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The discovery of non-adrenergic, non-cholinergic neurotransmission in the gut and bladder in the early 1960’s is described as
well as the identification of adenosine 5'-triphosphate (ATP) as a transmitter in these nerves in the early 1970’s. The concept of
purinergic cotransmission was formulated in 1976 and it is now recognized that ATP is a cotransmitter in all nerves in the
peripheral and central nervous systems. Two families of receptors to purines were recognized in 1978, P1 (adenosine) receptors
and P2 receptors sensitive to ATP and adenosine diphosphate (ADP). Cloning of these receptors in the early 1990’s was a
turning point in the acceptance of the purinergic signalling hypothesis and there are currently 4 subtypes of P1 receptors, 7
subtypes of P2X ion channel receptors and 8 subtypes of G protein-coupled receptors. Both short-term purinergic signalling in
neurotransmission, neuromodulation and neurosecretion and long-term (trophic) purinergic signalling of cell proliferation,
differentiation, motility, death in development and regeneration are recognized. There is now much known about the mechan-
isms underlying ATP release and extracellular breakdown by ecto-nucleotidases. The recent emphasis on purinergic neuropa-
thology is discussed, including changes in purinergic cotransmission in development and ageing and in bladder diseases and
hypertension. The involvement of neuron-glial cell interactions in various diseases of the central nervous system, including
neuropathic pain, trauma and ischemia, neurodegenerative diseases, neuropsychiatric disorders and epilepsy are also
considered.
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Introduction

The story really started when | took up my first post-
doctoral post in Feldberg's Department of Physiology at
the National Institute for Medical Research. There | learned
electrophysiological techniques and, together with Ralph
Straub (who had worked with Stampfli in Switzerland),
developed the sucrose-gap technique to record correlated
mechanical and electrical activity in smooth muscle (1).
When Edith Bilbring, who led the leading smooth muscle
laboratory in the UK, saw how useful this method was
compared to the technical difficulties her group was facing
with microelectrode recording from spontaneous smooth
muscle of the guinea-pig taenia coli, her favourite prepara-
tion, she invited me to take up a postdoctoral position in the
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Department of Pharmacology, Oxford University. There |
studied the actions of the classical neurotransmitters, ace-
tylcholine (ACh) and noradrenaline (NA) using the su-
crose-gap technique (2,3). Then, after a year in Ladd
Prosser’s laboratory in Champaign-Urbana, IL, supported
by a Rockefeller fellowship, | decided to take up a Senior
Lectureship in the Department of Zoology in Melbourne in
1960, where after a short time | set up the sucrose-gap
technique and began to build a research group.

Non-adrenergic, non-cholinergic nerves
One day, together with my young colleagues, Max

Bennett, who was a part-time electronics technician com-
pleting an Engineering degree, and Graham Campbell, a
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PhD student, we decided to stimulate the nerves supplying
the smooth muscle of the guinea-pig taenia coli in the
presence of atropine and bretylium to block cholinergic
and adrenergic neurotransmission and expected to see
depolarisation and contraction in response to direct stimu-
lation of the muscle. However, to our surprise the re-
sponses to single stimuli were rapid hyperpolarizations
and relaxation. This was a moment of excitement (4) for us
because we felt that we were on to something important.
Interpretation of our results was discussed internationally
for a while and then | was fortunate to have a Japanese
postdoctoral fellow working with me whose friend in Japan
had just discovered tetrodotoxin (from the puffer fish),
which was shown to block nerve conduction, but not smooth
muscle activity. Tetrodotoxin abolished the hyperpolariza-
tions, so we realized that they were inhibitory junction
potentials in response to non-adrenergic, non-cholinergic
(NANC) neurotransmission. | then spent 6 months with
Mike Rand at the School of Pharmacy in London to study
details of the NANC inhibitory responses, for example,
showing that they were present in intrinsic enteric neurons
controlled by vagal or sacral parasympathetic nerves (5).

ATP as a transmitter in NANC nerves

The next step was to try to identify the transmitter
released during NANC inhibitory transmission in the gut
and by NANC excitatory transmission, which we later
identified in the urinary bladder. From the work of Jack
Eccles and others, we knew that several criteria needed to
be satisfied to establish a neurotransmitter: synthesis and
storage in nerve terminals; release by a Ca2*-dependent
mechanism; mimicry of the nerve-mediated responses by
the exogenously applied transmitter; inactivation by ecto-
enzymes and/or neuronal uptake, and parallel block or
potentiation of responses to stimulation by nerves and
exogenously applied transmitter. We examined many dif-
ferent substances in the late 1960’s, including amino acids,
monoamines, neuropeptides, but none satisfied the crite-
ria. However, in reading the literature, | discovered a
seminal paper by Drury and Szent-Gyoérgyi (6) showing
powerful extracellular actions of purines on heart and
blood vessels, papers by Feldberg showing extracellular
actions of adenosine 5'-triphosphate (ATP) on autonomic
ganglia (e.g., 7) and a paper by Pamela Holton in 1959,
which showed release of ATP during antidromic stimula-
tion of sensory nerves supplying the rabbit ear artery (8).
So we tried ATP and to our surprise it satisfied all the
criteria needed to beautifully establish it as a transmitter
involved in NANC neurotransmission (9). In 1972, | pub-
lished an article in Pharmacological Reviews (10) formu-
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lating the purinergic neurotransmission hypothesis. Sadly,
few believed this hypothesis over the next 25 years and it
was often ridiculed at meetings and workshops. When | left
to take up the Chair of Anatomy and Embryology at Univer-
sity College London in 1975, Professor Austin Doyle, said
at my farewell Reception, “Geoff Burnstock is the discov-
erer of the pure-imagine hypothesis”. Resistance to this
concept was perhaps understandable because ATP was
well established as an intracellular energy source involved
in the Krebs cycle and other biochemical pathways and it
seemed unlikely that such a ubiquitous molecule would
also act as an extracellular messenger. My own view is that
ATP, recognized as an early biological molecule, evolved
both as an intracellular energy source and an extracellular
signalling molecule.

Purinergic cotransmission

During a sabbatical leave visiting the laboratory of Che
Su and John Bevan at UCLA, we were disconcerted to find
ATP release not only from NANC intrinsic inhibitory enteric
neurons, but also from sympathetic nerves supplying the
taenia coli (11). However, this raised the question in my
mind that ATP might be released as a cotransmitter from
sympathetic nerves and after discovering many hints in the
literature, | formulated the cotransmitter hypothesis in 1976
in a Commentary to Neuroscience (12), which unfortu-
nately also raised controversy because of the widely held
concept called ‘Dales Principle’, although actually defined
by Eccles, that one nerve only releases one transmitter.
The electrical recordings that Mollie Holman and | made
during sympathetic neurotransmission in the guinea-pig
vas deferens in the early 1960s showed excitatory junction
potentials (EJPs) in response to single pulses that summed
and facilitated until at a critical depolarisation, a spike was
generated leading to contraction (13). However, what was
puzzling was that receptor antagonists to NA as the trans-
mitter recognized at that time in sympathetic nerves did not
block the EJPs, although bretylium, that prevents release
of transmitter from sympathetic nerves, did reduce them. It
was not until over 20 years later, when Peter Sneddon
joined my laboratory in London, that we showed that a,b-
methyleneATP, a slowly degradable analog of ATP that
acts as a selective desensitiser of the ATP receptor (14),
abolished the EJPs and spritzed ATP mimicked the EJP,
but NA did not (15). Purinergic cotransmission is now well
established, not only in sympathetic nerves, but also in
parasympathetic, sensory-motor and enteric nerves and
more recently ATP has been shown to be co-released with
glutamate, GABA, dopamine, NA, 5-hydroxytryptamine
and ACh in different populations of nerve fibbers in the
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central nervous system (CNS) (see Ref. 16).

Important landmark papers in the early 1990’s de-
scribed ATP mediation of fast synaptic transmission in
both peripheral ganglia (17,18) and in the CNS (19).

Receptors to purines and pyrimidines

Implicit in purinergic transmission is the existence of
specific receptors. In 1978, | proposed a basis for distin-
guishing two types of purinergic receptors, one selective to
adenosine (called P1), which was antagonized by methyl-
xanthines and the other selective for ATP/adenosine di-
phosphate (ADP; called P2) (20). This was a useful step
forward, explaining some of the early confusion in the
literature resulting from the rapid extracellular breakdown
of ATP to adenosine and extended our concept of puriner-
gic neurotransmission, by identifying post-junctional re-
ceptors as P2, while pre-junctional P1 receptors mediated
neuromodulatory negative feedback responses or auto-
regulation of transmitter release. A pharmacological basis
for distinguishing two types of P2-purinoceptors, defined
as P2X and P2Y, was proposed in 1985 (21) and we were
lucky that when P2 receptors were cloned in the early
1990’s (22-25) and second messenger mechanisms ex-
amined, this subclassification was consistent with P2X ion
channel receptors and P2Y G protein-coupled receptors.
Currently, 4 subtypes of P1 receptors are recognized, 7
subtypes of P2X receptors and 8 subtypes of P2Y recep-
tors, including some responsive to the pyrimidines, UTP
and UDP (uridine tri- and diphosphate, respectively; see
Refs. 26,27). It was shown that three of the P2X receptor
subtypes combine to form cation pores (28) either as
homomultimers and heteromultimers, and more recently
heterodimerization has been shown between P2Y recep-
tor subtypes. Many non-neural as well as neuronal cells
express multiple receptors (29) and this poses problems
about how they mediate interacting physiological events. It
is becoming clear that the purinergic signalling system has
an early evolutionary basis with fascinating recent studies
showing cloned receptors in two primitive invertebrates,
Dictyostelium and Schistosoma that resemble mammalian
P2X receptors (30,31) and ATP signalling in plants has
also been described (32-34).

Physiology of purinergic signalling

While early studies were largely focused on short-term
signalling in such events as neurotransmission, neuro-
modulation, secretion, chemoattraction and acute inflam-
mation, there has been increasing interest in long-term
(trophic) signalling involving cell proliferation, differentia-
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tion, motility and death during development, regeneration,
wound healing, restenosis, epithelial cell turnover, cancer
and ageing (35). For example, in blood vessels, there is
dual short-term control of vascular tone by ATP released
as an excitatory cotransmitter from perivascular sympa-
thetic nerves to act on P2X receptors in smooth muscle,
while ATP released from endothelial cells during changes
in blood flow (shear stress) and hypoxia acts on P2X and
P2Y receptors on endothelial cells leading to production of
nitric oxide and relaxation (36). In addition, there is long-
term control of cell proliferation and differentiation, migra-
tion and death-involved neovascularization, restenosis fol-
lowing angioplasty and atherosclerosis (37).

For many years, the source of ATP acting on receptors
was considered to be damaged or dying cells, except for
exocytotic vesicular release from nerves. However, it is
now known that many cell types release ATP physiologi-
cally in response to mechanical distortion, hypoxia or to
some agents (38). The mechanism of ATP transport is
currently being debated and includes in addition to vesicu-
lar release, ABC transporters, connexin or pannexin hemi-
channels, maxi-ion channels and even P2X; receptors
(16).

There is now much known about the extracellular break-
down of released ATP by various types of ecto-nucleoti-
dases including ectonucleoside triphosphate diphospho-
hydrolases, ecto-nucleotide pyrophosphatases/phosphodi-
esterases, alkaline phosphatase and ecto-5'-nucleotidase
(39).

Purinergic neuropathology and therapeutic
potential

It is well known that the autonomic nervous system
shows high plasticity compared to the CNS. For example,
substantial changes in cotransmitter and receptor expres-
sion occur during development and ageing in the nerves
that remain following trauma or surgery and in disease
situations (5). For example, a P2Y-like receptor was iden-
tified in Xenopus that was transiently expressed in the
neural plate and again later in secondary neuralation in the
tail bud, suggesting involvement of purinergic signalling in
the development of the nervous system (40). There is
transient expression of P2Xs and P2Xg receptors during
development of myotubules and of P2X, receptors during
development of the neuromuscular junction (41). In the rat
brain, P2X; receptors are expressed firstat E11, P2X, and
P2X; receptors appear at E14, P2X,, P2Xs and P2Xg
receptors at P1, and P2X; receptors at P16 (42).

Primitive sprouting of central neurons was shown in
experiments in which the enteric nervous system was
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transplanted into the striatum of the brain (43). It was later
shown that a growth factor released from enteric glial cell
acting synergistically with ATP (and its breakdown prod-
uct, adenosine) and nitric oxide were involved (44). It is
suggested that similar synergistic activity of purines and
growth factors might be involved in stem cell activity.

It was established early that ATP was a major cotrans-
mitter with ACh in parasympathetic nerves mediating con-
traction of the urinary bladder of rodents (45). In healthy
human bladder, the role of ATP as a cotransmitter is minor.
However, in pathological conditions, such as interstitial
cystitis, outflow obstruction and most types of neurogenic
bladder, the purinergic component is increased to about
40% (5,46). Similarly, in spontaneously hypertensive rats,
there is a significantly greater cotransmitter role for ATP in
sympathetic nerves (47).

P2X; receptors were cloned in 1995 and shown to be
largely located in small nociceptive sensory nerves that
label with isolectin B4 (48,49). Central projections are
located in inner lamina 2 of the dorsal horn of the spinal
cord and peripheral extension in skin, tongue and visceral
organs. A unifying purinergic hypothesis for the initiation of
pain was published (50) and a hypothesis describing puri-
nergic mechanosensory transduction in visceral organs in
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