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Abstract

The arterial baroreceptor reflex system is one of the most powerful and
rapidly acting mechanisms for controlling arterial pressure. The pur-
pose of the present review is to discuss data relating sympathetic
activity to the baroreflex control of arterial pressure in two different
experimental models: neurogenic hypertension by sinoaortic denerva-
tion (SAD) and high-renin hypertension by total aortic ligation be-
tween the renal arteries in the rat. SAD depresses baroreflex regulation
of renal sympathetic activity in both the acute and chronic phases.
However, increased sympathetic activity (100%) was found only in
the acute phase of sinoaortic denervation. In the chronic phase of SAD
average discharge normalized but the pattern of discharges was differ-
ent from that found in controls. High-renin hypertensive rats showed
overactivity of the renin angiotensin system and a great depression of
the baroreflexes, comparable to the depression observed in chronic
sinoaortic denervated rats. However, there were no differences in the
average tonic sympathetic activity or changes in the pattern of dis-
charges in high-renin rats. We suggest that the difference in the pattern
of discharges may contribute to the increase in arterial pressure lability
observed in chronic sinoaortic denervated rats.
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Introduction

The arterial baroreceptor reflex system is
one of the most powerful and rapidly acting
mechanisms for controlling arterial pressure
(AP). The rapid resetting of arterial barore-
ceptor afferents toward any sustained new
level of blood pressure ensures that the re-
flex acts as an effective buffer of the short-
term blood pressure fluctuations that accom-
pany daily life (1). In fact, the minimization
of blood pressure variability by baroreflex

mechanisms is important since studies sug-
gest that a reduced baroreflex is an inde-
pendent risk factor for sudden death after
myocardial infarction (2,3). Studies per-
formed in experimental animals and in hu-
mans have documented that high blood pres-
sure markedly impairs baroreceptor control
of heart rate (HR) (4). If a similar impair-
ment also occurs in baroreceptor control of
sympathetic activity modulating peripheral
vasomotor tone is not well known. However,
there is evidence in human essential hyper-
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tension and in spontaneously hypertensive
rats (SHRs) suggesting a selective overactiv-
ity of sympathetic tone to the heart and kid-
ney (5). In the last years we have been ana-
lyzing the complex relationship between
baroreceptor function and heart rate and re-
nal sympathetic nerve activity (RSNA) con-
trol in experimental hypertension. The pur-
pose of the present review is to provide
evidence concerning the role of the auto-
nomic nervous system in arterial pressure
control in two different models: neurogenic
hypertension produced by sinoaortic dener-
vation and high-renin hypertension produced
by total aortic ligation between the renal
arteries.

The baroreceptor reflex

The components of the reflex arc respon-
sible for the short-term blood pressure regu-
lation are: 1) receptor endings of afferent
fibers located in the adventitia of the carotid
sinus and aortic arch and running along
branches of the glosso-pharyngeal and va-
gus nerves, respectively; 2) central integra-
tive sites, represented by the nucleus tractus
solitarii (dorsal medulla), caudal ventrolat-
eral medulla and rostral ventrolateral me-
dulla; 3) efferent fibers to the intermediolat-
eral cell column (sympathetic preganglionic
neurons), the source of sympathetic outflow
to the periphery and efferent fibers to pregan-
glionic parasympathetic neurons; 4) the tar-
get organs of these efferent fibers, i.e., the
heart and the vascular tree.

As universally accepted, the arterial
baroreceptors are the major components
maintaining moment-to-moment reflex con-
trol of both sympathetic and vagal innerva-
tion to the cardiovascular system (for re-
views, see 6-8).

The role of the baroreflex in the
short-term control of blood pressure

The primary purpose of the arterial

baroreflex is to provide rapid and efficient
stabilization of arterial blood pressure on a
beat-to-beat basis by means of carotid and
aortic baroreceptors. Impaired baroreflexes
lead to increased blood pressure variability
(5). However, over the longer term (24 h), no
significant relationship between baroreflex
sensitivity and variability of blood pressure
was found (9). The role of the baroreflex in
the long-term control of blood pressure is
characterized by the ability of arterial barore-
ceptors to reset toward any sustained new
level of blood pressure in hypotension or
hypertension (10). The resetting to high lev-
els of pressure may be acute or chronic (11).
Acute resetting does not change baroreflex
sensitivity (12). Nevertheless, chronic and
complete resetting leads to an impairment
(30%) of baroreflex sensitivity 48 h after
hypertension. The impairment observed 2
days after hypertension is similar to that
observed 3 months later (12). Baroreflex
dysfunction has been reported in several
cardiovascular diseases and in both clinical
and experimental hypertension (4,13). In fact,
we showed in the same spontaneously hy-
pertensive rat (unpublished data) that there
was a good correlation between the baroreflex
sensitivity analyzed by the function curve
(aortic activity x AP) in anesthetized rats and
baroreflex sensitivity analyzed by changes
in HR induced by arterial pressure changes
in conscious animals. The impairment of
aortic afferents was 41% and the reduction
of the reflex responses induced by lowering
AP was 46%. The attenuation of reflex brady-
cardia was higher (79%), suggesting that
changes in other components of the reflex
arc may contribute to the impairment. If
baroreflex dysfunction is a cause or a conse-
quence of hypertension is still an open ques-
tion. Aging, diabetes and obesity may induce
changes in vascular structure, changing
baroreceptor activity. These functional al-
terations may be related to the hypertensive
process (14). On the other hand, vascular
mechanoelastic changes are induced by hy-
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pertension, as we have observed in rat mod-
els (15-21). Moreover, there is evidence that
baroreflex impairment may be secondary to
hypertension in humans and experimental
animals (22). Baroreflex sensitivity may be
changed by various neurohumoral factors
such as angiotensin II (Ang II) (23) and
vasopressin (24) that can modulate reflex
responses by acting on the central nervous
system (25) or peripherally (26). Endothelial
factors (27), the activity of ion channels (14)
and sympathetic activity (23) may also par-
ticipate in this baroreflex control. Recently
we demonstrated that the hypertensive effect
of Ang II was dependent on RSNA in high-
renin hypertensive rats (28).

Baroreflex control of sympathetic
activity in sinoaortic denervation

Sinoaortic denervation (SAD) in animals
has been used to evaluate the role of barore-
ceptors in modulating AP, HR and RSNA.
The cardiovascular alterations produced by
SAD have been extensively studied in sev-
eral species (29-32). The AP level after SAD
depends on the extension of denervation,
time after surgery and the experimental con-
ditions during pressure measurements. How-
ever, a persistent and marked increase in the
variability of AP is always observed. Indeed,
we showed that AP, HR and RSNA were
increased up to 6 h and returned to control
levels 20 days after SAD (33,34).

Sympathetic hyperactivity has been im-
plicated as the major determinant of increased
AP after SAD. Catecholamine measurements,
acute and chronic sympathetic blockade, and
localized lesioning of the central nervous
system have been used to indirectly estimate
increased peripheral neurogenic tone (35-
37). Direct measurements of RSNA were
performed by our laboratory first in anesthe-
tized rats (33,38) and more recently in awake
animals (34). In this last study we demon-
strated a 100% increase in RSNA within the
first 6 h after SAD, in contrast with the 30%

increase detected after 24 h (39). Twenty
days after SAD, the averaged RSNA was
normal (34). These data indicate that the
increased sympathetic activity after SAD
progressively diminishes to the normal level.
The histogram of distribution of RSNA in
acute sinoaortic denervated rats was shifted
to the upper values (Figure 1), which ex-
plains the greater averaged cycle activity.
Despite the similar averaged RSNA values
in chronic SAD and normotensive rats the
pattern of distribution was different (Figure
1, bottom). There was a higher proportion of
silent cycles and consequently a lower 1:1
synchronization between RSNA and cardiac
cycles in chronic SAD rats. This alteration in
the synchronization of sympathetic activity
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Figure 1 - Bar graphs showing
the occurrence of cardiac cycles
at each level of normalized renal
sympathetic nerve activity
(RSNA) in control (top), acute
(middle) and chronic sinoaortic
denervation (SAD) (bottom). Ob-
serve the different proportions
of cardiac cycles from 0 to 40%
(from Ref. 34).
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could be an important factor to explain the
increased lability observed in these animals.
The normalization of the averaged RSNA
under resting conditions in the chronic phase
of SAD is accompanied by normalization of
HR (40) and biochemical parameters (37) as
well as by normal arterial pressure values
(35). However, the impairment of barore-
flexes observed in the acute phase (85-92%)
still persisted in chronic SAD (62-72%) (Fig-
ure 2A). Similar depression was found in the
baroreflex control of HR, when AP was
increased (74%) or decreased (75%). The
relationship between RSNA and AP evalu-

ated during spontaneous changes in AP was
also attenuated in acute and chronic SAD as
compared with control rats (Figure 2B).

In synthesis, sinoaortic denervation pro-
duces intense depression of baroreflex regu-
lation of RSNA in both the acute (6 h) and
chronic (20 days) phases. However, only in
the acute phase is baroreflex attenuation ac-
companied by tonic sympathetic overactiv-
ity. In the chronic phase of SAD, averaged
RSNA, as evaluated over 1000 cardiac cycles,
returns to baseline values, but the pattern of
discharge is altered, probably contributing
to the increased AP variability.
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Figure 2 - A, Effects of sinoaortic
denervation on the baroreflex
control of renal sympathetic ac-
tivity, during changes in mean
arterial pressure induced by so-
dium nitroprusside (left) and
phenylephrine (right). Note the
depressed baroreflex responses
in rats with acute (SADa) and
chronic (SADc) sinoaortic dener-
vation.
B, Scatterplot showing a sponta-
neous relationship between sys-
tolic arterial pressure (SAP) and
renal sympathetic  nerve activity
(RSNA) for each systolic pres-
sure class (2 mmHg) in a control,
an acute (SADa) and a chronic
(SADc) sinoaortic denervation
rat. Observe the larger AP fluc-
tuation in SAD (a and c) rats com-
pared to control.

*P≤0.05
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Baroreflex control in high-renin
hypertensive rats

Total aortic ligation between renal ar-
teries is a useful model of high-renin hyper-
tension in rats (41). Compared with normo-
tensive controls we found an AP increase of
54% in high-renin hypertensive rats (42)
(169 ± 3 vs 110 ± 2 mmHg). The overactivity
of renin angiotensin system (RAS) was de-
monstrable by measurements of plasma re-

nin activity (PRA) by radioimmunoassay (40
± 5 vs 2 ± 1 ng Ang I ml-1 h-1, in controls) and
by the hypotensive response to captopril ad-
ministration (-40 ± 4 vs -9 ± 5 mmHg, in
controls). Averaged cycle RSNA evaluated
over 1000 cardiac cycles in high-renin hy-
pertensive rats was normal (19 ± 3 bars/
cycle) when compared with normotensive
controls (18 ± 2 bars/cycle).

The role of the sympathetic nervous sys-
tem in the pathophysiology of renal hyper-
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Figure 3 - A, Effects of high-re-
nin hypertension on the sympa-
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tatory responses to pressor
changes induced by vasoactive
drugs. On the left, actual values
of reflex inhibitory responses
(lower right) and reflex excita-
tory responses (upper left). On
the right, regression lines. Solid
straight lines: hypertensive rats.
Dashed lines: normotensive rats
(from Ref. 42). B, Scatterplot
showing a spontaneous relation-
ship between systolic arterial
pressure (SAP) and renal sympa-
thetic nerve activity (RSNA) ob-
tained from a normal rat (left)
and from a high-renin hyperten-
sive rat (right). The open plots in
the middle of the figures repre-
sent averaged RSNA in each
class of systolic pressure.
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tension is still controversial (43). In our labo-
ratory bilateral renal denervation was shown
to attenuate the hypertension observed after
10 days of aortic ligation (28). Renal dener-
vation also normalized PRA in these experi-
ments, implicating the renal nerves in the
secretion of renin during decreases in perfu-
sion pressure.

Impairment of baroreflex bradycardia by
Ang II has been demonstrated in sheep (44),
dogs (45), monkeys (46), rabbits (23) and
rats (47). Moreover, the pattern of pressure
changes during natural sleep in rats, which is
a sensitive index of functional integrity of
the baroreceptor reflex, is altered by intra-
cerebral Ang II infusion (48) or during hy-
pertension accompanied by overactivity of
the RAS (49), thus resembling the changes
caused by sinoaortic denervation.

In our laboratory the baroreflex control
of HR was demonstrated to be impaired in
rats with high-renin renal hypertension of
short and long duration, regardless of the
severity of hypertension (47). Both reflex
bradycardia and tachycardia elicited by phen-
ylephrine and nitroglycerine, respectively,
were depressed. In rats with one-kidney,
one-clip hypertension, the reflex bradycar-
dia and tachycardia were attenuated by 81
and 77%, respectively. In rats with mild or
severe hypertension induced by aortic liga-
tion there was a similar marked inhibition of
the reflex bradycardia (90%) and tachycar-
dia (62%).

Although the reduced sensitivity of the
baroreflex control of heart rate does not
always reflect a similar change in sympa-
thetic outflow to the peripheral circulation,
because of the asymmetry of the system (4),
in our study the reflex responses of RSNA to
loading and unloading of the baroreflex were
also attenuated by 70-80%. Indeed, Figure
3A shows the actual measured parameters
during rises and falls in MAP (42) with an

impairment of 73% (-0.3 ± 0.03 vs -1.1 ± 0.1
bars/mmHg) and 79% (-0.2 ± 0.03 vs -0.94 ±
0.12 bars/mmHg), respectively. The impair-
ment evaluated by the slope was greater (78
and 81%, respectively). The spontaneous
correlation between systolic pressure and
RSNA is illustrated in Figure 3B. The in-
verse correlation between systolic pressure
and averaged RSNA in each class of systolic
pressure (every 2 mmHg variation) was de-
pressed in renal hypertensive rats (-0.7 ±
0.04%/mmHg, B) as compared with controls
(-2.32 ± 0.6%/mmHg, A).

In synthesis, high-renin hypertensive rats
showed overactivity of the renin angiotensin
system and a great depression of the barore-
flexes, comparable to the depression ob-
served in chronic sinoaortic denervated rats.
However, no increased sympathetic tonic
activity or changed pattern of discharge was
observed in this hypertensive model.

Concluding remarks

A marked alteration in the baroreceptor
control of sympathetic activity is observed
(phasic effect) in both chronic SAD rats and
rats with high-renin hypertension. However,
the averaged RSNA was normal under rest-
ing conditions, suggesting that the impair-
ment of the baroreflex is not always accom-
panied by increased sympathetic activity
(tonic effect) as observed in the acute phase
of SAD.

In chronic SAD rats, the pattern of sym-
pathetic discharge was altered and the labil-
ity of AP was increased whereas in high-
renin hypertensive rats both parameters were
normal. These data suggest that alteration in
the synchronization of sympathetic dis-
charges, even when the average discharge is
normal, can be an important mechanism in-
creasing AP variability.
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