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ABSTRACT: Mapping methods for iron oxides and clay minerals, 
using Landsat-8/Operational Land Imager (OLI) and Earth Obser-
ving 1 (EO-1)/Hyperion imagery integrated with airborne geophy-
sical data, were applied in the N4, N5, and N4WS iron deposits, 
Serra Norte, Carajás, Brazil. Band ratios were achieved on Landsat-8/
OLI imagery, allowing the recognition of the main minerals from 
iron deposits. The  Landsat-8/OLI imagery showed a robust per-
formance for iron oxide exploration, even in vegetated shrub areas. 
Feature extraction and Spectral Angle Mapper hyperspectral classifi-
cation methods were carried out on EO-1/Hyperion imagery with 
good results for mapping high-grade iron ore, the hematite-goethite 
ratio, and clay minerals from regolith. The EO-1/Hyperion imagery 
proved an excellent tool for fast remote mineral mapping in open-
pit areas, as well as mapping waste and tailing disposal facilities. An 
unsupervised classification was carried out on a data set consisting 
of EO-1/Hyperion visible near-infrared 74 bands, Landsat-8/OLI-
derived Normalized Difference Vegetation Index, Laser Imaging 
Detection and Ranging-derived Digital Terrain Model, and  hi-
gh-resolution airborne geophysical data (gamma ray spectrometry, 
Tzz component of gradiometric gravimetry data). This multisource 
classification proved to be an adequate alternative for mapping iron 
oxides in vegetated shrub areas and to enhance the geology of the 
regolith and mineralized areas. 
KEYWORDS: Remote sensing; Multispectral and hyperspectral 
imagery; Iron ore.

RESUMO: Métodos de mapeamento para óxidos de ferro e argilas, apli-
cados em imagens Landsat-8/Operational Land Imager (OLI) e Earth 
Observing 1 (EO-1)/Hyperion e integrados com dados aerogeofísicos, 
foram testados nos depósitos de ferro de N4, N5 e N4WS, Serra Norte, 
Carajás, Brasil. Razões de banda foram aplicadas à imagem Landsat-8/
OLI, identificando os principais minerais dos depósitos de ferro de N4 e 
N5. As imagens Landsat-8/OLI mostraram um bom desempenho para 
a exploração de óxido de ferro, mesmo em áreas vegetadas. Extração de 
feições espectrais e o método de classificação hiperespectral Spectral Angle 
Mapper foram aplicados na imagem EO-1/Hyperion com bons resul-
tados para o mapeamento de minério de ferro de alto teor, bem como 
da proporção de hematita-goethita do minério e de argilas nos regolitos. 
A imagem EO-1/Hyperion provou ser uma excelente ferramenta para o 
mapeamento remoto de minerais em áreas de mina a céu aberto, bem 
como no mapeamento das pilhas de minério. Uma classificação não su-
pervisionada foi aplicada a dados de 74 bandas do visível e infravermel-
ho próximo do EO-1/Hyperion, índice Normalized Difference Vegetation 
Index derivado do Landsat-8/OLI, Modelo Digital do Terreno derivado 
do Laser Imaging Detection and Ranging, e dados aerogeofísicos (gamae-
spectrometria e componente Tzz do dado gravimétrico gradiométrico). 
Essa classificação de dados multifonte mostrou ser uma alternativa para 
mapeamento de óxidos de ferro em áreas vegetadas, bem como da geologia 
do regolito e das áreas mineralizadas.
PALAVRAS-CHAVE: Sensoriamento remoto; Imagens multiespec-
trais e hiperespectrais; Minério de ferro. 
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INTRODUCTION

The Serra Norte plateaus contain world-class iron ore 
deposits, located in the Carajás Mineral Province (Fig. 1). 
The deposits have grades higher than 64% Fe, low grades 
of contaminants (Si, Al, Mn, and P) and reserves of 3,842 
million tons (VALE 2015). Some deposits are in produc-
tion, as the cases of N4, N5, and N4WS. The main ore 
minerals are hematite with subordinate goethite and mag-
netite. Other mineral assemblage associated to host rocks 
includes quartz, kaolinite, gibbsite, smectite, talc, carbonate, 
and chlorite. The deposits are located on discontinuous 
ridges and plateaus with lateritic crusts that rise abruptly 
200 – 300 m above jungle-covered lowlands (Tolbert et al. 
1971). The iron ore consists of friable, fine-grained hema-
tite with a granular or platy texture which, in most areas, is 
covered by an ore canga capping. Hard hematite crops out 
on the crests of hills and occurs as small lenses and tabular 
bodies in soft friable ore. Herbaceous and shrub vegetation 
is found in these plateaus, which contrasts with the dense 
forest that predominantly covers the lowlands. For this reason, 
the plateau areas have been referred as clearings by Tolbert 
et al. (1971). Optical remote sensors can detect this geobo-
tanical control (Paradella et al. 1997, Almeida et al. 2009). 
However, the ore canga is usually under only small parts of 

these clearing areas. The topography controls important phy-
siognomic variations, including dominant autochthonous 
species. Mapping minerals in open pits areas and also under 
vegetation cover is vital not only for mineral exploration but 
also for monitoring mine waste deposits, in order to esti-
mate the level of pollutants and to define risk management 
strategies. One of the best cost-benefit methods for mineral 
mapping involves the application of remote-sensing data. 

Spaceborne remote-sensing data have been widely used 
to obtain information regarding Earth surface properties. 
Multispectral and hyperspectral imaging data have been succes-
sfully used for mineral exploration to map iron oxides. In arid 
and semiarid regions, outcropping iron oxide zones are mine-
ralogical conspicuous enough to be detected successfully from 
spaceborne multispectral and hyperspectral data (White et al. 
1997, Abdelsalam et al. 2000, Farooq & Govil 2013, Feizi & 
Mansouri 2013). In tropical regions, however, high vegetation 
density can critically limit the successful application of opti-
cal remote sensing for detecting and mapping of iron oxide. 

This article aims to analyze different methods for mapping 
iron oxides in the Serra Norte deposits, using data from 
Landsat-8/Operational Land Imager (OLI) and Earth 
Observing 1 (EO-1)/Hyperion sensors, integrated with air-
borne geophysical data. The used methods should be able 
to discriminate iron oxides and clay minerals, and provide 

Figure 1. Color composition RGB-432 of Landsat-8/OLI imagery showing the Serra dos Carajás (Pará state) and 
the study area in the yellow square. The dense forest cover is shown in red. The major mineral deposits are also 
shown including the iron deposits N1, N4, N5, N4WS (Serra Norte), and S11 (Serra Sul); and the manganese Azul 
Mine; and IOCG deposits (Igarapé Bahia, Sossego).
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semiquantitative mineral information in areas with and 
without vegetation cover. The hybrid products can contri-
bute to associate bedrock and structural information from 
depth revealed by geophysical data and their respective sig-
natures on the surface.

GEOLOGY

The study area is located in the Serra dos Carajás, inside 
the Carajás Mineral Province, Pará state (Fig. 1). The Serra 
Norte plateaus, where the iron formations occur, were mapped 
at the scale of 1:20,000 (Fig. 2) by Tolbert et al. (1971) and 
Resende and Barbosa (1972), and updated by Macambira 
(2003). The geology of the area was recently summarized by 
Assis (2013) and Prado et al. (2016). The region is domina-
ted by metamorphosed volcano-sedimentary sequences and 
granitoids formed between 2.76 and 2.68 Ga, as well as by 
the Pium and Xingu Mesoarchean complexes (Cordani et al. 
1979, Santos 2003, Santos et al. 2000, 2006, Tassinari 
et al. 2000, Tassinari & Macambira 1999, 2004). 

The Serra dos Carajás is an S-shaped mountain range 
composed of metamorphosed volcano-sedimentary rocks 
of the Grão Pará Group, with ages between 2.8 and 2.7 
Ga (Gibbs et al. 1986, Wirth et al. 1986, Olszewski 1989, 
Trendall et al. 1998, Tallarico et al. 2003). The lowermost 
Parauapebas Formation is represented by basalts, basal-
tic andesites, and basic-to-intermediate pyroclastic rocks 
(Meirelles et al. 1984, Krymsky et al. 2002, Macambira & 
Schrank 2002, Lobato et al. 2005). The Carajás Formation, 
the intermediate portion of the Grão Pará Group, contains 
layers and discontinuous lenses of jaspilites and iron ore intru-
ded by sills and mafic dikes (Fig. 3B; DOCEGEO 1988). 
The jaspilites have centimeter thick intercalations of iron 
oxide, jasper, and chert. The Igarapé Cigarra Formation, at 
the top of the Grão Pará Group, consists of basaltic flows 
interlayered with tuffs followed by clastic sedimentary rocks, 
such as siltstones, phyllites, and greywackes (Gibbs et al. 
1986, Macambira 2003). Psammopelitic rocks, such as are-
nites, calcarenites, siltstones, and conglomerates of the Águas 
Claras Formation, overlay the rocks of the Grão Pará Group.

Lateritic ore canga covers the ore outcrops with thickness 
up to 20 m. This ore canga has high Fe content and relati-
vely low contaminants, enabling its potential use as an ore. 
Jaspilite or banded iron formation, with centimeter to milli-
meter thick laminations or anastomosing pattern, represents 
the protore and has Fe content ranging between 20 and 
40%. The main iron ore is composed of highly friable and 
porous hematite with 66% average Fe content. 

Sterile lateritic regoliths, also called chemical canga, 
cover mafic rocks or mature and cemented colluvial deposits. 

Unweathered basalts, gabbros, and diabases are also pre-
sent. Tuffs are also described but rarer. They occur either as 
flows or intruded in jaspilites in the form of sills and dykes 
(Assis 2013). 

PHYSIOGRAPHIC 
ASPECTS AND VEGETATION

The principal physiographic features of this region are 
the lowlands covered by dense equatorial forest and long, 
sinuous, and nearly flat plateaus covered by sparse vegetation, 
commonly underlain by iron formations (Figs. 3A and B). 
These iron-bearing plateaus are 600 – 700 m in elevation 
and rise sharply 200 – 300 m above the forested lowlands. 
The climate is equatorial, with average temperatures ranging 
between 19 and 31°C, characterized by two distinct seasons, 
one dry (winter), from May to October, and another wet 
(summer), from November to April, with very intense tor-
rential rain periods. Predominantly herbaceous and shrub 
vegetation with little development of semiarboreal type, 
named as campo rupestre (rupestrian field) by Silva et al. 
(1996), is associated with these plateau covers. This vege-
tation contrasts with the ombrophilous forest that predo-
minantly covers the lowlands – a dense forest characterized 
by trees exceeding 50 m in height, with a canopy standing 
out at 25 – 35 m (Fig. 3B).

DATA

Remote sensing data
A cloud-free level 1T (terrain corrected) Landsat-8/

OLI imagery (path/row 224/64) was obtained from U.S. 
Geological Survey Earth Resources Observation and Science 
Center (USGS-EROS; http://earthexplorer.usgs.gov/). 
The OLI is a sensor carried by the Landsat 8 satellite, which 
was launched on February 11, 2013. The performance cha-
racteristics of OLI sensor are shown in Table 1. The image 
used in this study was acquired on August 3, 2013, during 
the dry season, with 0% cloud cover for the entire scene 
(Fig. 1). Image processing techniques were applied to the 
entire scene, but the results are shown in a 125 km2 subs-
cene on Serra Norte deposits, centred in 6°5’2” S latitude 
and 50°9’20” W longitude (see yellow square in Figure 1). 

The elementary statistics of the spectral Landsat-8/
OLI bands, in digital numbers (DNs), are shown in 
Table 2. The data in the visible bands (1, 2, 3, and 4) 
have higher minimum values than the data in the near- 
and shortwave infrared bands (5, 6, and 7). This is due 
to the Rayleigh atmospheric scattering, affecting mainly 
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lower wavelengths. The low DNs and standard deviations 
in the first bands were also a result of this atmospheric 
effect, as well as the influence of the low vegetation reflec-
tance. The standard deviation progressively increases from 
bands 1 to 6 as the atmospheric influence decreases and 

the variation in spectral response of materials and vege-
tation increases. The notable lower standard deviation of 
band 7 could be related to the lower energy emitted by 
the sun in this wavelength, affecting the signal-to-noise 
ratio (SNR) of the sensor.
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Figure 2. Geological map of the N4, N5 and N4WS iron deposits in Serra Norte (Resende & Barbosa 1972) superposed 
on a Laser Imaging Detection and Ranging digital terrain model artificially illuminated from northeast. 
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The Hyperion sensor, carried by the EO-1 satellite, is the 
first spaceborne hyperspectral instrument to acquire spec-
tral bands in the visible near-infrared region (VNIR) and 
shortwave infrared region (SWIR) (Pearlman et al. 2003). 
The performance characteristics of Hyperion sensor are 
shown in Table 1. The SNR of the EO-1/Hyperion sensor 
is relatively low, between 40 and 190 (Kruse et al. 2003), 
which has a direct effect on spectral mineral mapping, resul-
ting in extraction of less detail. A cloud-free level 1R EO-1/
Hyperion imagery (EO12240642009207110PF), obtained 
from the USGS-EROS, was acquired on July 26, 2009 during 
the dry season (see EO-1/Hyperion coverage in Figure 1). 

Digital elevation models from Laser Imaging Detection 
and Ranging (LIDAR) data were also used in this study. These 
data were provided by Vale Company and they cover the 

entire Serra Norte region. The data were obtained in 2009 
and have a linear error of 0.5 m in planimetry and 1.0 m 
in altimetry. Digital terrain model (DTM) and digital sur-
face model (DSM) were derived from these data. The DTM 
represents the bare ground surface without any objects like 
vegetation canopy. The DSM represents the earth’s surface 
and includes all objects on it like vegetation canopy.

Airborne Geophysical data
Assis (2013) used data from Full Tensor Gravity 

Gradiometry (3D-FTG) airborne geophysical, magneto-
metric, and gamma spectrometric surveys to map the Serra 
Norte plateaus and also to generate prospective models. 
The gamma ray spectroscopy and gravimetric gradiome-
try airborne data were here integrated with remote sensing 

Figure 3. (A) Photograph of N4WS area taken from northeast, showing vegetation clearing over iron deposit and 
dense forest lowlands in the background. (B) Photograph of N5 mine, showing the Igarapé Cigarra formation above 
the Carajás formation, and the contrast between the two kinds of vegetation: campo rupestre and ombrophilous 
forest types. Both pictures are courtesy from Vale Company.

A B

Satellite/
sensor Subsystem Band name Band 

number
Spectral 

range (µm)
Spatial 

resolution
Spectral 

resolution
Radiometric 
resolution

Swath 
width

Landsat-8/
OLI

VNIR

Coastal aerosol 1  0.43 – 0.45

30m

9 bands 16-bits 185 km

Blue 2 0.45 – 0.51

Green 3 0.53 – 0.59

Red 4 0.64 – 0.67

Near Infrared 5 0.85 – 0.88

SWIR

Shortwave 
Infrared 1 6 1.57 – 1.65

Shortwave 
Infrared  2 7 2.11 – 2.29

VNIR
Panchromatic 8 0.50 – 0.68 15m

Cirrus 9 1.36 – 1.38 30m

EO-1/
Hyperion

VNIR 1 – 70 0.36 – 1.06
30m 242 bands 12-bits 7.5 km

SWIR 70 – 242 0.85 – 2.58

Table 1. Performance characteristics of the Landsat-8/OLI and EO-1/Hyperion sensors.

VNIR: visible near-infrared region; SWIR: shortwave infrared region.
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data. A color RGB (KThU) ternary image enhances lateritic 
covers, iron formation colluvium, and the Igarape Cigarra 
formation (Fig. 4). This RGB image allowed the identifi-
cation of signatures associated with outcropping banded 
iron formations, related to the Carajás Formation through 
lower levels (dark pixels in Figure 4) of the radioelements 
K, eU, and eTh (Assis 2013). In general, the regolith sig-
nature associated to this unit shows eTh-enriched plateaus. 
However, the eastern part of the plateau shows high eU that 
is consistent with iron ore enriched in hematite. The con-
centration, in this case, reveals an alteration pattern related 
to the mineralization. The lateritic mantles related to mafic 
rocks, host rocks of this mineralization associated with 
Parauapebas and Igarapé Cigarra formations, are eTh- and 
eU-enriched and show a cyan signature in the RGB-KThU 
image. Clastic sedimentary rocks such as arkosian sandsto-
nes and conglomerates that cover Grão Pará Group showed 
high levels of K (Assis 2013).

The gravimetric gradiometry data used corresponds 
to the Z component, obtained from the 3D-FTG aerial 
survey covering the study area. The 3D FTG system is a 
mobile platform, inserted in an aerial capsule, and con-
sists of 12 accelerometers equally arranged in three gra-
vity gradient instruments. This equipment measures five 
independent components of the gravity gradient, Txy, Txz, 
Tyz, Tzz, Txx, or Tyy. They represent the rate of change 
of components Gx, Gy, and Gz, which, in turn, represent 
the gravity acceleration along the Cartesian axes (Murphy 
2004). The 3D FTG maps in detail iron formation of the 
study area in both, surface and subsurface, due to the 
density contrast in relation to host rocks (Assis 2013). 
Component Z, called Tzz, maps the mineralized bodies 
with a high precision (Fig. 5).

METHODS

Spectral characterization of materials
Iron oxides (mainly hematite and goethite) occur in 

the deforested open-pit N4 and N5 mines. In the VNIR 

(0.38 – 1.00 µm) of the electromagnetic spectrum, iron 
oxides have wide absorptions caused by electronic proces-
ses: crystal field and charge transfer absorptions (Singer 
1981). Crystal field absorption is due to unfilled elec-
tron shells of transition elements (Burns 1993), whereas 
charge transfer occurs where the absorption of a pho-
ton causes an electron to move between ions or between 
ions and ligands (Sherman & Waite 1985). Goethite and 
hematite have characteristic crystal field absorptions in  
0.63 – 0.71 and 0.85 – 1.00 µm, respectively, and an absorp-
tion feature caused by charge transfers between 0.48 and 
0.55 µm (Fig. 6A; Morris et al. 1985). Hunt and Ashley 
(1979) observed that the abundance of iron (hydro-)oxides 
is related to the depth of the absorption generated by the 
crystalline field between 0.85 and 1.00 µm. However, par-
ticle size and shape, and physicochemical properties exercise 
an influence on the spectral absorption (Hunt et al. 1971, 
Morris et al. 1985). The most notable change is the overall 
increase in reflectance or albedo with decreasing particle size 
for goethite and hematite (Cudahy & Ramanaidou 1997, 
Ramanaidou et al. 2008).

Spectra of main materials found in the study area 
were obtained from the USGS spectral library (Clark 
et al. 2007; Fig. 6A). These data were validated with field 
spectral data collected by Prado et al. (2016) in drilling 
cores of the area. The USGS spectra were converted to 
the spectral resolution of Landsat-8/OLI (Fig. 6B). Iron 
oxides and vegetation have quite similar reflectance 
spectra in the wavelength regions covered by Landsat-8/
OLI bands 1 and 2, and a small difference in band 3. 
Vegetation has a peak of reflectance in band 3, but its 
value is quite similar to that of goethite. In the other 
hand, hematite has lower reflectance than goethite and 
vegetation in this band 3. Consequently, these three first 
bands are not very useful in distinguishing iron oxides 
in vegetated regions. In the spectral region covered by 
Landsat-8/OLI band 4, iron oxides (hematite and goethite) 
and clay minerals have high reflectance and, conversely, 
the chlorophyll of the green vegetation absorbs strongly 
radiation at the red wavelengths (band 4). Typical green, 

Sensor OLI

Band 1 2 3 4 5 6 7

Minimum 7741 7543 6461 5815 4612 4677 4888

Maximum 26328 20204 21226 23576 30466 51002 62905

Mean 9269 8398 7933 7077 17667 12027 8122

StDev 264 352 582 891 1919 2169 1524

Table 2. Elementary statistics, given in digital numbers, of the spectral bands of Carajás Landsat-8/OLI entire 
scene without conversion to reflectance.
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moist vegetation shows absorption in band 7 (Fig. 6B), in 
addition to high reflectance by mesophyll plant tissue in 
the near infrared (band 5). In the spectral region covered 
by Landsat-8/OLI band 5, iron oxides show absorption 
features. Landsat-8/OLI bands 4 and 5 can thus be used 

to differentiate areas of iron oxides from areas of vege-
tation. Clay minerals have higher reflectance in spectral 
region covered by Landsat-8/OLI bands 1, 2, 3, 4, 5, and 
6, than those of iron oxide and vegetation (Figure 6B). 
Clay minerals have an absorption feature in the spectral 
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Figure 4. Airborne geophysical data processed by Assis (2013) used in this study. False color composite RGB (KThU) 
color. Black lines correspond to deposit area, and white lines to outcropping hematite (see hematite in situ in Figure 2).
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region covered by Landsat-8/OLI band 7, while iron 
oxides have not any diagnostic spectral feature in the 
SWIR region. Vegetation has absorption features in the 
spectral region 2.2 µm (Fig. 6A) produced by biochemi-
cal compounds, such as cellulose, lignin, hemicellulose, 

starch, sugars, and proteins. Spectral regions covered by 
Landsat-8/OLI bands 6 and 7 are commonly used in the 
detection of clay minerals (Rowan et al. 1974, Goetz & 
Rowan 1981). However, similarities in shape and relative 
intensities of the reflectance curves of vegetation and clay 
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Figure 5. Airborne geophysical data processed by Assis (2013) used in this study. Grids of the Tzz component of 
the gravimetric gradiometry for a terrain correction with density of 2.67 g/cm3. Scale in Eotvos (Eo). Black lines 
correspond to deposit area, and white lines to outcropping hematite (see hematite in situ in Figure 2).
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minerals in the spectral regions covered by Landsat-8/
OLI bands 6 and 7 make their differentiation difficult. 

Figure 6D shows some reflectance spectra extracted from 
N4, N5, N4WS, and forest areas (see locations in Figure 6C) 
of the Landsat-8/OLI reflectance data. Geological map 
and field reflectance spectra were used for generating trai-
ning pixels from images. Spectra 2 and 3 are located inside 

the open pit of the N4 mine. Spectrum 2, located in the 
high-grade iron ore, is similar to that of hematite shown 
in Figure 6B. This spectrum shows the highest reflectance 
difference between Landsat-8/OLI bands 6 and 5, with a 
high absorption in band 5 as a result of high iron oxide 
abundance. Spectrum 3 shows a high reflectance difference 
between Landsat-8/OLI bands 6 and 7, similar to that of 
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kaolinite shown in Figure 6B. This spectrum also shows a 
mixture with iron oxide, but with less proportion of iron 
oxide than in spectrum 2 (Figure 6D). Spectrum 5 is simi-
lar to hematite or goethite, but also with less iron oxide 
abundance than previous ones. Spectrum 1, located in the 
ore canga of the N4WS area, represents a mixture between 
vegetation and iron oxide. Finally, spectrum 4 is typical 
of vegetation.

Preprocessing of remote sensing data 
Preprocessing applied to Landsat-8/OLI imagery con-

sisted of the following steps: conversion from the original 
GeoTIFF format to the standard Envi format, conversion 
to radiance using Envi 5.3 software, and atmospheric cor-
rection using the Fast Line-of-sight Atmospheric Analysis 
of Spectral Hypercubes (FLAASH). 

A tropical atmospheric model was used for the 
atmospheric correction. Figure 7B and C show spectra 
obtained from a same vegetation pixel of Landsat-8/
OLI (Fig. 7A) with and without the atmospheric cor-
rection. The spectrum extracted from the image without 
atmospheric correction (Fig. 7B) shows clearly the 
effects of atmospheric haze dispersion in the visible 
bands 1 and 2. The spectrum of the same pixel of the 
atmospheric-corrected image compares quite well with 
a vegetation spectrum from the USGS spectral library, 
except in band 1, where there is a small difference in 
reflectance caused by haze (Fig. 7C). The Normalized 
Difference Vegetation Index (NDVI) calculated for the 
same pixel (Fig. 7A) of the Landsat-8/OLI imagery with 
and without atmospheric correction gives notably dif-
ferent results (Fig. 7B and C).

With the purpose of masking water bodies in the image, 
a Landsat-8/OLI band ratio 3/6 was used to highlight areas 
having a steep decrease in reflectance between the green and 
SWIR wavelengths (Rockwell 2013). Water is characterized 
by intense absorption in the SWIR relative to the visible 
spectral regions. A threshold value for the ratio was chosen 
based on the examination of standing water in the Landsat 
scene. This mask was then applied to different results other 
than the green vegetation index to remove data from areas 
of standing water. 

EO-1/Hyperion data demands careful preprocessing for 
radiometric and noise correction. From the original 242 EO-1/
Hyperion bands, only 155 are calibrated and do not show 
band overlapping and intense atmospheric absorption (ori-
ginal bands 8 – 57, 79, 83 – 119, 133 – 164, 183 – 184, 
and 188 – 220). Consequently, these 155 bands were selec-
ted for the following processing. 

The preprocessing of the EO-1/Hyperion imagery 
included: 

1. conversion from original HDF data format to ENVI 
format; 

2. conversion to radiance;
3. fixing bad detectors cells;
4. column destriping;
5. atmospheric correction;
6. spectral polishing to reduce the spectral artefacts in 

atmospherically corrected data;
7. identification and masking of spectral outliers, especially 

pixels containing detector spikes.

This preprocessing was carried out by using Envi, 
FLAASH, and MMTG/A-Module List (Mason 2002) sof-
tware. The vertical striping appearing in the VNIR and SWIR 
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bands of EO-1/Hyperion data is common to all pushbroom 
type sensors, albeit quite severe in Hyperion data, and it is 
due to miscalibration of the area detector array. The stri-
ping was corrected by using the “Pushbroom Destriper” 
(MMTG/A-Module List), which uses the histogram statis-
tics (mean and standard deviation) of the column pixels of 
each band to balance them with the statistics of all columns 
of the complete image. The effects of stripping and its cor-
rection on EO-1/Hyperion 155 bands were tested using the 
Maximum Noise Faction (MNF) transformation (Green 
et al. 1988; Fig. 8A and B). MNF transformation can be 
an effective tool for assessing the quality of hyperspectral 
images (Datt et al. 2003). The correction results showed a 
significant reduction of the striping over the original image.

The atmospheric correction was carried out using the 
tropical atmospheric and rural aerosol models. Pixel-based 
estimate of water vapor was measured using the continuum 
depth of the 1.135 µm band. The efficacy of the atmosphe-
ric correction was assessed through the recognition of green 
vegetation spectral signatures on dense forest (Fig. 9). The ove-
rall shape, including the characteristic NIR plateau between 
0.700 and 1.300 µm, as well as absorption bands related to 
chlorophyll (0.675 µm) and leaf water (0.990, 1.190 µm) 
are clearly evident in the corrected EO-1/Hyperion data. 
There is still a noncorrected haze effect in the first bands of 
the atmospheric-corrected image (Fig. 9).

The FLAASH module also corrected the smile effect, 
which is another common problem encountered in Hyperion 
data. This effect is due to a shift on the central wavelength 
of the pixel through the imaging direction line (cross-track), 

which results from the curvature of the detector entrance 
slit (Goodenough et al. 2003). This effect can be detected 
by using the MNF band 2, which is observed in an abnor-
mal brightness gradient (Fig. 8C and D). 

Processing of EO-1/Hyperion and Landsat-8/OLI ima-
gery was carried out using mainly ENVI 5.3 software, inclu-
ding band ratios, SAM method, and ISODATA unsupervi-
sed classification. The “Spectral Indices” tool of the software 
MMTG/A-Module List was used for feature extraction on 
VNIR 74-bands of Hyperion image.

Figure 8. Maximum Noise Faction (MNF) transformation applied on EO-1/Hyperion 155 bands with and without 
radiometric corrections. (A) MNF band 14 resulting from original image showing the striping problem. (B) MNF 
band 14 resulting from destriped image. (C) MNF band 2 resulting from the original image showing the smile and 
striping effects. (D) MNF band 2 resulting from destriped image with atmospheric correction.
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PROCESSING AND RESULTS

Band Ratios applied to Landsat-8/OLI
Spectral band ratios were carried out to Landsat-8/OLI 

bands to detect groups of minerals with strong absorption 
bands at similar wavelengths. The results of band ratios were 
integrated in a class image (Fig. 10). 

The first group is typified by ferric iron minerals (inclu-
ding hematite and goethite), which have absorptions in 
the bands 2 and 5, and high reflectance in bands 4 and 
6 (Fig. 6B). Two Landsat-8/OLI band ratios were tested to 
highlight ferric iron-bearing zones in the study area: 
1. band ratio 4/2; 
2. band ratio ((4+6)/5).

High values in band ratio 4/2 are useful to detect the 
charge transfer absorption related to ferric iron oxides in 
the blue spectral region. The ratio is sensitive to ferric iron 
even in low concentrations. High values of this band ratio 
highlighted iron oxides related to mafic regolith, but not 
the high-grade iron ore (see Iron Oxide class in Figure 10).

High values of band ratio (4+6)/5 are useful to detect 
the crystal-field absorption of ferric iron oxide in the band 5 
(Rockwell 2013). The results of this band ratio highlighted 
mainly the high-grade iron ore and, secondarily, iron related 
to the mafic saprolite. The results of this ratio correlate with 
the high-grade iron observed at the bottom of N4 and N5 
open pits and in the iron ore stockpile of the railway loop (see  
High Grade Iron Ore class in Figures 10 and 11). The second 
group is characterized by a strong absorption feature near 2.2 – 
2.3 µm in band 7, and includes hydroxyl-bearing minerals (for 
example, clay and mica minerals), hydrated sulfates (for exam-
ple, gypsum and alunite), and, less intensely, carbonate mine-
rals (calcite and dolomite). In the study area, only kaolinite is 
present at surface, which is formed by laterization processes. 
Band ratio 6/7 is commonly used with for its ability to map 
clay minerals (Knepper 1989). However, vegetation spectra 
also have a high reflectance on band 6 and low reflectance 
in band 7 (Fig. 6B). Consequently, a simple band ratio 6/7 
enhances not only clays but also vegetation (Agar & Coulter 
2007). Band ratio 5/4 highlights areas of green vegetation 
with abundant chlorophyll content (see Vegetation class in 
Figure 10). Results of the Landsat-8/OLI band ratio 6/7 were 
divided by the ratio 5/4 to generate the clay index. It shows 
clays in areas related to mafic regoliths. In N4 open-pit area, 
these clays are related to the Igarapé Cigarra Formation, cle-
arly over the Carajás Formation with high-grade iron ore 
(Fig. 11). As this result superposes those of iron oxide ratio 
4/2, a mixed class is generated: Clays + iron oxide (Fig. 10). 
Superposing vegetation and iron oxide ratio 4/2 is registered 
in the class Iron oxide + vegetation.

The NDVI was also applied to the Landsat-8/OLI ima-
gery. NDVI is a standardized vegetation index, which gene-
rates an image showing an estimation of biomass. NDVI 
and other simple near-infrared/red band ratios are affected 
by external factors such as the state of the atmosphere, illu-
mination and viewing angles, soil background reflectance, 
and canopy architecture (Mather 1999). The rainbow-colo-
red NDVI image shows the dense forest in red and orange, 
the mixture of sparsely vegetated and iron oxides of N4WS 
and N6 areas in yellow and light yellow, the bare soil and 
outcropping iron oxides of N4 and N5 open pits in light 
blue, and the water in dark blue (Fig. 12). 

Feature extraction applied to EO-1/
Hyperion imagery

Iron oxide abundance and hematite–goethite ratio spec-
tral parameters were obtained from the polynomial curve 
that best fits the reflectance spectrum for which the conti-
nuum was removed. For this purpose, the following absorp-
tion band parameters calculated from continuum removed 
spectra were used in this study: the absorption band position 
and the absorption band depth. The absorption band posi-
tion is defined as the wavelength at which the polynomial 
curve that adjusts the absorption feature reaches the reflec-
tance minimum of the curve. The depth of the absorption 
feature was calculated using the method proposed by Clark 
and Roush (1984), subtracting the minimum reflectance 
value of the polynomial curve of the reflectance value of the 
continuum at the same wavelength and then dividing this 
value by the reflectance of the continuum. The polynomial 
fit approach to the spectral feature smoothes out some of 
the effects of noise in the data and is not affected by ove-
rall band shape (Cloutis et al. 1986). When the absorption 
feature is not present in the analyzed spectrum, the depth 
value is equal or close to zero, indicating the absence of the 
investigated mineral.

Townsend (1987) observed that the position of the Fe+3 
absorption varies from ~0.86 µm for pure hematite sam-
ples to ~0.92 µm for pure goethite samples. These minima 
absorptions were determined visually from spectra without 
continuum removal correction. When the continuum remo-
val by division is applied, the position of the minimum 
is modified by a slope effect (Clark 1999). Consequently, 
the wavelength position of hematite and goethite ranges 
from ~0.90 µm for pure hematite to ~0.96 µm for pure 
goethite in continuum removed spectra. In this study, the 
depth and position of the iron oxide absorption feature 
were calculated from a third-degree polynomial curve, fit-
ted to the continuum removed reflectance EO-1/Hyperion 
spectra (Table 3). The results from this feature extraction 
are shown in Figure 13A and B. The iron oxide abundance 
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Figure 11. 3D model of the same class image from Figure 10, created with the Laser Imaging Detection and Ranging 
digital terrain model and artificially illuminated from northeast. Black areas are not a class and correspond to 
areas mapped by any band ratio.

correlates with high-grade iron ore in N4 open-pit area 
(Fig. 13A). This is also validated with iron oxides laid in 
the iron ore stockpiles. N5 deposit is outside the EO-1/
Hyperion coverage. Because of the influence of spectral res-
ponse of the grass over the ore canga, no iron oxides were 
detected in the N4WS deposit. Hematite is the main oxide 
present in N4 (Fig. 13B), and only small areas of mixtu-
res between hematite and goethite are observed mainly in 
mafic laterites. This observation is consistent with results 
reported by Prado et al. (2016). Reflectance spectra extrac-
ted from EO-1/Hyperion imagery (VNIR region) can be 
validated with hematite and goethite of USGS spectral 
library (Fig. 14).

Spectral Angle Mapper method applied 
on EO-1/Hyperion Imagery

Unsupervised classification
The Iterative Self-Organizing Data Analysis Technique 

(ISODATA) (Tou & Gonzalez 1974) is an unsupervised 
classification method commonly applied to satellite ima-
ges. Spectral reflectance from multiple bands is used to 
determine clusters in multidimensional attribute space. 
Multispectral and hyperspectral images are commonly 
used for classification. The addition of other “bands” or 
external data measured in a continuous scale, such as 
digital elevation models or geophysical data, can incre-
ase the number of features available for classification. In 
this study, we applied the ISODATA method to a data 
set conformed by data from EO-1/Hyperion VNIR 74 
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Figure 12. Rainbow-colored Normalized Difference 
Vegetation Index image generated from Landsat-8/
OLI data, showing the vegetation abundance. The 
continuous black line represents the “hematite in situ” 
unit of Figure 2. Observe the relationship of vegetation 
in the plateaus.
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Image Product Function Base 
algorithm Algorithm detail Filter/

mask

Hyperion 
VNIR bands

Fe+3abund

Abundance 
of iron oxides 

(hematite, 
goethite)

900DHyp

Depth of the continuum removed spectral 
feature calculated using a third-degree 

polynomial from 0.75 – 1.25 µm, with a focus 
ranging between 0.80 – 1.02 µm

Hem-Goet ratio
Differentiate 

hematite-
goethite

900WvHyp

Wavelength of the continuum removed 
spectrum calculated using a third-degree 

polynomial from 0.75 – 1.20 µm, with a focus 
ranging between   
0.80 – 1.05 µm

900WvHyp 
between 0.86 
and 0.95 µm

Table 3. Algorithms applied on EO-1/Hyperion imagery for the extraction of depth and wavelength from 0.90 µm 
spectral absorption feature of iron oxide.

VNIR: visible near-infrared region.

bands, LIDAR-derived DTM, gamma ray spectroscopy, 
Tzz component of gravimetric gradiometry, and Landsat-8/
OLI-derived NDVI. The selection of these data for the 
classification was based on their own significance in the 
discrimination of outcropping iron ore. All data were 
resampled to 30 m, histogram stretched, converted to 8 
bits, integrated in a unique layer stack image (containing 
78 bands), and spatial subset to an area of 310 ́  613 pixels. 
The ISODATA was set up with a number of 50 maximum 
interactions, 5% of change threshold and 5 minimum 
pixels per class. The resulting classification image is shown 
in Figure 16. The results were analyzed considering the 
knowledge of the phenomenon in question to interpret 
the significance of the various clusters. The classes with 
the best visual correspondence with known features des-
cribed earlier were evaluated. 

The ISODATA classification produced seven classes 
over the main iron deposits (3, 4, 6, 7, 13, 14, and 15) 
and six classes over the dense forest (5, 8, 9, 10, 11, and 
12). Classes 1 and 2 correspond to small water bodies. 
The significance of the classes over the dense forest was 
not determined because of the lack of information about 
different tree species, as well as the geology under this 
vegetation. In consequence, different tones of green 
were assigned to the six classes. Classes 3, 4, and 15 
are related to areas of high-grade iron ore in the open 
pit of N4 and in the stockpiles. These classes are cor-
related with the Carajás Formation in N4 area (Fig. 2). 
The spectral data derived from EO-1/Hyperion VNIR 
74 bands had a large weight on this cluster, with less 
proportion of gamma ray spectroscopy and Tzz compo-
nent of gravimetric gradiometry. Class 6 is also related to 
areas of high-grade iron, but in areas of N4WS plateau. 
Since this area is covered by rupestrian field vegetation, 
the NDVI data, together with gamma ray spectroscopy 
and gravimetric gradiometry data, had a large weight 
on this cluster. Class 7 discriminates mainly rupestrian 

field vegetation over lateritic capping related to mafic 
rocks in plateaus. DTM, gamma ray spectroscopy, and 
NDVI data had a large weight on this cluster. Mafic 
saprolites from Igarapé Cigarra Formation in N4 area 
were discriminated in Classes 13 and 14. Hyperion data 
and, in less proportion, gamma ray spectroscopy had a 
large weight on this cluster. 

DISCUSSION AND CONCLUSION

This study demonstrates the importance and advan-
tages of the combined use of Landsat-8/OLI and EO-1/
Hyperion remote-sensing data, integrated with airborne 
geophysical data in mineral mapping associated with 
iron deposits in the equatorial region at Carajás Mineral 
Province, Brazil. Iron oxides and clay minerals associa-
ted to the Serra Norte iron deposits have been detected 
using this approach. In the N4 and N5 open-pit areas, 
the band ratio method applied on Landsat-8/OLI ima-
gery proved to be adequate for remote mapping of iron 
oxides and/or clay minerals. Specifically, band ratio 
(4+6)/5 showed the best results for mapping high-grade 
iron ore in N4 and N5 areas. Band ratio 4/2 correctly 
highlights iron oxides mainly related to mafic saprolites 
from Igarapé Cigarra Formation in N4 and N5 areas, 
and also iron oxides under vegetation cover in N4WS 
area. The result of the Landsat-8/OLI band ratio 6/7 
divided by the ratio 5/4 produced an adequate index 
for detection of clay minerals. Differences between ore 
canga and chemical canga were not detected in the sparse 
vegetated N4WS area. 

Results obtained from processing hyperspectral EO-1/
Hyperion data to map iron oxides and clays were compara-
ble with those of Landsat-8/OLI. The feature extraction and 
SAM methods applied on EO-1/Hyperion imagery produ-
ced acceptable results for mapping high-grade iron oxides, 
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the hematite-goethite ratio, and clay minerals in N4 and N5 
areas. However, the remote detection of iron oxides was ren-
dered difficult in heavily or sparsely vegetated areas, because 
vegetation obscures the reflectance characteristics of the under-
lying substrate. 

Despite the low SNR and large amounts of noise and 
artefacts that complicate the preprocessing, EO-1/Hyperion 
imagery proved to be an excellent tool for fast remote mine-
ral mapping in open-pit areas, as well as for environment 
monitoring of the mine waste deposits. The Landsat-8/
OLI imagery, with a relatively easy preprocessing, showed 
a solid performance for iron oxide exploration, even in 
vegetated areas. 

Geophysical data provide information about iron 
ore in subsurface, at different depth levels, whereas 
remote sensing supplies information from the surface 
including the vegetation cover. In a general way, the 
clusters determined by the ISODATA classification 
produced an acceptable correlation with classes mapped 
with band ratios (Fig. 10) and feature extraction (Fig. 
13A) mainly in the N4 area. However, the ISODATA 

classification gave superior results in the N4WS area, 
discriminating an area that has a broad correlation with 
the high-grade iron deposit (see “hematite in situ” in 
Figure 2). The integration of remote sensing with geo-
physical data in an unsupervised classification proved 
to be an adequate alternative to mapping iron oxides 
in vegetated areas.
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