2005). Fresh rocks are usually scarce or 
even inexistent at surface, and samples for petrological 
studies are obtained mostly from drill cores. Jacupiranga 
is the only exception, presently mined for phosphate 
(Morro da Mina) with good local exposures that allow 
for sampling of fresh rock.

PETROGRAPHIC AND 
MINERALOGICAL CONSIDERATIONS

The carbonatites are characterized by a large variation 
in grain-size and texture, that grades from equi- to inequi-
granular and hypidiomorphic to allotriomorphic or even 
seriate. Other common features include structural flow 
with alignment of elongated crystals (e.g. apatite), presence 
of brecciated and xenolithic material, and typical banding 
from differential concentration of minerals, particularly apa-
tite, phlogopite, olivine and magnetite, as well evidenced in 
Jacupiranga carbonatites (Melcher 1966, Morbidelli et al. 
1986, Chmyz et al. 2017). 

The carbonatites are associated (or spatially rather 
than genetically associated, as postulated by Gittins & 
Harmer 2003) with silicate rock types of varied compo-
sition, mainly cumulates of different petrographic and 
compositional characteristics. They are found in close 
contact with ultrabasic-ultramafic lithologies having 
dunites, peridotites and pyroxenites as their main repre-
sentative variants (Tab. 1). These rocks are abundant and 
well-exposed at surface in the Jacupiranga (Melcher 1966, 
German et al. 1987) and Juquiá (Born 1971, Beccaluva 
et al. 1992) complexes, but are also present in a large 
number of occurrences. Other cumulates associated 
with carbonatites are glimmerites, especially in Ipanema 
(Guarino et al. 2012) and Catalão (Machado Jr. 1991, 
Carvalho & Bressan 1997, Cordeiro et al. 2010); bebe-
dourites in Alto Paranaíba complexes, notably in Salitre 
(Barbosa 2009, Barbosa et al. 2012a, 2012b) and Tapira 
(Brod et al. 2013); phoscorites in Anitápolis (Furtado et 
al. 1986, Scheibe et al. 2005), Ipanema (Guarino et al. 
2012) and several bodies in Alto Paranaíba (Cordeiro et 
al. 2010, Guarino et al. 2017); kamafugites, kimberlites, 
lamproites and picrites. All these rock types are practically 
restricted to occurrences in Minas Gerais and Goiás (Danni 
1994, Meyer et al. 1994, Gibson et al. 1995a, 1995b, 
Brod et al. 2000, 2005, Sgarbi et al. 2000, Junqueira-
Brod et al. 2000, 2002, Melluso et al. 2008, Guarino 
et al. 2013, 2017), except for the presence of kimber-
lites in Lages (Scheibe et al. 2005) and kimberlites and 

major Jacupiranga and Juquiá complexes are related to 
the Guapiara Lineament, whereas Barra do Itapirapuã, 
Itapirapuã and Mato Preto ones associate with the São 
Jerônimo-Curiúva Lineament. Other occurrences in the 
region (Ipanema, Itanhaém and Piedade) are linked to 
the Piedade Lineament, a parallel structural feature lying 
to the south (Riccomini et al. 2005). The Alto Paranaíba 
complexes in Minas Gerais (Araxá, Catalão I and II, 
Salitre, Serra Negra, and Tapira) follow a NW-trending 
linear structure that borders the São Francisco Craton, 
as indicated by aeromagnetic surveys, corresponding to 
a well-marked regional high, the Alto Paranaíba Uplift 
(Hasui et al. 1975). In the state of Goiás, occurrences 
(Caiapó, Morro do Engenho and Santo Antônio da Barra) 
are controlled by a pronounced NW-trending alignment 
that shows rift tectonics characteristics (Almeida 1983). 
Considering the distribution of alkaline bodies in both 
areas along NW-trending crustal discontinuities, that 
extend for considerable distances, and the nature of the 
magmatism, Riccomini et al. (2005) postulated that deep 
lithospheric faults played a major role in the tectonic con-
trol of these carbonatitic occurrences. According to these 
authors, the emplacement of carbonatites in the state of 
Santa Catarina is still a matter of debate: Lages appears 
to have been subject to NW-trending faults, whereas 
Anitápolis does not show a clear structural control. In 
the specific case of Anitápolis, Melcher and Coutinho 
(1966) pointed out the influence of N-S-trending faults. 
Comin-Chiaramonti et al. (2005c) proposed the Uruguay 
Lineament to have controlled the emplacement of both 
complexes. The recently described occurrences in Rio 
Grande do Sul (Jocas Tavares and Porteira) are structur-
ally controlled by NE-trending faults related to the Ibaré 
Lineament (Costa et al. 1995). In Amambay, northeastern 
Paraguay, the Cerro Chiriguelo and Cerro Sarambí com-
plexes are tectonically related to the NE-trending Ponta 
Porã Arch (Livieres & Quade 1987, Comin-Chiaramonti 
et al. 1999). There, more intense magnetic anomalies at 
the southwestern end of the arch seem to support such a 
hypothesis (Velázquez et al. 1998). Comin-Chiaramonti 
et al. (2005c) also recall that both these Paraguayan com-
plexes and the Valle-mí dikes are mainly found along the 
Piquiri Lineament. Sapucai in central-eastern Paraguay 
is located within the domains of the Asunción Rift and 
its associated faults.

Deep and extensive weathering processes are charac-
teristics of alkaline-carbonatite occurrences, rocks being 
usually covered by laterite layers that can reach 300 m 
thick. Soils originate mainly from alteration of cumu-
late (ultramafic) rocks and from dissolution of carbon-
ates of carbonatites. As a result, large supergenic and 
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Figure 1. Schematic maps showing the distribution of alkaline and alkaline-carbonatite occurrences in Brazil 
(after Ulbrich & Gomes, 1981, modified) and Paraguay (after Gomes et al. 2013, simplified). Also, indicated is 
the location of the Cerro Manomó in Bolivia. Captions for the Paraguayan rocks: (1) Lower Precambrian, Rio 
Apa Complex; (2) Upper Precambrian, Alumiador Intrusive Suite; (3) Cambrian Sediments, Itapucumi Group; 
(4) Silurian Sediments, Caacupé Group; (5) Carboniferous Sediments, Cerro Corá Group; (6) Triassic Sediments, 
Misiones Formation; (7) Cretaceous Tholeiitic Magmatism, Alto Paraná Formation (Serra Geral Formation in 
Brazil); (8) Tertiary and Quaternary Sediments; (9) Alkaline occurrences; (10) Alkaline-carbonatite occurrences.
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lamproites in Rio Grande do Sul (Philipp et al. 2005). 
Monomineralic cumulatic rocks (apatitites, magnetitites, 
phlogopitites) were described in a few complexes (e.g., 
Anitápolis, Ipanema and Catalão) as small segregations 
forming decimetric to metric irregular bands.

Association of carbonatites and alkaline gabbros of the 
melteiigite-ijolite-urtite series is quite frequent. It chiefly 
characterizes the alkaline-carbonatites of southeastern 
Brazil, especially in the Ribeira Valley, being particularly 
frequent in Jacupiranga and Juquiá and of subordinate 
presence in other districts (Ruberti et al. 2005, Gomes et 
al. 2011a). Association with lithologies of syenitic compo-
sition represented by coarse-grained (nepheline syenites, 
syenites) and fine-grained (phonolites, trachytes) rock 
types (Beccaluva et al. 1992, Ruberti et al. 2002) is also 
frequent. The presence of fenites, mostly of syenitic com-
position, is notable. Syenodioritic and dioritic fenites are 
scarce. Fenites are described in many carbonatitic bod-
ies as forming irregular masses in the inner parts of the 
alkaline intrusions or being concentrated along their bor-
ders. Fenitization processes are occasionally responsible 
for aureoles in country rock that can reach tens of meters 
wide (e.g., 2.5 km in Araxá, Rodrigues & Lima 1984; 2.0 
km in Jacupiranga, Gaspar 1989). Fenites do not usually 
constitute individual mappable units. They are interpreted 
as metasomatic bodies originated by either magmatic flu-
ids enriched in Na and/or K and F from carbonatitic or 
alkaline silicatic magmas acting on the associated alka-
line rocks and country rocks. Such processes can be of 
sodic or potassic nature, as suggested by changes in the 
chemical composition and texture of the rocks and by 
mineralogical evidences, notably the presence of sodic 
pyroxene and/or amphibole in the first case, and the 
appearance of alkali potassic feldspar in the second case 
(Le Bas 2008). Evidence of fenitization has been reported 
for a large numbers of alkaline-carbonatite complexes, 
especially where carbonatites are in direct contact with 
ultrabasic rocks (e.g., Morbidelli et al. 1986, Guarino et 
al. 2012). Jacupiranga is the best example of such an asso-
ciation, with pyroxenites (jacupirangites) and carbonatites 
forming reaction bands from fenitization of older ultra-
basic rocks by alkali-enriched metasomatic fluids derived 
from carbonatite magma. This type of reaction bands was 
investigated in detail by Morbidelli et al. (1986), who 
distinguished among concentric, centimeter-to-decime-
ter layers consisting of alternating carbonate and silicate 
material. Amphibolitization and phlogopitization of the 
pyroxenitic protolith by alkali-enriched fluids associated 
with carbonatitic magmas seem to be a constant feature 
in almost all Brazilian and Paraguayan carbonatite com-
plexes (Haggerty & Mariano 1983, Gomes et al. 1990). 

Petrographic associations allow the major alkaline-car-
bonatite complexes to be identified as primary or magmatic 
carbonatites, as defined by Mitchell (2005) and Woolley and 
Kjarsgaard (2008). Yet, they allow most carbonatites to be 
included in at least two different clans that conform in general 
terms the geographic distribution areas of the occurrences. 

The nephelinite-clan carbonatites (Mitchell 2005) or car-
bonatite occurrences with melteigite-ijolite-urtite (no neph-
elinite extrusive rocks, Woolley & Kjarsgaard 2008) are a 
classical association, ijolite being the predominant rock 
type. They represent about 20% of the magmatic carbon-
atite occurrences known to the latter authors worldwide. 
Ultramafic bodies (pyroxenites or olivinites or both), inter-
preted as cumulates, correspond to 60% of the occurrences, 
whereas nepheline syenites and syenites, along with rocks of 
the melteigite-ijolite-urtite series, are present in 84% of the 
cases. Considering the occurrences reviewed in the present 
study, this is the most abundant association, being repre-
sented mainly by the Lower Cretaceous complexes of the 
Ribeira Valley (Ipanema, Itapirapuã, Jacupiranga, Juquiá), 
Santa Catarina (Anitápolis) and Paraguay (Cerro Sarambí) 
and the Upper Cretaceous intrusions of Mato Preto, also 
in the Ribeira Valley and, apparently, Caiapó and Morro 
do Engenho in Goiás.

Melilite-clan carbonatites (Mitchell 2005) and carbon-
atite occurrences with melilite-bearing (melilitolite) intrusive 
rocks (Woolley & Kjarsgaard 2008) associations are not very 
common, even at global scale. Only 13 (3%) of a total 403 
published occurrences are listed by the latter authors, some 
of them bearing rocks of the melteigite-ijolite-urtite series, 
nepheline syenites or syenites (or both) and, frequently, pho-
scorites. Mitchell (2005) included the Upper Cretaceous Alto 
Paranaíba complexes of Araxá, Catalão and Tapira in this 
clan, stressing that Minas Gerais is one of the three regions 
in the world characterized by extensive development of mel-
ilitolite-bearing complexes. The author also emphasized the 
paucity of nepheline syenite and ijolite-urtite as a represen-
tative feature that distinguishes melilitolite complexes from 
plutonic rocks of the nephelinite clan. Apparently, only the 
Tapira occurrence is known to include melilite-bearing rocks. 
Guimarães et al. (1980) reported the presence of a dike of 
uncompahgrite (an ultramelilitolite according to Dunworth 
& Bell 1998) in which the modal content of the mineral 
reaches up to 63%. The inclusion of Tapira in this clan was 
also confirmed by Woolley and Kjarsgaard (2008). However, 
the other Alto Paranaíba complexes were included in a new 
clan, the carbonatite occurrences with only olivinite and pyrox-
enite as ultramafic rocks (± syenite). This clan is characterized 
by a broad spectrum of ultramafic rocks including olivin-
ites (dunites), peridotites, pyroxenites, amphibolites and 
glimmerites among the carbonatite complexes. Additional 
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rock types are phoscorites, nepheline syenites and syenites 
(or both). In some localities, carbonatites form km-scale 
diameter ore-hosting bodies with Nb (pyrochlore), phos-
phate and vermiculite. Rocks of the melteigite-ijolite-urtite 
series are missing. Guarino et al. (2017) emphasized the close 
relationship of Alto Paranaíba carbonatites and phlogopite 
picrites and ultramafic lamprophyres.

Although not mentioned by either Mitchell (2005) or 
Woolley and Kjarsgaard (2008), melilite-bearing rocks are 
also found in an Upper Cretaceous alkaline-carbonatite 
occurrence in Lages, State of Santa Catarina (Traversa et al. 
1994, 1996, Gibson et al. 1999). Their occurrence is of very 
complex composition, consisting of large amounts of syenitic 
rocks (predominantly phonolites and peralkaline phonolites), 
carbonatites, ultrabasic types that occur mainly as dikes, and 
kimberlites. Outcrops of olivine melilitites are described in 
various places in Lages, Cerro Alto de Cima, a semiring, 50 
m wide dike being the most significant body (Scheibe 1986).

More recently, Beccaluva et al. (2017) noticed the pres-
ence of melilite with modal content higher than 10% in 
ijolitic rocks of the Jacupiranga carbonatites.

Additionally, the overall petrographic association allows 
to distinguish a new group of carbonatites, the hydrothermal 
ones (also referred to as carbothermals by Mitchell 2005; 
or carbohydrothermals by Woolley & Kjarsgaard 2008). 
These latter authors define carbohydrothermal carbonatites 
as formed by precipitation at subsolidus temperatures, from 
a mixed CO2-H2O fluid that can be either CO2-rich (i.e., 
carbothermal), or H2O-rich (i.e., hydrothermal). Mitchell 
(2005) added variable proportions of F to the composition 
of the low-temperature fluids. A statistical study performed 
by Woolley and Kjarsgaard (2008) indicated that carbohy-
drothermal carbonatites amounted to 74 out of the 477 
occurrences (magmatic carbonatites included) in the world, 
54 of them being predominantly associated with intrusive 
alkali silicate rocks. Their research also made evident that 
syenitic rocks (feldspathoidal syenites, syenites and quartz 
syenites) constitute the dominant silicate rock in this asso-
ciation. Also according to Woolley and Kjarsgaard (2008), 
these occurrences typically consist of calcite ± barite ± fluo-
rite ± quartz ± sulfides ± K-feldspar ± zeolites. However, the 
hydrothermal stages can also have involved enrichment in 
elements such as Th, REE and F, as reflected in the miner-
alogical assemblage, that bears REE fluorocarbonates, fluorite 
and other fluoride phases. Based on chemical and mineralog-
ical evidence, notably the presence of rare accessory phases 
like ancylite, bastnäesite, synchysite, parisite, etc., Barra do 
Itapirapuã (Ruberti et al. 2002, 2008), Cerro Chiriguelo 
(Haggerty & Mariano 1983, Censi et al. 1989) and Cerro 
Manomó (Fletcher et al. 1981, Comin-Chiaramonti et al. 
2005d, 2011) complexes fall within the hydrothermal group.

No data is presently available on the Piedade (SP), Jocas 
Tavares (RS) and Porteira (RS) carbonatites, but, consider-
ing the occurrence of alkaline rocks in Rio Grande do Sul, 
represented by the phonolitic suite of Piratini (Barbieri 
et al. 1987), it is possible that both bodies correlate with the 
aforementioned volcanism event. Woolley and Kjarsgaard 
(2008) described the occurrence of carbonatite with only 
phonolite or feldspathoidal syenite, without any ultramafic 
cumulates or members of the melteigite-ijolite-urtite series 
or melilite-bearing rocks. This association is considered to 
be the third most significant one, with carbonatite intru-
sions forming small dikes into larger bodies.

Other carbonatitic occurrences are represented by small 
dikes in Itanhaém (Coutinho & Ens 1992) and in an island 
on the coast of the State of São Paulo (Ilhas, Coutinho 2008); 
dikes and ultramafic silico-carbonatitic plugs and carbon-
atitic fragments within volcanoclastic deposits in the Poços 
de Caldas alkaline complex (Ulbrich et al. 2002, 2005, Vlach 
et al. 2003, Alves 2003); and as minor aggregates (ocelli) in 
association with fine-grained (Valle-mí) and coarse-grained 
(Cerro Cañada and Cerro E Santa Elena) silicate alkaline 
rocks in Paraguay (Castorina et al. 1997, Comin-Chiaramonti 
et al. 2007a, Gomes & Comin-Chiaramonti 2017).

Carbonatites are predominantly calcic (sövites-alvi-
kites) and, even in more magnesian (beforsites) intrusions 
(e.g., Araxá, Barra do Itapirapuã, Juquiá, etc.), calcite is an 
important constituent. A more iron-rich composition with 
ankerite as the chief mineral form is present in Lages and 
Cerro Manomó, for example (Comin-Chiaramonti et al. 
2002, 2011). The three primary end-member minerals are 
not usually found in the same complex, Barra do Itapirapuã 
and Juquiá being the most noticeable exceptions, with such 
phases present in different stages of intrusion. More com-
monly, carbonate minerals exhibit a complex and varied 
chemical composition, due mainly to post-magmatic changes 
induced by hydrothermal and deuteric-groundwater processes, 
as described by Comin-Chiaramonti et al. (2007a) in many 
occurrences of Lower Cretaceous (e.g., Barra do Itapirapuã, 
Cerro Chiriguelo) and Upper Cretaceous (e.g., Lages, Mato 
Preto). A secondary, hydrothermal mineralogical assemblage 
is the main characteristic of some complexes bearing hetero-
geneous and complex chemical composition phases enriched 
in Nb, Ti, Zr, Th, U, F, Ba, and REE. Araxá and Barra do 
Itapirapuã are good examples of a mineral assemblage consist-
ing of REE-bearing carbonates, fluorocarbonates and phos-
phates, which was intensively investigated by Traversa et al. 
(2001) and Ruberti et al. (2008), respectively. Additional 
mineral information is also found in the studies by Fletcher 
et al. (1981, on Cerro Manomó), Haggerty and Mariano 
(1983, on Salitre, Cerro Chiriguelo and Cerro Sarambí) and 
Menezes Jr. and Martins (1984, on Jacupiranga). Table 7.1 
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of Gomes and Comin-Chiaramonti (2017) compiles a great 
number of less common and even exotic minerals related to 
alkaline-carbonatite complexes, including sorosilicates (lam-
prophyllite, rosenbuschite, Sr-chevkinite), cyclosilicates (eudi-
alyte, wadeite), inosilicates (pectolite, serandite, wollastonite), 
phyllosilicates (neptunite), oxides and hydroxides (baddeleyte, 
loparite, menezesite, perovskite, pyrochlore, zirconolite), carbon-
ates (alstonite, ancylite, bastnäesite, breunnerite, burbankite, 
cordyllite, magnesite, norsethite, olekminskite, parisite, remon-
dite, shortite, strontianite, synchysite, witherite), and phosphates 
(britholite, galgenbergite, gorceixite, monazite). Although not 
cited in Table 7.1, the following should be also mentioned: 
carbonates (ankerite, kutnehorite, rodochrosite, siderite), flu-
orides (fluorite), oxides (calzirtite, geikielite, uranpyrochlore), 
phosphates (dahlite), sulphates (barite, celestine), and sulfides 
(chalcopyrite, galena, phyrotite, pyrite, sphalerite).

AGES

Except for a small number of occurrences such as Barra 
do Itapirapuã, Jacupiranga and Poços de Caldas (Ruberti 
et al. 1997, Chmyz et al. 2017, Vlach et al. 2003, respec-
tively), whose ages were determined directly from carbon-
atites and their mineral constituents, most available data 
resulted from analysis of associated silicate alkaline rocks 
(whole-rock and mineral concentrates of different miner-
als). Data for all presently known alkaline-carbonatite occur-
rences indicates that these rocks are of Cretaceous age, with 
two clearly distinguished formation intervals, 120–140 Ma 
and 70–90 Ma, Lower Cretaceous and Upper Cretaceous 
(Ulbrich & Gomes 1981, Rodrigues & Lima 1984, Berbert 
1984, Gomes et al. 1990, Gibson et al. 1995a, Ruberti et al. 
2005, Comin-Chiaramonti et al. 2007a, 2007b, Gomes et al. 
2011a, 2011b, 2013, Gomes & Comin-Chiaramonti 2017). 
Preferred ages for the occurrences are shown in Figure 2. 

Lower Cretaceous
Although some results are yet to be confirmed by new 

analytical methods, this interval is apparently represented 
by three distinct generation episodes. The oldest age of ~139 
Ma is suggested for the Amambay (Cerro Chiriguelo and 
Cerro Sarambí), Rio Apa (Valle-mí) occurrences in north-
ern Paraguay and Cerro Manomó in southeastern Bolivia. 
An average approximately 130 Ma age characterizes the 
Ribeira Valley complexes (Barra do Itapirapuã, Ipanema, 
Itanhaém, Jacupiranga, Juquiá and Piedade) in southeastern 
Brazil and also Anitápolis to the south, in the State of Santa 
Catarina. Carbonatite flows cropping out nearby the village 
of Sapucai and ijolitic rocks of Cerro Cañada and Cerro E 
Santa Elena, all in central-eastern Paraguay, are probably 

related to the same magmatic event. The Itapirapuã massif, 
also in the Ribeira Valley, seems to represent the youngest 
Lower Cretaceous episode, with ages in the 100–110 Ma 
range, as suggested by old K-Ar results (Gomes & Cordani 
1965) confirmed by recent Ar-Ar and U-Pb SHRIMP deter-
minations (Gomes et al. 2018).

Upper Cretaceous
The Alto Paranaíba (Araxá, Catalão I and II, Salitre, Serra 

Negra and Tapira) and Goiás (Santo Antônio da Barra) com-
plexes in central-western Brazil, together with Mato Preto and 
Lages complexes in the south, have ages that fall within the 
70–90 Ma interval. The Joca Tavares and Porteira bodies in the 
State of Rio Grande do Sul probably belong to the same interval. 

It is also important to notice that three of the above 
ages fit the chronogroups of 133 Ma, 108 Ma and 84 Ma 
proposed by Ulbrich et al. (1991) to define peaks of alka-
line magmatism along the borders of the Paraná Basin. 
These chronogroups are believed to represent different phases 
of evolution of the basaltic and alkaline magmatism in the 
South Atlantic Plate. They stress the coherent relationship 
of this volcano-tectonic cycle to important changes in the 
position of rotation poles and spreading rates of the South 
American and African plates (Herz 1977, Sadowski 1987).

GEOCHEMISTRY

Major elements
Chemical data indicates that the carbonatites range in 

composition from calciocarbonatites to magnesiocarbonatites 
to ferrocarbonatites. However, association of these different 
petrographic types in a same complex is rare (e.g., Araxá, 
Barra do Itapirapuã, Juquiá). Plottings of whole-rock chemis-
try data in CaO-MgO-(FeO + MnO) classification diagrams 
(Woolley & Kempe 1989) are discussed in various papers 
(e.g., Comin-Chiaramonti et al. 2001, 2002, 2005c, 2007a, 
Gomide et al. 2016). They usually stress the large chemical 
variation of carbonatites, analyses covering the three, Ca, 
Mg and Fe compositional fields. Calciocarbonatites are the 
most abundant types, followed by magnesiocarbonatites. 
Calciocarbonatites constitute the main lithology in Anitápolis, 
Cerro Chiriguelo, Ipanema, Itapirapuã, for instance, whereas 
magnesiocarbonatites predominate in complexes like Araxá, 
Barra do Itapirapuã, and Juquiá. Ferrocarbonatites are of 
subordinate occurrence, being more significant only in 
Lages (Scheibe et al. 2005) and Cerro Manomó (Comin-
Chiaramonti et al. 2002, 2011, respectively). The Bolivian 
Cerro Manomó complex represents the most striking occur-
rence of ferrocarbonatites, with 40.5 wt% of FeO, 7.7 wt% 
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of CaO, 0.34 wt% of MgO and 7.1 wt% of MnO (Comin-
Chiaramonti et al. 2011). However, it is important to consider 
that in some complexes like Barra do Itapirapuã, Jacupiranga 
and Juquiá, the evolution of carbonatite magmas resulted 
in rocks of wide variation in chemical composition repre-
senting different stages of intrusion. Thus, early stage car-
bonatites of the Jacupiranga and Alto Paranaíba complexes 
tend to show a more calcic composition, that evolved to 
more magnesian in latter stages of crystallization (Gomide 
et al. 2016). This calciocarbonatites→magnesiocarbonatites 
evolution trend, reaching up to ferrocarbonatites in a few 

cases, has been described in Barra do Itapirapuã (Ruberti 
et al. 2002), Cerro Chiriguelo (Censi et al. 1989) and Juquiá 
(Walter et al. 1995) complexes. In some occurrences (e.g., 
Mato Preto, Santo Antônio da Barra, etc.), the carbonatitic 
association also includes silicocarbonatites, carbonatites with 
> 20% SiO2 occurring mostly as dikes.

The Lower Cretaceous carbonatites of southern Brazil 
seem to be chemically related to a potassic magmatism of 
plagioleucitic composition in Foley’s (1992) classification 
(Comin-Chiaramonti & Gomes 1996b), chiefly represented 
by evolved rock types of syenitic filiation. On the other 

Figure 2. Reference age diagram for carbonatite occurrences in the southern Brazilian Platform. Data  source 
follows references listed in Table 1.
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hand, the Upper Cretaceous carbonatites of central-western 
Brazil are characterized by ultrapotassic-kamafugitic asso-
ciations (Junqueira-Brod et al. 2002, Guarino et al. 2017). 
Usually, also included in the Lower and Upper Cretaceous 
occurrences are less evolved lithologies of gabbroic-basal-
tic affinity and cumulates of diverse nature (e.g., dunites, 
pyroxenites, phoscorites).

Trace and rare earth elements
Incompatible elements (IE) diagrams normalized to prim-

itive mantle concentration (Sun & McDonough 1989) for 
Brazilian Lower Cretaceous carbonatites (Anitápolis, Barra 
do Itapirapuã, Jacupiranga, Juquiá) and Paraguay (Cerro 
Chiriguelo, Cerro Sarambí, Sapucai, Valle-mí) and for Upper 
Cretaceous Brazilian complexes (Alto Paranaíba, Lages, 
Mato Preto) were compiled in review papers by Comin-
Chiaramonti et al. (2005c, 2007a). Additional multielement 
diagrams are also found for other areas: the Ponta Grossa 
Arch (Gomes et al. 2011a, Azzone et al. 2013, Beccaluva et al. 
2017, Chmyz et al. 2017), Amambay (Gomes et al. 2011b, 
Comin-Chiaramonti et al. 2014), and the Alto Paranaíba 
province (Gomide et al. 2016).

For any given incompatible element, there is a large 
variation in normalized values from one carbonatite com-
plex to another. Scatters for the different carbonatites seem 
to reflect, to some extent, the variable distribution and the 
concentration of phases, IE occurring mainly as accessory 
minerals such as phosphates (e.g., apatite and monazite: 
rare earth elements — REE), oxides (e.g, pyrochlore: Nb, 
Th, U; calzirtite: Nb, Zr; zirconolite: Ti, Nb, Zr; loparite: 
Ti, Nb, REE) and REE-carbonates and fluorocarbonates 
(e.g., ancylite, bastnäesite, burbankite, parisite, synchysite). 
In comparison to associated silicate alkaline rocks, the car-
bonatites follow a general tendency to higher abundances in 
practically all of the incompatible trace elements. Even con-
sidering variable composition and stage of intrusion, they are 
usually characterized by the presence of negative anomalies 
for Rb, K, P, Hf-Zr and Ti and positive spikes for Ba, Th-U 
and La-Ce. The behavior of Nb-Ta and Sr appears to be less 
regular, but pointing mostly to positive anomalies. Although 
based only on little data available (e.g., Anitápolis, Lages, 
Mato Preto, cf. Gibson et al. 1999, Comin-Chiaramonti 
et al. 2005c, 2007a), no significant difference is noticed in 
the chemical behavior of IE in early and late carbonatites 
of a same complex, except for a clear tendency of the latter 
rocks to be more enriched in all the elements.

REE display remarkable scatters even within a single 
complex. This is particularly evident for samples from areas 
that involve different stages of formation, i.e., magmatic, 
late-magmatic or hydrothermal conditions. Similar to the 
IE, scatters are mainly attributed to the presence of accessory 

minerals such as apatite, REE fluorocarbonates, fluorite and 
barite. REE fluorocarbonates are relatively abundant in late 
stage carbonatites (e.g., Barra do Itapirapuã, Cerro Manomó). 
Chondrite-normalized (Thompson 1982, Boynton 1984, 
McDonough & Sun 1995) REE distribution diagrams for 
various carbonatite complexes are discussed in several papers 
(e.g., Comin-Chiaramonti et al. 2005c, 2007a, 2014, Gomes 
et al. 2011a, 2011b, Azzone et al. 2013, Gomide et al. 2016, 
Beccaluva et al. 2017, Chmyz et al. 2017). Patterns are in gen-
eral marked by high REE concentration and variable LREE/
HREE fractionation degrees. A strong increase from Lu to 
La is observed in Cerro Chiriguelo, Jacupiranga, Lages (both 
early and late carbonatites) and Mato Preto complexes, and 
also Alto Paranaíba occurrences that characterizes different 
stages of fractional crystallization (C1 to C5, cf. Gomide 
et al. 2016). Flat REE or patterns with a smooth decrease 
from La to Lu are characteristic of Anitápolis, Barra do 
Itapirapuã (late calciocarbonatites), Ipanema, Jacupiranga 
(calciocarbonatites) and Juquiá (magnesio- and calciocar-
bonatites) rocks. In these occurrences, the REE distribution 
seems to be related to the apatite composition. Concave 
patterns with a HREE plateau and a steady increase from 
Dy to LREE are typical of Valle-mí and Barra do Itapirapuã 
carbonatitic rocks. Ferrocarbonatites are generally more 
enriched than calcio- and magnesiocarbonatites, mainly as 
evidenced in Lages. Comin-Chiaramonti et al. (2007a) gave 
especial attention to the stockwork of Barra do Itapirapuã, 
that includes four generations of carbonatite dikes of simi-
lar, parallel and slightly enriched LREE pattern. As a result 
from the presence of REE fluorocarbonate minerals, the 
dikes more intensely subject to hydrothermal alteration show 
higher LREE concentrations (Andrade 1998). 

C and O isotopes
The behavior of carbon and oxygen isotopes derived 

mainly from carbonates of Brazilian and Paraguayan car-
bonatitic rocks has been discussed in detail by many authors 
over the last decades (e.g., Nelson et al. 1988, Censi et al. 
1989, Santos et al. 1990, Santos & Clayton 1995, Huang 
et al. 1995, Toyoda et al. 1994, Walter et al. 1995, Castorina 
et al. 1996, 1997, Speziale et al. 1997, Andrade et al. 1999, 
Comin-Chiaramonti et al. 2001, 2002, 2005b, 2005c, 
2007a, Ruberti et al. 2002, Gomide et al. 2013, 2016, 
Gomes & Comin-Chiaramonti 2017). In general, δ18O 
data available in literature for such occurrences covers a 
wide interval, from about 5 to 25‰ (V-SMOW notation 
per thousand, cf. Deines 1989). For approximately 50% 
of the analyses, however, results lie between 6 and 10‰. 
In contrast, δ13C values show a more restricted variation, 
with 91% of the analyses falling between -2‰ and -8‰ 
(PDB-1 notation per thousand, cf. Deines 1989). Ranges 
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of δ18O and δ13C between 6 and 10‰ and between -4 
and -8‰, respectively, correspond to the field defined 
by Taylor et al. (1967) and Keller and Hoefs (1995) for 
primary carbonatites. The plot of δ18O vs. δ13C (Fig. 3), 
including some Brazilian Lower Cretaceous and Upper 
Cretaceous and Paraguayan Lower Cretaceous carbonatite 
occurrences, makes evident that: 

■■ a clear primary signature of the Lower Cretaceous com-
plexes in southeastern Brazil, as exemplified mainly by 
the Jacupiranga rocks plotting entirely inside the range 
of mantle values; 

■■ two well-distinct linear enrichment trends of heavy iso-
topes are present. 

Enrichment of heavy isotopes is interpreted as result-
ing from mantle source heterogeneity (Nelson et al. 1988), 
contamination processes by country rocks, especially lime-
stone (Santos & Clayton 1995), or magmatic vs. hydrother-
mal evolution at shallow levels (Censi et al. 1989). The first 
trend is characterized by a shift to positive values of both 
δ18O and δ13C (e.g., Barra do Itapirapuã, Jacupiranga, Mato 
Preto), and it appears to be an extension of the Jacupiranga 
carbonatites, which are believed to have a primary signa-
ture (Huang et al. 1995). A similar isotopic evolution from 
magmatic fractionation also characterizes early stage carbon-
atites (C1) of the Alto Paranaíba province (Gomide et al. 
2016). Other carbonatites representing intermediate (C2, 
C3) and later (C4, C5) stages of the same region also show 
isotopic evolution consistent with magmatic fractionation, 
but with additional interaction with carbohydrotermal flu-
ids and hydrothermal alteration. The second trend shows a 
δ18O increase for similar values of δ13C typical of the Juquiá, 
Lages, Cerro Chiriguelo and some Alto Paranaíba (e.g., 
Catalão I, Catalão II, Tapira) complexes. 

As stressed in literature (e.g., Deines 1989), the large 
variation in the content of oxygen and carbon isotopes in 
carbonatitic complexes results from magmatic (crystal frac-
tionation, degassing, crustal contamination) and post-mag-
matic (hydrothermal) processes. Systematic investigation of 
carbonatites of the Paraná Basin points out that most occur-
rences have enriched isotopic composition and negligible or 
absent crustal signature, and that fractional crystallization 
and liquid immiscibility processes cause little effect on oxy-
gen and carbon isotopic values (Santos & Clayton 1995, 
Castorina et al. 1997, Comin-Chiaramonti et al. 2005b, 
Gomes & Comin-Chiaramonti et al. 2017). Also, according 
to these authors, the main variations in δ18O and δ13C could 
be explained by isotopic exchange between these rocks and 
H2O-CO2 rich fluids at different temperatures and H2O/CO2 
ratios in a hydrothermal environment (e.g., below 300ºC 
for the first two authors, and in the range of 400–80ºC and 
fluids with a 0.8–1 CO2/H2O ratio for the others). The two 
paths of δ18O-δ13C fractionation previously mentioned are 
attributed to different emplacement levels, that reflect sub-
volcanic and surface conditions, respectively. Weathering 
and groundwater fluids are locally important factors, as is 
meteoric water, that yielded samples strongly enriched in 
light carbon due to contamination by a biogenic component 
(Castorina et al. 1997, Comin-Chiaramonti et al. 2005b). 
Crustal contamination by limestone country rocks of the 
Açungui Group (δ18O = +25.0 to +24.4‰ and δ13C = +3.5 
to -8.6‰), as suggested by Santos and Clayton (1995) for 
Mato Preto carbonatites, does not seem necessary to explain 
the enrichment in both heavy oxygen and carbon isotopes of 
some hydrothermally altered samples of the complex, based 

Figure 3. Fields of δ18O‰ (V-SMOW) vs. δ13C‰ (PDB-
1) for Lower Cretaceous (Jacupiranga, Juquiá, Barra 
do Itapirapuã, Anitápolis) and Upper Cretaceous 
(Araxá, Catalão I, Catalão II, Tapira, Mato Preto, Lages) 
carbonatites of Brazil and for Lower Cretaceous 
carbonatites of Eastern Paraguay (Cerro Chiriguelo, 
Cerro Sarambí, Valle-mí). Data sources: Comin-
Chiaramonti et al. (2005c and therein references), 
Cordeiro et al. (2011), Guarino et al. (2012, 2017), 
Gomes and Comin-Chiaramonti 2017). PC, field for 
primary carbonatites from Taylor et al. (1967) and 
Keller and Hoefs (1995); field for marbles is also from 
Comin-Chiaramonti et al. (2005c).
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on considerations by Speziale et al. (1997) and Comin-
Chiaramonti et al. (2005b). This interpretation is also sup-
ported by the initial 87Sr/86Sr and 143Nd/144Nd isotopic ratios 
of some selected carbonatites, that present the same values 
as their associated alkaline rocks (Comin-Chiaramonti et al. 
2005c). Speziale et al. (1997) pointed out that, in terms of 
radiogenic isotopes, Barra do Itapirapuã and Mato Preto car-
bonatites preserve mantle source characteristics, even where 
original O-C isotopic signatures were in part modified by 
low temperature post-depositional hydrothermal fluids. 
A more complex situation is apparently associated with the 
wide δ18O (between 8.58 to 23.11%) and δ13C (between 
-3.55 and -7.88%) values shown by Catalão I carbonatitic 
rocks (Cordeiro et al. 2011, Oliveira et al. 2017). There, the 
original isotopic composition of carbonates was modified by 
at least two events of magmatic fractionation (1 — Rayleigh 
fractionation, with carbonate signatures being related to the 
isotopic fractionation between carbonates and other miner-
als as well as to the temperature and the isotopic composi-
tion of the initial melt, and 2 — degassing) and three fluid 
fractionation (fluid degassing, H2O percolation and CO2-
H2O fluid percolation) episodes.

Apparently, sulfur and carbon isotopic data from sul-
phides is only available in studies by Gomide et al. (2013, 
2016) on the Alto Paranaíba complexes (Araxá, Catalão I, 
Catalão II, Salitre, Serra Negra and Tapira) and Jacupiranga 
in the Ribeira Valley. In these occurrences, almost all 
carbonatite intrusions present an isotopic composition 
of sulfur that is compatible with values for the mantle 
and carbonatites around the world. Exceptions are a few 
Catalão I and Tapira samples showing distinctly negative 
34S values more consistent with sulfur degassing and/or 
hydrothermal alteration processes (Gomide et al. 2013).

Gomide et al. (2013) also noted that in Jacupiranga sul-
fides have relatively narrow 34S ranges and more primitive 
34S values than in minerals of the Alto Paranaíba occurrences 
for the same rock type, which suggests that the Jacupiranga 
magmas are less evolved and/or that they intruded deeper 
levels than in the aforementioned complexes.

Sr and Nd isotopes
In Brazil and Paraguay, carbonatites are characterized by 

initial 87Sr/86Sr (Sri) and 143Nd/144Nd (Ndi) ratios similar to 
those of their associated alkaline rocks, even in late stages of 
fluid-rock re-equilibration (i.e., hydrothermal environment), 
as already established by Castorina et al. (1997) and Speziale 
et al. (1997). However, the wide ranges of Ndi isotopes for 
a narrow Sri interval reported for the Catalão I complex by 
Cordeiro et al. (2011) are indicative that magmatic and/or 
carbohydrothermal processes were able to fractionate Nd, 
leaving Sr isotopes unaffected. Thus, caution should be 

taken when analyzing carbonatites submitted to post-mag-
matic modifications.

In general, the Sri and Ndi isotopic values for Brazilian 
Lower Cretaceous carbonatites presented by Comin-
Chiaramonti et al. (1999) range from 0.70425 to 0.70595 
(mean Sri = 0.70527 ± 0.00034) and from 0.51213 to 
0.51280 (mean Ndi = 0.51224 ± 0.00011), respectively. 
Values of Sri = 0.70538 and Ndi = 0.51253 for a sample of 
a carbonatite intrusion from Jacupiranga were more recently 
given by Beccaluva et al. (2017). Average values for Upper 
Cretaceous alkaline occurrences of different regions are: Alto 
Paranaíba, Sri = 0.70527 ± 0.00036 and Ndi = 0.51224 ± 
0.00006 (Bizzi et al. 1994, Gibson et al. 1995a, 1995b, 
and references therein); Taiúva-Cabo Frio and Serra do 
Mar, Sri = 0.70447 ± 0.00034 and Ndi = 0.51252±0.00008 
(Thompson et al. 1998); Lages, Sri = 0.70485 ± 0.00053 
and Ndi = 0.51218 ± 0.00022 (Traversa et al. 1996, Comin-
Chiaramonti et al. 2002). Guarino et al. (2017) postulated 
that the Sr-Nd isotopic composition of the Alto Paranaíba 
carbonatites is markedly different from rocks of the south-
ernmost parts of Brazil, suggesting regional-scale heteroge-
neity in mantle sources underneath the Brazilian Platform. 
In the initial (87Sr/86Sr)i vs. (143Nd/144Nd)I correlation dia-
gram (Fig. 4A), values for Lower and Upper Cretaceous 
carbonatites display the same trend defined for Lower 
Cretaceous tholeiitic lavas of the Paraná Basin (H-Ti and 
L-Ti), Upper Cretaceous volcanics of the Rio Grande Rise 
and Paleocene alkaline rocks of the Serra do Mar province 
(Comin-Chiaramonti et al. 2005c, 2007a).

Lower Cretaceous potassic alkaline rocks of Paraguay 
(both pre- and post- tholeiitic lavas) and associated car-
bonatites yield Sri and Ndi values within 0.70612-0.70754 
and 0.51154-0.51184, respectively (Fig. 4B). These higher 
Sri and lower Ndi values are distinct when compared with 
those relative to late Lower Cretaceous (Misiones province) 
and Paleocene (Asunción province, ASV) Na-alkaline rocks, 
i.e., Sri = 0.70362-0.70524 and Ndi = 0.51225-0.51277. 
Together, they define a trend similar to the Low Nd array 
of Hart et al. (1986), i.e., Paraguayan array according to 
Comin-Chiaramonti et al. (1995). Figure 4B also makes 
evident that sodic alkaline rocks and associated xenolith 
plots are close to Bulk Earth (BE) values, and that the high 
and low TiO2 tholeiites are intermediate between K- and 
Na-alkaline rocks.

The alkaline and alkaline-carbonatite occurrences in 
Figure 4 follow well-defined trends involving depleted 
and enriched mantle components (Gomes & Comin-
Chiaramonti et al. 2017). The Lower Cretaceous and Upper 
Cretaceous Brazilian complexes range from close to BE to the 
enriched quadrant, falling within uncontaminated tholeiitic 
lavas of the Paraná-Angola-Namibia (Etendeka) province 
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(Comin-Chiaramonti et al. 1997). On the other hand, iso-
topically Sr-enriched alkaline and alkaline-carbonatites of 
Paraguay are not easily explained by crustal contamination 
processes, because that would require high percentages of 

crustal components, up to 90% according to those authors. 
Thus, following Castorina et al. (1996, 1997), the Sr-Nd 
systematics for Paraguayan rocks seems to be related to an 
isotopically enriched source, where chemical heterogeneities 
reflect a depleted mantle metasomatized by small-volume 
melts and fluids rich in incompatible elements.

The 87Sr/86Sr vs. 143Nd/144Nd diagram in Figure 5 
shows that the carbonatites extend across the field of 
Lower Cretaceous Hi-Ti tholeiites of northern Paraná and 
are intermediate between the two groups of kimberlites 
(Type I, Gibeon, Namibia, cf. Davies et al. 2001; type 
II, cf. Smith 1983 and Clark et al. 1991). In the εSr vs. 
εNd inset of the figure, isotopic data ranges widely in 
the enriched quadrant, with the kamafugite field over-
lapping all lithological types. In the other inset, model 
ages TDM for the overall Alto Paranaíba population fit to 
0.99 ± 0.10 Ga. The constant Sm/Nd ratio in these rocks 
allows considering Nd ages as indicative of the main 
metasomatic event that affected the lithosphere beneath 
the Alto Paranaíba region.

Nd-model ages
Despite their limited petrological meaning, Nd ages 

are useful indicators of metasomatic events that affected 
tholeiites and alkaline rocks of different regions of Brazil 
and Paraguay. Data on volcanic rocks of the Paraná Basin 
indicates TDM (Nd) ages that range mainly from 0.5 to 2.1 
Ga for Hi-Ti flood tholeiites and dikes, with a mean peak 
at 1.1 ± 0.1 Ga. Values for L-Ti tholeiites span between 0.7 
and 2.4 Ga for L-Ti tholeiites, with a mean peak at 1.6 ± 
0.3 Ga (Comin-Chiaramonti et al. 2014). Regarding spe-
cifically the tholeiitic rocks of Paraguay, TDM (Nd) ages vary 
from 0.9 to 1.4 Ga for Hi-Ti and from 0.7 to 2.8 for L-Ti, 
respectively. Apparently, an age increase is observed from 
North to South and West to East (Comin-Chiaramonti 
et al. 2007a). TDM (Nd) ages for the whole Paraná-Angola-
Namibia (Etendeka) system reported by these authors vary 
from 0.8 to 2.4 Ga for Hi-Ti and from 0.8 to 2.7 Ga for 
L-Ti, respectively.

Age histograms for Brazilian and Paraguayan tholeiites, 
alkaline rocks and carbonatites are grouped together in 
studies by Castorina et al. (1997) and Comin-Chiaramonti 
et al. (1997). Nd model age values listed more recently 
(e.g., Gomes & Comin-Chiaramonti 2005, Bizzi & 
Araújo 2005, Ruberti et al. 2005, Scheibe et al. 2005, 
Comin-Chiaramonti et al. 2007a, 2014, Carlson et al. 
2007, Gomes et al. 2011b) allow distinguishing among 
chronological events in the alkaline magmatism. Thus, the 
Lower Cretaceous alkaline potassic magmatism includes 
pre- and post-tholeiite rock types, the first group being 
only recognized in northern Paraguay. Nd model ages 

Figure 4. Correlation diagrams for 87Sr/86Sr (Sr)i 
vs. 143Nd/144Nd (Nd)i initial ratios for Brazilian and 
Paraguayan alkaline-carbonatites after Comin-
Chiaramonti et al. (2005c, modified). Basalts and 
andesi-basalts are represented by poorly crustally 
contaminated or uncontaminated rocks (Piccirillo 
& Melfi 1988). (A) Brazil: H-Ti, L-Ti and LCAC, Lower 
Cretaceous high- and low-TiO2 flood tholeiites and 
alkaline complexes, respectively; RGR and UCAC, 
Upper Cretaceous Rio Grande Rise volcanic rock types 
and alkaline complexes, respectively; P, Paleocene 
alkaline complexes in the Serra do Mar region. (B) 
Eastern Paraguay: K-I and K-II, Lower Cretaceous 
potassic alkaline complexes, pre- and post-tholeiites, 
respectively; H-Ti and L-Ti as in (A); MIS, late Lower 
Cretaceous sodic alkaline complexes in the Misiones 
province; ASV, Paleocene sodic alkaline complexes 
in the Asunción province and associated mantle 
xenoliths (X). Data sources for both diagrams are 
given in Comin-Chiaramonti et al. (2005c). DMM, 
HIMU, EM I and EM II are approximations of mantle 
end-members taken from Hart et al. (1992). 

A

B
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for the pre-tholeiite rocks display two peaks, one at 1.1 
Ga (Valle-mí region) and the other at 1.4 Ga (Amambay 
region), respectively. The Lower Cretaceous syn- and post-
tholeiitic magmatism Nd model ages vary from 0.6 to 0.9 
Ga. The Upper Cretaceous alkaline rocks and carbonatites, 
represented mainly by the Alto Paranaíba complexes in 
Brazi, as well as the late Lower Cretaceous Misiones and 
Paleocene Asunción volcanics in Paraguay, yield Nd model 
ages within the 0.6–1.0 Ga interval. The youngest TDM ages 
are related to the Asunción Tertiary sodic alkaline rocks. 

The large variation in model ages seems related to differ-
ent metasomatic events that took place from Paleoproterozoic 
to Neoproterozoic. The resulting isotopically distinct alka-
line and tholeiitic magmas follow two main subcontinen-
tal lithospheric mantle enrichment episodes, at 2.0–1.4 and 
1.0–0.5 Ga (Castorina et al. 1997, Comin-Chiaramonti et al. 
1997). These metasomatic events, characterized by strong 

chemical differences in Ti, LILE and HFSF concentrations, 
may have been precursors to the genesis of tholeiitic and 
alkaline magmatism in the Paraná Basin. 

Pb isotopes
Only a few studies present initial Pb isotopic compo-

sitions for 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios in 
alkaline-carbonatite complexes of the southeastern Brazilian 
Platform (e.g., Antonini et al. 2005, Comin-Chiaramonti 
et al. 2005c, 2007a, Bizzi & Araújo 2005, Beccaluva et al. 
2017, Gomes & Comin-Chiaramonti et al. 2017). Values are 
reported for Lower Cretaceous occurrences of Brazil and 
Paraguay and for some Brazilian Upper Cretaceous complexes 
in the Alto Paranaíba province (Figs. 6A and 6B). In gen-
eral, isotopic values vary significantly with the different ages. 
Brazilian and Paraguayan Lower Cretaceous rocks values 
range in 17.033–19.968, 15.380–15.641 and 37.373–39.011 

Figure 5. Correlation diagrams for 87Sr/86Sr (Sr)i vs. 143Nd/144Nd (Nd)i initial ratios of rock types from the Alto 
Paranaíba province after Bizzi and Araújo (2005; modified by Comin-Chiaramonti et al. 2005c). Data sources: 
GK, Gibeon kimberlites (Davies et al. 2001); TGI, Tristan da Cunha, Gough and Inaccessible islands (Le Roex 
1985; Le Roex et al. 1990); Walvis Ridge (Richardson et al. 1984); Group I, Group II and transitional kimberlites 
(Smith 1983, Clark et al. 1991), Trindade (Siebel et al. 2000, Marques et al. 2000). Paraná uncontaminated high-Ti 
tholeiites (Comin-Chiaramonti et al. 1997). HIMU and EM I (Zindler & Hart 1986, Hart & Zindler 1989). Insets: Nd 
model ages (TDM) histograms for Alto Paranaíba rock associations (Gomes & Comin-Chiaramonti 2005) and fields 
for different alkaline petrographic types (kamafugites, kimberlites, carbonatites and G-P: glimmerites and mica 
peridotites) in the time integrated εSr vs. εNd diagram (Bizzi & Araújo 2005, modified). TDM values calculated 
relative to a depleted mantle: 143Nd/144Nd = 0.513114 and 147Sm/144Nd = 0.222, cf. Faure (1986). 
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intervals for 206Pb/204Pb, 207Pb/204Pb and 208Pb/204 ratios, 
respectively. Higher values for 206Pb/204Pb, 207Pb/204Pb and 
208Pb/204Pb ratios are typical of a basanite dike that crops 
out in the Rio Apa region (Valle-mí) in northern Paraguay 
(K-I, Figs. 6A and 6B). Brazilian Upper Cretaceous occur-
rences, in turn, show 206Pb/204Pb, 207Pb/204Pb and 208Pb/204 
ratios that vary within narrow intervals: 17.51–18.52, 15.44–
15.55 and 38.20–38.76, respectively. These variations are 
well-evidenced in correlation diagrams involving 207Pb/204Pb 
and 208Pb/204Pb vs 206Pb/204Pb, and Sri and Ndi vs 206Pb/204Pb 
initial ratios, respectively, especially for the Brazilian rocks. 
In the diagrams, Lower Cretaceous carbonatites superpose 
tholeiites of the Paraná Basin, suggesting a common geo-
dynamic evolution for both alkaline and tholeiitic magma-
tisms, yet emphasizing the more Sr-enriched composition 
of coeval Paraguayan rocks and the scatter caused mainly 
by the values for samples from Valle-mí (K-I). Investigating 
Sr-Nd-Pb-isotopes of some selected Paraguayan Cretaceous 
to Tertiary alkaline-carbonatites, Antonini et al. (2005) pos-
tulated that two main mantle components were involved in 
the genesis of these rocks: an extreme and heterogeneous 
EM I, which was prevalent in the Lower Cretaceous potas-
sic alkaline magmatism (K-I and K-II), and a HIMU com-
ponent, which become more important in the late Lower 
Cretaceous and Paleocene sodic magmatism (LEC-P).

More recently, Beccaluva et al. (2017) provided isoto-
pic data for some intrusions of the Jacupiranga complex. 
The northwestern body includes alkali gabbros, syenodiorites 
and syenites around dunites, while the southeastern body 
consists of clinopyroxenites and rocks of the melteigite-ijo-
lite-urtite series and associated carbonatites. 206Pb/204Pb, 
207Pb/204Pb and 208Pb/204 ratios for the former petrographic 
association range from 17.34 to 17.94, from 15.49 to 15.59 
and from 37.94 to 38.93, respectively. For the latter asso-
ciation, values vary from 17.70 to 17.87, from 15.47 to 
15.50 and from 38.03 to 38.41, respectively. The carbon-
atite intrusion shows 206Pb/204Pb, 207Pb/204Pb and 208Pb/204 
ratios of 17.21, 15.42 and 37.87, respectively. According to 
these authors, the silicate and carbonatite intrusions have 
markedly different Sr-Nd-Pb isotopic compositions, which 
support derivation of the relative parental magmas from 
independent mantle sources.

Diagrams for Pb isotopes (Fig. 7A) define linear arrays 
that are subparallel to both Lower Cretaceous Paraná tholei-
ites (Marques et al. 1999a) and the Northern Hemisphere 
Reference Line (NHRL, cf. Hart 1984). Notably, some 
kimberlites appear to approach the HIMU mantle com-
ponent. The Alto Paranaíba rocks fall within the Brazilian 
Upper Cretaceous alkaline-carbonatite complexes (Fig. 4A), 
which contain all the magmatic petrographic types of the 
Paraná Basin. Considering the 206Pb/207Pb vs. 87Sr/86Sr and 

143Nd/144Nd initial ratio diagrams (Fig. 7B), it should be 
noticed that the majority of the Alto Paranaíba rocks cor-
respond to peridotite xenoliths, some kimberlites excluded. 
These latter lithologies show less radiogenic Nd in compar-
ison to other Upper Cretaceous kimberlites (e.g., Gibeon, 
cf. Davies et al. 2001). 

Re-Os isotopes
Carbonatite complexes strictly associated with highly 

potassic mafic-ultramafic rocks of kamafugitic-kimberlitic 
affinity may represent useful sources of information on the 
behavior of platinum group elements. Analytical isotopic data 
on Re, Os and platinoids for rocks from the Alto Paranaíba 
province are discussed by Bizzi et al. (1994, 1995), Carlson 
et al. (1996), Araújo et al. (2001), Bizzi and Araújo (2005) 
and Comin-Chiaramonti et al. (2007a). 

The Re-Os isotope systematics (Gomes and Comin-
Chiaramonti et al. 2017) does not seem to allow for a clear 
distinction among rock types in the Alto Paranaíba province, 
although data provided by Comin-Chiaramonti et al. (2007a) 
indicates that glimmerites have the highest 187Os/188Os and 
187Re/188Os ratios (Fig. 7C). Radiogenic 187Os/188Os ratios 
for kimberlites and kamafugites range from 0.11 to 0.13 (av. 
0.122 ± 0.005) and from 0.11 to 0.15 (av. 0.134 ± 0.013), 
respectively. TRD (Os) model ages reported by Bizzi and Araújo 
(2005) for the Alto Paranaíba petrographic association vary 
between 1.39 and 1.64 Ga, correlating these lithologies to an 
older event with respect to the Nd model ages (0.99 ± 0.10).

Hf isotopes
Hafnium isotopic composition is only available for badde-

leyite separates from cumulatic rocks (magnetitites and apa-
titites) of Catalão I. Data reported by Guarino et al. (2017) 
depict a narrow range of initial 176Hf/177Hf of 0.28248 to 
0.28249 and εHfi of -10.3 to -10.9. εHfi values are distinct 
with respect to those of peridotite xenoliths hosted by kama-
fugites of the Goiás province (Carlson et al. 2007), confirm-
ing mantle heterogeneities in the Alto Paranaíba province. 
Calculated hafnium model ages (TDM Hf = 1.0–1.1 Ga) 
are coherent to regional tectonomagmagmatic events that 
affected the central-southern Brazil.

Noble gases
Only a few carbonatites in the world have been analyzed 

for noble gases. In Brazil, only two occurrences have so far been 
investigated: Lower Cretaceous Jacupiranga calciocarbonatites 
for forsterite and apatite, and Upper Cretaceous Tapira cal-
ciocarbonatites for apatite. Analytical data for Ar, Xe, Kr, Ne, 
and He is presented in Sasada et al. (1997) and discussed in a 
review paper by Comin-Chiaramonti et al. (2007a). A sum-
mary provided by the latter authors suggests that: 
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Figure 6. Correlation diagrams for (A) 207Pb/204Pb and 208Pb/204Pb vs. 206Pb/204Pb initial ratios and for (B) 206Pb/204Pb 
initial ratios vs.Sri and Ndi of rock types of southern Brazil and eastern Paraguay (after Comin-Chiaramonti et al. 
2005c, modified). Brazil: LCAC and UCAC, Lower Cretaceous and Upper Cretaceous alkaline-carbonatite magmatism, 
respectively. Eastern Paraguay: LLC-P, late Lower Cretaceous-Paleocene sodic alkaline magmatism. NHRL, North 
Hemisphere Reference Line (Hart 1984); Th, Paraná tholeiites; WR, Walvis Ridge; 132 Ma geochron according to 
Ewart et al. (2004). Data sources are given in Comin-Chiaramonti et al. (2005c). Further information as in Figure 4.
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■■ apatites from both carbonatite complexes are in the 
same range of possible derived sources (e.g., HIMU 
and MORB); 

■■ sources are enriched in F; 
■■ carbonatites are unlikely to derive from subduction-re-

lated carbon, whereas they support a C-O fractionation 
model of mantle-derived sources.

PETROLOGICAL CONSIDERATIONS

Carbonatite melts from all over the world are currently 
assigned to some main processes: 

■■ immiscibility of silicate and carbonatite liquids (e.g., 
Baker & Wyllie 1990, Kjarsgaard & Hamilton 1988, 
1989, Lee & Wyllie 1996, 1997, 1998b); 

Figure 7. Graphical representation of rock samples from the Alto Paranaíba province in correlation diagrams 
involving isotopic ratios: (A) (206Pb/204Pb)i vs. (207Pb/204Pb)i and (208Pb/204Pb)i; (B) (206Pb/204Pb)i vs. (143Nd/144Nd)i and 
(87Sr/86Sr)i; (C) (206Pb/204Pb)i vs. (187Os/188Os)i and (187Re/188Os)i (after Bizzi & Araújo 2005, modified; cf. also Gomes & 
Comin-Chiaramonti 2017). OIB, Ocean islands basalts and peridotite xenoliths (Smith 1983; Smith et al. 1985; 
Clark et al. 1991); TdC, Tristan da Cunha-Gough-Inaccessible islands (Le Roex et al. 1990); TR, Trindade island 
(Marques et al. 2000). Further information as in Figures 4, 5 and 6.
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■■ extreme fractionation from carbonate-rich silicatic magma 
(e.g., Otto & Wyllie 1993, Lee & Wyllie 1994, Church 
& Jones 1995); 

■■ a primary mantellic origin such as melting of metaso-
matized source (Chakhmouradian 2006) or melting of 
recycled oceanic crust components under mantle con-
ditions (Hoernle et al. 2002, Song et al. 2017).

Petrogenetic studies performed on a selected number of 
prominent Cretaceous complexes, as exemplified by Barra 
do Itapirapuã (Ruberti et al. 2002), Ipanema (Guarino et al. 
2011), Juquiá (Beccaluva et al. 1992, Azzone et al. 2013) 
and Lages (Traversa et al. 1996) in Brazil and by Cerro 
Chiriguelo (Castorina et al. 1996, 1997) and Cerro Sarambí 
(Gomes et al. 2011b) in Paraguay indicate that processes 
of fractional crystallization and liquid immiscibility from 
parental alkaline mafic magmas are the main responsible 
for the generation of carbonatitic liquids, as suggested by 
field relationships and geochemical characteristics (cf. also 
Comin-Chiaramonti et al. 2014). 

A very consistent hypothetical model for the origin of 
the Juquiá carbonatites was discussed by Beccaluva et al. 
(1992) that considers multistage evolution under nearly 
closed system conditions involving: 

■■ assemblage fractionation closely comparable to olivine 
clinopyroxenite and subordinate olivine alkali gabbro 
cumulates from parental basanitic melt leading to the 
formation of essexitic magma; 

■■ derivation of least differentiated mafic nepheline 
syenite from essexitic magma by withdrawal of cumu-
litic syenodiorites; 

■■ exsolution of carbonate fluid from a CO2-enriched mafic 
nepheline syenite magma, the magma itself being also 
submitted to continued fractionation to form melteig-
ite-ijolite-urtite cumulates; 

■■ formation of residual nepheline syenitic rocks (and phono-
litic dikes) leaving out orthocumulates of nepheline syenites. 

Based on field, petrographic, mineralogical, chemi-
cal and isotopic evidence, Brod et al. (2013) consider the 
Tapira occurrence as resulting from the complex interplay 
of several petrogenetic processes: liquid immiscibility, crys-
tal fractionation, and degassing/metasomatism. Their study 
strongly supports silicate-carbonate liquid immiscibility 
from decoupling of geochemical pairs such as Nb/Ta and 
Zr/Hf, rotation of REE patterns, which cross over the pat-
terns of the primitive liquids, and matching and opposite 
enrichment-depletion trace elements relationships in spider 
diagrams of conjugate immiscible liquids.

In spite of the isotopic data support to the interpreta-
tion that the Cretaceous alkaline-carbonatites are mostly 

formed by processes related to immiscibilty and fractional 
crystallization from a common parental magma, higher 
87Sr/86Sr initial ratios found in samples from a few occur-
rences (e.g., Barra do Itapirapuã, Ipanema, Jacupiranga, 
Juquiá, etc.) seem to indicate that contamination processes 
should not be discarded, particularly in some complexes 
where border facies are in contact with granitic country 
rocks in the latest stage of carbonatite intrusion. In the 
past, Roden et al. (1985) and Gaspar (1989), investigating 
the Jacupiranga complex, also interpreted isotopic hetero-
geneities of some rocks as due to crustal contamination. 
In contrast, based on isotopic data, Huang et al. (1995) 
refuted any significant contribution of contamination 
processes affecting the evolution of the carbonatites and 
clinopyroxenites. In a recent study, Chmyz et al. (2017) 
provided mineralogical, textural and geochemical evidence 
of crustal contamination in the formation of the weakly 
silica-undersaturated rocks of Jacupiranga.

A complex model combining crustal assimilation, 
fractional crystallization and fluid immiscibility pro-
cesses was proposed for the carbonatites of Catalão I by 
Cordeiro et al. (2011). A compositional trend is assigned 
to multiple batches of immiscible and/or residual melts 
derived from fractional crystallization of a carbonated-sil-
icate parental magma (phlogopite picrite) contaminated 
to a variable amount with continental crust material. A 
second trend involved interaction of previously-formed 
magmatic carbonatites with late-stage or post-magmatic 
carbohydrothermal fluids.

Conversely, Beccaluva et al. (2017) suggested that in 
the Jacupiranga complex carbonatitic and silicatic rocks 
originated from independent rather than common mantle 
sources. Different isotopic data trends indicate that these 
petrographic types do not exhibit any evidence of being 
genetically related among themselves. The authors men-
tion the absence of carbonatite ocelli in the associated sil-
icate rocks and the presence of fluid and melt inclusions 
in apatites from carbonatites (suggestive of high depth 
trapping) as features indicative of origin at mantle depths. 
Based on geochemical evidence (patterns for REE and 
isotopic data for sulphur and iron indicating a primitive 
nature), Beccaluva et al. (2017) also advocated that the 
hypothesis of carbonatites being associated with shallow 
level immiscibility is less plausible. 

A phlogopite-bearing carbonate-metasomatized hetero-
geneous peridotite source is assigned to different domains 
of the Brazilian Platform (e.g., Gibson et al. 1995b, 1999, 
2006, Comin-Chiaramonti et al. 1997, 2014, Thompson et al. 
1998, Brotzu et al. 2005, Guarino et al. 2017). Such mantle 
source heterogeneities were recognized at regional scale, the 
isotopic signatures of the Alto Paranaíba rocks being distinct 
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from those of the Goiás province and the Ponta Grossa Arch, 
as demonstrated by Guarino et al. (2017).

The geodynamic models regarding the Cretaceous car-
bonatitic and alkaline magmatism of the Brazilian Platform 
are related:

■■ to mantle plume and subcontinental lithospheric man-
tle (SCLM) interactions;

■■ to low-degree partial melts of metasomatized SCLM due 
to the reactivation of ancient fault zones (cf. Gomes & 
Comin-Chiaramonti, 2017). 

Gibson et al. (1995a, 1995b, 1999), Thompson et al. 
(1998) and Natali et al. (2018) suggested for the alkaline 
and tholeiitic magmatism an origin associated with the 
interaction of melts from asthenospheric sources attributed 
to different mantle plumes (i.e. Tristan da Cunha and 
Trindade mantle plumes) with melts derived of a previ-
ously metasomatized lithosperic mantle source. On the 
other hand, Comin-Chiaramonti et al. (1997, 1999, 
2002, 2005c, 2007a), Castorina et al. (1997), Alberti 
et al. (1999), Ernesto et al. (2002) and Riccomini et al. 
(2005) proposed for the alkaline-carbonatite events in the 
Paraná-Angola-Namíbia system an origin from metaso-
matized lithospheric mantle sources without the contri-
bution of plume-derived components. 

ECONOMIC ASPECTS

The economic importance of carbonatites in Brazil 
results from the intense weathering of alkaline rocks, mainly 
of ultrabasic and carbonatic composition. Lateritic soils 
thus formed can reach more than 200 m thick, especially 
in complexes of the Ribeira Valley and Alto Paranaíba 
regions. Mineral deposits formed by either supergene 
alteration or residual concentration of primary minerals 
during long periods (Gomes et al. 1990). A few sources 
of mineralization in contact with eluvial material and, 
more scarcely, fresh rocks are described. Mineral depos-
its of major importance include phosphate, niobium 
and vermiculite, whereas subordinate mineralizations 
are represented by titanium, rare earths, barite, bauxite, 
fluorspar, etc. Economic aspects of carbonatites are pre-
sented by Berbert (1984), Rodrigues and Lima (1984) 
and Gomes et al. (1990). However, such aspects are dis-
cussed in more detail in a compilation work by Biondi 
(2005), one of the most valuable and comprehensive 
sources of economic data on carbonatites. The author 
distinguishes among various types of alkaline rock asso-
ciations containing economic or potentially economic 
mineral deposits. The most important mineral ores are 

represented by miaskitic alkaline complexes with syenites 
+ pyroxenites + ijolites + carbonatites, and/or their effu-
sive equivalents as main petrographic types. Recently, 
Oliveira et al. (2017) observed that the distinct evolution 
trends reaching late-stage rocks from Catalão I coincide 
with a shift from a Nb-rich to a REE- and Ba-rich min-
eralization environment.

Finally, in Cerro Manomó, Bolivia, extensive and 
important enrichments in U and Th are associated 
with carbonatite blocks (Fletcher et al. 1981, Comin-
Chiaramonti et al. 2011).

CONCLUDING REMARKS

In the southeastern Brazilian Platform, Lower 
Cretaceous and Upper Cretaceous episodes of alka-
line-carbonatite magmatism took place along tectonic 
lineaments genetically related to regional structural fea-
tures like the Ponta Grossa Arch and the Alto Paranaíba 
Uplift in Brazil and the Ponta Porã Arch in Paraguay. The 
carbonatites occupy inner parts of circular/oval- shaped 
complexes or appear as dikes and veins that cut across 
associated alkaline and regional rocks. In some com-
plexes, they result from multistage intrusions of varied 
composition. Carbonatites are usually found in contact 
with cumulates of large compositional variation such as 
ultrabasic (dunites, peridotites, pyroxenites) lithologies, 
members of the melteigite-ijolite-urtite series, nepheline 
syenites and syenites, glimmerites, kamafugites, kimber-
lites, phoscorites, and unimineralic rock types such as 
apatitite, magnetitite and flogopitite in a few complexes. 
The country rocks were in most cases deeply affected by 
fenitization, giving origin mainly to syenitic types. Such 
processes promoted flogopitization, amphibolitization 
and aegirinization of pyroxenitic rocks due to the action 
of highly concentrated alkalis, together with CO2 and 
H2O enriched fluids derived from carbonatitic and sye-
nitic magmas, as well evidenced in Ribeira Valley and 
Alto Paranaíba complexes. 

In an overall classification, Cretaceous carbonatites 
can be placed into two major groups: primary or mag-
matic, and hydrothermal. The major Brazilian complexes 
of the Ribeira Valley and Alto Paranaíba correspond to 
the first group, whereas Barra do Itapirapuã in Brazil, 
Cerro Chiriguelo in Paraguay, and Cerro Manomó in 
Bolivia, are included in the second group. Additional 
occurrences are represented by small dikes and aggregates 
of carbonate material (ocelli) present in the interior of 
fine- and coarse-grained alkaline silicate rocks, namely 
basanite and ijolite. However, it must be stressed that, in 
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some magmatic occurrences, carbohydrothermal events 
were also registered.

Carbonatites vary considerably in major oxide con-
centrations, from calciocarbonatites to magnesiocarbon-
atites to ferrocarbonatites, but the three rock types are 
rarely associated in the same complex. Besides their rich-
ness in elements such as K, Ba, Th, U, Sr, P and REE, 
and F and Cl as well, and their high LREE content and 
La/Lu ratio, carbonatites exhibit, in general, a strongly 
fractionated pattern for REE, mostly controlled by the 
presence, concentration and variable distribution of 
accessory phases represented by phosphates, oxides, REE-
carbonates and fluorocarbonates minerals (e.g., apatite, 
monazite, pyrochlore, ancylite, bastnäesite, synchysite, 
etc.). In spite of some scatter observed, the behavior of 
incompatible elements points to negative Rb, K, P, Hf-Zr 
and Ti anomalies, contrasting with positive Ba, Th-U and 
La-Ce peaks. A remarkable scattering also characterizes the 
REE distribution, REE-fluorocarbonates being relatively 
abundant in late ferrocarbonatites. Different behaviors 
can be distinguished: a strong increase from Lu to La, 
flat REE with a relative weakly decrease from La to Lu, 
and concave patterns with a HREE plateau followed by 
a steady increase from Dy to LREE.

Notably, significant differences in C-O isotope com-
positions are observed in primary carbonates of alkaline 
rocks and associated carbonatites. The variations are 
interpreted as due mainly to isotope exchange between 
carbonates and H2O-CO2 rich fluids, with the isotopic 
modifications occurring at low temperatures (400–80ºC) 
in a hydrothermal environment with CO2/H2O fluids 
ranging from 0.8 to 1. Two main paths of δ18O and δ13C 
fractionation associated with different emplacement lev-
els (i.e., deep-seated up to near surface, or near-surface 
environments) are distinguished. Agents such as weath-
ering and groundwater fluids, that seem to have also 
influenced post-magmatic changes, could explain the 
secondary isotopic variations, as indicated by the largest 
enrichment in heavy oxygen.

In general, Sr-Nd isotopes and trace-element data 
for the alkaline rocks shows that coeval carbonatites and 
primary carbonates reflect the composition of the mantle 
source. In particular, Sr and Nd isotopic data indicate 
that the carbonatite system was dominated by mantle 
component(s) without appreciable crustal contamina-
tion. Model ages also evidence that the alkaline rocks 
and associated carbonatites experienced two chemically 
different episodes of mantle enrichment in Proterozoic 
times, at 2.0–1.4 Ga and 1.0–0.5 Ga, respectively. 

Significant H2O, CO2 and F are also expected in the 
mantle source, as suggested by the occurrence of the 
carbonatitic rocks. 

Combined Pb, Sr and Nd isotopic data reveal the con-
tribution of two mantle components as source: 

■■ an extreme and heterogeneous EM I component, which 
was active in the formation of the Lower Cretaceous 
alkaline potassic rocks;

■■ a depleted component, which is believed to have played 
an important role in the sodic magmatism, spanning 
in age from Permotriassic to Paleocene. 

Mixing processes mainly involving HIMU and EM I 
end-members, DMM and EM I subordinate, as well as 
crustal latu sensu components (e.g., EM II) were also pro-
posed. For the overall occurrences of the Paraná-Angola-
Namibia system, data emphasizes carbonatite plots that 
fall close to EM I/DMM-HIMU mixing lines for both 
Pb-Sr and Pb-Nd.

Os isotopic results for silicate alkaline rocks (kama-
fugites, kimberlites) associated with carbonatites of the 
Alto Paranaíba province are indicative of lithospheric 
mantle sources that experienced LILE enrichment by 
fluid/melt metasomatism at ~1 Ga, probably during the 
mobile belt formation along the western border of the 
São Francisco Craton.

Fractional crystallization and liquid immiscibility pro-
cesses from parental alkaline mafic magmas are thought to 
be the main responsible for the generation of Cretaceous 
carbonatite fluids in the Brazilian Platform, crustal con-
tamination being considered to have played a minor role. 
Degassing, metasomatism and post-magmatic interac-
tion with carbohydrothermal fluids were also recognized 
in various occurrences. However, some carbonatites do 
not present a clear genetic association with silicate rocks, 
which suggests the possibility of a primary mantle origin 
for the carbonatites. For the generation of alkaline-car-
bonatite magmatism, a heterogeneous phlogopite-bear-
ing carbonate-metasomatized mantle source is assigned 
to different domains of the Brazilian Platform. 
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