
881

Braz J Med Biol Res 33(8) 2000

Biology and clinical use of mesenchymal progenitorsBrazilian Journal of Medical and Biological Research (2000) 33: 881-887
ISSN 0100-879X

Biology and clinical utilization of
mesenchymal progenitor cells

1Laboratorio de Biología Celular, INTA, Universidad de Chile, and
2Laboratorio de Transplante de Médula Ósea, Clínica Las Condes, Santiago, Chile

J.J. Minguell1,2,
P. Conget1

and A. Erices1

Abstract

Within the complex cellular arrangement found in the bone marrow
stroma there exists a subset of nonhematopoietic cells referred to as
mesenchymal progenitor cells (MPC). These cells can be expanded ex
vivo and induced, either in vitro or in vivo, to terminally differentiate
into at least seven types of cells: osteocytes, chondrocytes, adipocytes,
tenocytes, myotubes, astrocytes and hematopoietic-supporting stroma.
This broad multipotentiality, the feasibility to obtain MPC from bone
marrow, cord and peripheral blood and their transplantability support
the impact that the use of MPC will have in clinical settings. However,
a number of fundamental questions about the cellular and molecular
biology of MPC still need to be resolved before these cells can be used
for safe and effective cell and gene therapies intended to replace,
repair or enhance the physiological function of the mesenchymal and/
or hematopoietic systems.
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Origin of the concept of bone
marrow-derived mesenchymal
progenitors

The work initiated by Friedenstein and
collaborators (1) provided definitive evidence
that bone marrow contains, in addition to the
hematopoietic progenitors, a population of
spindle-shaped clonogenic fibroblast precur-
sor cells or fibroblast colony-forming units
(CFU-F). These cells, which were defined in
vivo as quiescent resting cells, after proper in
vitro stimulation can enter the cell cycle and
develop colonies that resemble small depos-
its of bone or cartilage (2). Since CFU-F
exhibit a high ability for self-renewal and
multipotentiality, it was speculated that these
�marrow stromal stem cells� were the pre-

cursors of a number of different mesenchy-
mal cell lineages (3,4). Thus, the concept
that the marrow stromal moiety was part of a
wider stromal mesenchymal system in adult
organisms was developed.

Data related to the number and hierarchy
of cell lineages belonging to the stromal
mesenchymal system, in addition to a sub-
stantial progress in the understanding of the
differentiation process and the characteriza-
tion of the evolving phenotypes, open per-
spectives for the use of these �marrow stro-
mal stem cells� in cellular or genetic thera-
pies for mesenchymal disorders (5,6). In this
review we will highlight in a rather selective
manner the current knowledge on this stro-
mal mesenchymal system.

The term CFU-F or marrow stromal fi-
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broblasts (7) has been gradually abandoned
and replaced by diverse, still indistinct de-
nominations, like marrow stromal cells (5),
mesenchymal stem cells (4), or mesenchy-
mal progenitor cells (MPC) (8). Neverthe-
less, in all cases reference is made to a
particular adherent cell type evolving from
bone marrow-derived low density mono-
nuclear cells, cultured in a classical medium
supplemented only with selected batches of
fetal bovine serum. Cells thus developed,
which hereafter will be referred to as MPC,
display a fibroblast-like morphology, can be
expanded ex vivo and present a potential to
terminally differentiate into at least seven
types of cells: osteocytes, chondrocytes,
adipocytes, tenocytes, myotubes, astro-
cytes and hematopoietic-supporting stroma
(7,9-16). We should emphasize that the
denomination �marrow stromal cells� has
also been used for monolayers of long-
term marrow stroma or Dexter-type cul-
tures (17). However, culture conditions,
evolving phenotypes, differentiation po-
tential and secretion products of the above
cells are not analogous to those of MPC,
but are in fact quite dissimilar (18,19).

Characteristics of MPC

Human MPC cultures contain a ho-
mogenous population of fibroblast-like
cells which have a population doubling
time of 33 h and exhibit a large (20) but
variable ex vivo expansive potential. It has
been reported that while some MPC prepa-
rations can be expanded over 15 cell
doublings, others cease replicating after
about 4 cell doublings (21-23). In addi-
tion, as samples are highly expanded, MPC
apparently lose their multipotentiality and
approach senescence and/or express apop-
totic features (20,22).

Cell cycle studies on human MPC cul-
tures have revealed the presence of a frac-
tion (20%) of cells with a quantitative pat-
tern of RNA and DNA typical of quiescent

(G0) cells (20). These cells can be isolated
by a negative selection procedure using 5-
fluorouracil, which originates a population
of more than 90% G0 cells, expressing the
gene for ornithine decarboxylase antizyme,
a marker for cellular unproliferative status.
The resting condition, together with a selec-
tive immunophenotype and the absence of
the expression of commitment markers in
the selected cells, suggest that within cul-
tures of MPC a fraction of mesenchymal
stem-like cells subsists (Conget P, unpub-
lished results). This finding gives experi-
mental support to the hypothesis that a �rare�
mesenchymal stem cell in the bone marrow
is capable of self-renewal and differentia-
tion into various mesenchymal lineages.

The antigenic phenotype of MPC is not
unique, borrowing features of mesenchy-
mal, endothelial, epithelial and muscle cells
(9,14,20,24). Since MPC do not express typi-
cal hematopoietic lineage markers (CD14,
CD34, CD45) (9,20), it has been postulated
that bone marrow hosts at least two main
different stem/progenitor cells which can
give rise to mature hematopoietic and mes-
enchymal cells (5,25).

The extended cytokine expression pro-
file of MPC, which includes several hemato-
poietic and nonhematopoietic growth fac-
tors, interleukins and chemokines (18,26),
suggests that MPC contribute to the marrow
microenvironment with inductive/regulatory
signals for the development of hematopoi-
etic cells as well as for stromal cells, includ-
ing the MPC itself. The latter is sustained by
recent data showing that MPC express nu-
merous growth factor and cytokine receptors
(9, and Erices A, unpublished results), sug-
gesting that the function of these cells is
under the control of autocrine or juxtacrine
loops. Additional evidence for the dynamic
function performed by MPC in the marrow
microenvironment is given by data revealing
their capacity to produce and organize a vast
array of extracellular matrix molecules (19).
Moreover, MPC express several counterre-
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ceptors associated with matrix- and cell-to-
cell adhesive interactions (9,20).

Differentiation potential of MPC

One of the first descriptions of the in vivo
differentiation potential of MPC was the
report showing that after a successful and
uneventful HLA-matched marrow allograft,
a dog suddenly died of respiratory failure
due to extensive ossification of the lungs
with multiple sites of hematopoietic engraft-
ment (27). This study, described by the au-
thors as �an unexpected phenomenon�, was
followed by several studies showing that in
animal models, cultured MPC once trans-
planted can develop into terminally differen-
tiated mesenchymal tissues, like bone (7,10,
28-30), cartilage (10,29,31), tendon (13,32),
muscle (33), neural (16) or hematopoietic
microenvironments (7). The given examples
just reaffirm the broad multipotentiality of
MPC, probably the adult stem/progenitor
cell exhibiting the highest degree of plastic-
ity (6,34).

Most of the studies on the in vitro
differentiation potential of MPC, mainly
into osteoblasts, chondrocytes, myotubes
and hematopoietic-supporting stroma,
came from the work by Caplan and col-
leagues (4,11,15,35). These studies have
provided information regarding culture
conditions, proper stimuli and methods
for identification of the respective ulti-
mate differentiated phenotype.

The molecular and cellular events asso-
ciated with differentiation pathways are not
well understood, but it seems that the com-
mitment to the osteo-chondrogenic or adipo-
genic lineages requires the expression of
Cbfa-1 or PPARg2, respectively (36,37).
Subsequent maturation along these pathways
includes the expression of alkaline phos-
phatase, osteopontin, osteocalcin and col-
lagen I in the osteocytic lineage; collagen II
and IX in the chondrocytic lineage, and aP2,
adipsin, leptin and lipoprotein lipase in the

adipocytic one (9,38). Thus, analyses at the
gene expression level (RT-PCR) have shown
that MPC differentiate in vitro, according to
the stimuli applied, into the desired lineage
but not into cells expressing multiple lin-
eages (9).

Although diagrams for a hierarchy of
MPC progenitors evolving from a putative
mesenchymal stem cell have been published
(6,39), data explaining how lineage choices
and transcriptional specificities are achieved
and how these account for the extraordinary
multipotency of mesenchymal progenitor
cells are lacking. It will be challenging for
investigators in the field to fill in the gaps on
these issues.

Sources of MPC

Recent data have shown that, in addition
to adult bone marrow, umbilical cord blood
is also a source of MPC (40). These cells
exhibit an immunophenotype, a population
of quiescent cells and a differentiation po-
tential similar to that of marrow-derived
MPC. The observation that the content of
MPC is higher in preterm than in term cord
blood, a trend also observed for hematopoi-
etic progenitors (41), suggests that hemato-
poietic and mesenchymal progenitors travel
early during development, probably from
fetal hematopoietic sites to the newly formed
bone marrow via cord blood (42).

Whether MPC circulate in peripheral
blood is an open issue. In the murine model,
CFU-F circulate in blood and represent a
stromal cell population which can migrate
into hematopoietic organs (43). In humans,
cells with the characteristics of mesenchy-
mal progenitors were detected in growth
factor-mobilized peripheral blood stem cells
harvested from breast cancer patients, but
not in the blood from normal donors (44).
However, under similar but not identical
experimental conditions, the presence of cir-
culating MPC has not been confirmed by
other groups (45,46).
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Transplantation of MPC

The envisioned routes of MPC delivery
are either direct loading (injection or im-
plants) into the damaged organ or systemic
infusion. In the former case, it has been pro-
posed that MPC will augment local repair or
regeneration of bone (28-30), cartilage (47) or
tendon (32). With respect to systemic infu-
sion, MPC should home into the damaged
tissue and restart their developmental pro-
gram. Thus, MPC will improve target tissue
function (48,33) or increase marrow microen-
vironment support to facilitate engraftment by
hematopoietic stem cells (6,49).

Despite the profuse information on the
origin (host or donor) of stromal cells after
allogeneic transplantation, the issue is still
open because of contradictory data. Thus, it
has been reported that after successful allo-
geneic bone marrow transplantation (con-
sidered as a source of hematopoietic and
mesenchymal progenitors), MPC isolated at
different time intervals after transplantation
exhibit cellular and molecular features that
correspond either to the host (50-52) or to
the donor (48,53,54). The nature of this con-
flict may arise from several determinants,
among them the methods used to type MPC,
the procedure followed to harvest the mar-
row (21,55), the low frequency of MPC in
marrow harvests (2-5 MPC per 1 x 106 mono-
nuclear cells) (50), and/or the condition
(steady state vs post chemo- or radiotherapy)
of the marrow from which MPC were pre-
pared (22,52) and to which MPC were trans-
planted.

An additional explanation for the dis-
crepancy about the marrow transplantation
capacity of MPC may arise from the obser-
vation that the number of mesenchymal stem-
like cells among different cultures is low and
variable (20, and Conget P, unpublished re-
sults). Based on data for the hematopoietic
and muscle system (56,57), one can specu-
late that quiescent and cycling MPC present
in the graft will contribute in a different way

to stromal repopulation after transplantation.
Mesenchymal stem-like cells, after homing
to the marrow space will self-renew and
thereby sustain long-term mesengenesis. In
turn, cycling MPC which will probably also
home to other mesenchymal tissues due to
their committed condition, will only contri-
bute to short-term mesengenesis. Whatever
the case, there are still many open questions
concerning the transplantability of MPC, ei-
ther as isolated cells, after ex vivo expansion,
or as whole cells with hematopoietic pro-
genitors (55).

Clinical trials using MPC

Given the promising features of adult
stem cells for the development of new cell
therapies (6,34), researchers in the field of
MPC have pursued a broad range of lines of
investigation to stimulate their therapeutic
utilization.

The first clinical trials reported have re-
vealed that systemic infusion of ex vivo ex-
panded autologous MPC is feasible and safe
in the short-term (49,58). However, there is
yet no conclusive evidence to support the
contention that transplanted MPC may have
a positive impact on the management of
lymphohematopoietic or cancer patients (49).
On the other hand, it has been demonstrated
that allogeneic bone marrow transplantation
in children with osteogenesis imperfecta re-
sults in impressive histological changes in
trabecular bone which indicate new dense
bone formation (59). In addition, increased
growth rate and reduced frequencies of bone
fracture were also observed. These changes,
detected 3 months after marrow transplanta-
tion, were associated with the engraftment
of functional MPC from the transplanted
marrow (25). Surprisingly, recent reports
have documented that following bone mar-
row transplantation, short-term changes in
bone mineral metabolism caused a rapid
impairment of bone formation and an in-
crease in bone resorption (60).
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Conclusions and future directions

The last five years have been the scene of
a substantial improvement in our understand-
ing of the biology and the potential clinical
utilization of adult MPC. Although many
aspects related to the properties of these
cells are well established, information deal-
ing with the existence of a hierarchy of mes-
enchymal precursors (including the mesen-
chymal stem cell itself) and their properties
still remains obscure. However, this lack of
information has not been an obstacle in terms
of the therapeutic utilization of these cells.

MPC represent an attractive therapeutic
option, both in the context of cellular and
gene therapy strategies for a wide range of
clinical applications. Future clinical trials
should be focused on at least two main is-
sues: as an integral part of the marrow mi-
croenvironment, MPC transplantation alone
or in conjunction with hematopoietic pro-
genitors would facilitate the engraftment of
the hematopoietic stem cell after myeloabla-
tive therapy. Also, they might replace che-
motherapy- or disease associated-damaged
stroma or modulate graft versus host dis-
ease; transplantation of MPC, as precursors
of several mesenchymal lineages, is envi-

sioned as the proper therapy to attenuate or
correct disorders of mesenchymal tissues,
like osteogenesis imperfecta, osteoporosis,
osteoarthrosis, meniscectomy, muscular dys-
trophy, etc.

To improve the latter, several studies
have shown the feasibility of adeno- or retro-
viral-mediated gene transfer of reporter or
therapeutic genes into MPC (8,61,62). For
the near future, we anticipate a rapid closure
of many gaps in our knowledge of the biol-
ogy of MPC, which may facilitate the devel-
opment of phase II and III clinical trials for
new therapeutic alternatives using MPC.
Thus, as recently proposed, MPC are �no
longer second class marrow citizens� as com-
pared with hematopoietic progenitors, the
paradigm of bone marrow cells (25).
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