
1345

Braz J Med Biol Res 32(11) 1999

Vascular reactivity after heart surgeryBrazilian Journal of Medical and Biological Research (1999) 32: 1345-1352
ISSN 0100-879X

Vascular changes after cardiopulmonary
bypass and ischemic cardiac arrest:
roles of nitric oxide synthase and
cyclooxygenase

Division of Cardiothoracic Surgery, Department of Surgery,
Beth Israel Deaconess Medical Center and Harvard Medical School,
Boston, MA, USA

F.W. Sellke

Abstract

Cardiac surgery involving ischemic arrest and extracorporeal circula-
tion is often associated with alterations in vascular reactivity and
permeability due to changes in the expression and activity of isoforms
of nitric oxide synthase and cyclooxygenase. These inflammatory
changes may manifest as systemic hypotension, coronary spasm or
contraction, myocardial failure, and dysfunction of the lungs, gut,
brain and other organs. In addition, endothelial dysfunction may
increase the occurrence of late cardiac events such as graft thrombosis
and myocardial infarction. These vascular changes may lead to in-
creased mortality and morbidity and markedly lengthen the time of
hospitalization and cost of cardiac surgery. Developing a better under-
standing of the vascular changes operating through nitric oxide syn-
thase and cyclooxygenase may improve the care and help decrease the
cost of cardiovascular operations.
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Introduction

Refinements in methods of myocardial
protection and operative techniques have
improved the results of cardiovascular sur-
gery. Yet, the operative treatment of cardiac
diseases remains associated with systemic
inflammation and a suboptimal outcome in
many patients. These inflammatory changes
are manifested by systemic hypotension,
myocardial failure, increased vascular per-
meability and consequent dysfunction of or-
gans such as the lungs, gut and brain. This is
especially true when operations are performed
on patients suffering acute myocardial ische-
mia, on patients in cardiogenic shock with

reduced peripheral perfusion, or during pro-
longed extracorporeal perfusion. It has been
estimated that 1 to 3% of patients suffer from
coronary spasm and develop temporary ST
segment elevations on EKG within hours of
cardiovascular surgery (1-3). However, these
patients generally suffer from atherosclerotic
coronary vascular disease and have several
other risk factors for endothelial dysfunc-
tion. Thus, these patients suffer from a
baseline impairment of nitric oxide synthase
(NOS). Equally important is the deteriora-
tion in cardiac function that frequently oc-
curs within several hours of operation (4).
Increased vascular permeability, impaired
regulation of myocardial perfusion, and sys-



1346

Braz J Med Biol Res 32(11) 1999

F.W. Sellke

temic inflammation undoubtedly play a ma-
jor role in this negative response to surgery
(5,6).

The signs of altered vascular permeabil-
ity and function are common after surgery in
the coronary, pulmonary and other vascular
beds. However, the mechanism has only re-
cently been understood to be a consequence
of numerous simultaneous pathological
stimuli including activation of complement,
activation and adherence of neutrophils, mac-
rophages, and platelets, and increased oxi-
dative stress. These pathologic processes are
mediated in part by the increased release of
nitric oxide (NO) due to expression of iNOS,
and the release of other inflammatory sub-
stances such as thromboxane A2 as a conse-
quence of expression of inducible cyclooxy-
genase (COX-2). These inflammatory me-
diators may potentially lead to changes in
vasomotor regulation, endothelial integrity
and vascular permeability that may compro-
mise the recovery of patients undergoing
cardiovascular surgery (6). This review
briefly details the effects of ischemic car-
dioplegia under conditions of extracorporeal
perfusion on the function and expression of
NOS and COX.

Cardioplegia and endothelial
function

Effects on nitric oxide synthase

It is well documented that hyperkalemia
and ischemia-reperfusion alter endothelial
structure and indices of endothelial func-
tion, most notably endothelium-dependent
relaxation (7-10). After hyperkalemic arrest,
endothelium-dependent relaxation is mod-
erately impaired (7), possibly due to changes
in membrane potential (11,12), NOS sub-
strate and cofactor depletion, alterations in
concentration or compartmentalization of in-
tracellular calcium (13,14), or injury to the
cell membranes and associated enzymes and
ion pumps. In addition, the release of NO

from the constitutive isoform of NOS (eNOS)
is reduced after ischemia and cardioplegia,
as determined by direct measurement (15).
During the initiation of reperfusion after is-
chemic arrest, injury to the endothelium (and
presumably eNOS) is observed and is due to
increased oxidative stress caused by the gen-
eration of oxygen-derived free radicals (16),
exposure of the endothelium to activated
complement (17,18), or the action of acti-
vated neutrophils and macrophages (6). When
assessing eNOS activity by examining endo-
thelium-dependent responses, uncertainty
remains regarding whether the defect in en-
zyme function is due to an actual impairment
in enzyme activity or to impaired signal trans-
duction as a consequence of receptor or
membrane injury. In addition, while impaired
signal transduction and reduced agonist-stim-
ulated production of NO likely contribute to
the reduced endothelium-dependent relax-
ation after cardioplegia, increased degrada-
tion or binding of NO through interactions
with free radicals may decrease the bio-
availability of NO to the vascular smooth
muscle (19).

Causes of impaired endothelial function
and vascular permeability

Increased oxidative stress as a result of
ischemia and/or reperfusion may produce
direct and indirect injury to endothelial cells.
The addition of either manganese superox-
ide dismutase or deferoxamine to a hyperka-
lemic cardioplegic solution markedly reduces
the impairment of endothelium-dependent
relaxation (20). This is presumably due to an
inhibition of the generation of superoxide
anion, the hydroxyl radical, and other free
radicals. Furthermore, the interaction of su-
peroxide anion and NO causes the formation
of the peroxynitrite radical that has been
implicated in mediating some of the free
radical-induced injury. Whereas the expres-
sion of the constitutive isoform of NOS
is generally not altered in vessels by brief
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(<2 h) crystalloid cardioplegia and reperfu-
sion, expression of iNOS is increased (21).
The increased release of NO due to expres-
sion of iNOS may not only contribute to the
reduced activity of eNOS, but may also lead
to reduced peripheral vascular resistance,
increased vascular permeability (22), and
other manifestations of systemic inflamma-
tion after cardiopulmonary bypass.

Abundant evidence supports a role for
leukocytes in mediating much of the myo-
cardial and systemic response to cardiovas-
cular surgery. Leukocytes may contribute to
much of the myocardial and endothelial dam-
age after ischemia (23), hyperkalemic car-
dioplegia (21,24), and cardiopulmonary by-
pass (CPB) (25). Indeed, focal leukocyte-
endothelial adherence has been observed on
transmission electron microscopy following
cardioplegia and reperfusion (7) and im-
proved recovery of myocardial function and
perfusion has been demonstrated when leu-
kocyte-depleted blood has been used to
reperfuse hearts after cardioplegic arrest (26).
In addition, monoclonal antibodies to adhe-
sion molecules (26) or chemotactic comple-
ment fragments (21) have beneficial effects
on vascular recovery when administered prior
to reperfusion. Activated leukocytes may
cause endothelial dysfunction through the
release of oxygen-derived free radicals, pro-
teolytic enzymes, and inflammatory cyto-
kines. Expression of P-selectin is initiated
shortly after initiation of CPB or ischemia
(27). This initiates the process of polymor-
phonuclear neutrophil (PMN) rolling, firm
adherence and activation of PMN�s. Subse-
quently, other adhesion molecules are up-
regulated, leading to the infiltration of PMN�s
into the perivascular tissues. PMN and mac-
rophage infiltration has been documented in
myocardium (28) after ischemia and car-
dioplegia and also in mesenteric (25) and
pulmonary tissue (29) after CPB. Further-
more, increased circulating and tissue levels
of tumor necrosis factor (TNF)-alpha, Il-6,
Il-8, and other inflammatory cytokines liber-

ated during and after CPB (30-33) have been
directly associated with the increase in per-
meability of blood vessels (6,30,31) and con-
tribute to the inflammatory reaction and in-
creased expression of inducible iNOS (34).

Another cytokine implicated in regulat-
ing vascular permeability is vascular endo-
thelial growth factor (VEGF), also known as
vascular permeability factor. VEGF is an
extremely potent vasodilator, operating
through the tyrosine kinase-regulated release
of NO (35,36). VEGF expression, as well as
the expression of its flk-1 receptor, is in-
creased after blood cardioplegia-reperfusion
(35) or brief (15 min) unprotected warm
ischemia (37). Interestingly, the microvas-
cular relaxation response to exogenous VEGF
is increased after blood cardioplegia, while
that to another endothelium-dependent va-
sodilator, adenosine phosphate (ADP), is
not changed (35). This suggests that a selec-
tive upregulation of functional VEGF recep-
tors on the endothelium may contribute to
increase vascular permeability and systemic
inflammation.

The alternative complement pathway is
activated during cardiovascular surgery,
when blood interacts with components of
the extracorporeal circuit (38). The classical
complement cascade (39) may be activated
during myocardial ischemia or cardioplegia
and may affect the recovery of cardiac func-
tion during surgery. The anaphylotoxins C3a,
C4a, and C5a are released, which have been
implicated in increasing neutrophil chemo-
taxis and adherence and in mediating some
of the systemic inflammation associated with
CPB (25,38). In addition, most anaphylatox-
ins possess vasoactive properties of their
own in addition to directly and indirectly
affecting other mechanisms of vascular regu-
lation. Thus, anaphylatoxins may cause vas-
cular and myocardial injury and reduce myo-
cardial perfusion. Some complement frag-
ments such as C5b-9, the terminal mem-
brane attack complex, may impair endotheli-
al cell function by direct contact and mem-
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brane injury, in addition to increasing aggre-
gation and chemotaxis of neutrophils (17).
Exposure of isolated vessels to zymosan-
induced complement-activated serum sig-
nificantly reduces NO-mediated endotheli-
um-dependent relaxation (17,18,40), suggest-
ing that activated complement directly causes
endothelial injury even in microvessels iso-
lated from other blood components and cel-
lular elements. Complement activation may
cause upregulation of adhesion molecules
(17) and increased generation of oxygen-
derived free radicals (41). The administra-
tion of heparin (42) to anticoagulate patients
prior to cannulation and systemic cooling
(43) is probably protective against the ef-
fects of complement activation. However,
the administration of protamine to reverse
the effects of heparin is a potent activator of
complement.

Changes in activity and expression of
cyclooxygenase

Not only does cardioplegia-reperfusion
lead to the impaired stimulated release of
NO, but it also induces the expression of the
inducible isoform COX-2 that has been im-
plicated in mediating much of the local and
systemic inflammation in many disease states.
Increased expression of COX-2 may cause
an enhanced contractile response to seroto-
nin of human atrial (44) or porcine ventricu-
lar (8) microvessels. This enhanced response
is due to an increased production and release
of contractile prostanoids since the response
is inhibited in the presence of either in-
domethacin or NS398, a selective inhibitor
of COX-2 (44). Subsequently, expression of
COX-2 was documented to be increased in
response to either ischemia or cardioplegia
(44) which may affect both microvascular
tone and permeability in part through the
activation of tyrosine kinase receptors and
mitogen-activated protein (MAP) kinase (45).
In contrast to iNOS, which is not regulated
by agonist stimulation or by intracellular

calcium concentration, there is evidence that
COX-2 is regulated by agonists such as sero-
tonin (44). Prostaglandins (PG) are formed
by the action of COX in a two-step conver-
sion of arachidonic acid (46). First, the en-
zyme converts arachidonic acid to a cyclic
endoperoxide (PGG2) by the action of COX-
1 or COX-2, which is then followed by a
peroxidase that cleaves the peroxide to yield
endoperoxide (PGH2). These unstable inter-
mediate products of arachidonic acid me-
tabolism by COX are then rapidly converted
to the prostaglandins (PGE2, PGF2, throm-
boxane A2, PGI2) by specific isomerase en-
zymes. The inducing factors leading to in-
creased expression of COX-2 are most likely
myocardial hypoxia and ischemia that occur
during cardioplegic arrest and the exposure
of myocardium and blood vessels to inflam-
matory cytokines. While COX-1 tradition-
ally was thought to be expressed constitu-
tively and COX-2 was felt to be inducible, it
has recently been determined that COX-2
may be significantly expressed, or may be
the predominant isoform, in the lungs of
certain species, just as iNOS may be consti-
tutively expressed (47) under basal condi-
tions in the gut. It is difficult to separate the
effects of NO and prostaglandin substances
when discussing changes in the regulation of
vasomotor activity and permeability during
cardiovascular surgery, since they are often
synergistic and complementary in their ac-
tions.

Smooth muscle control of vascular
tone

The changes in the expression and activ-
ity of both NOS and COX may affect coro-
nary and peripheral vasomotor tone during
and after cardiac surgery. In addition to en-
dothelial mechanisms, the regulation of cor-
onary blood flow is determined by meta-
bolic, autonomic, and myogenic mechanisms
which are largely characteristics intrinsic to
the vascular smooth muscle. Metabolic con-
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trol is mediated by the local release of vaso-
active substances and increased probability
of potassium channel opening (48), whereas
myogenic mechanisms are based more on
the intrinsic property of vascular smooth
muscle to regulate vascular resistance in re-
sponse to changes in transmural pressure.
Experimentally, coronary microvascular
myogenic contraction is preserved during
extracorporeal circulation, but the pressure-
diameter relation is shifted upward, suggest-
ing a decrease in vascular tone (49). Indeed,
the upward shift in the pressure-diameter
relation is normalized in the presence of NG-
nitro-L-arginine, suggesting that much of
this loss of tone is due to increased basal
release of NO from iNOS. Furthermore, au-
tonomic control and myogenic contraction
of peripheral arterioles are impaired after
CPB (50,51). Alpha-adrenergic and protein
kinase C (PKC)-mediated contraction in re-
sponse to phorbol ester are impaired in skel-
etal muscle microvessels subjected to pro-
longed CPB (50). This probably accounts
for much of the hypotension observed for
several hours to days after extracorporeal
circulation. As discussed above, the cause of
this alteration in intrinsic tone is multifacto-
rial but likely to be related to the increased
circulating levels of vasodilatory substances,
adrenergic receptor desensitization and un-
coupling from second messenger mecha-
nisms, and the release of cytokines during
cardiopulmonary bypass (6,32) that are ca-
pable of increasing expression of iNOS (34).

While increased blood flow is generally
considered to be a beneficial response, main-
tenance of organ perfusion could be com-
promised by concomitant systemic hypoten-
sion, necessitating vasopressor drugs. This
may result in a poor distribution of organ
perfusion. Interestingly, while alpha-adre-
nergic and PKC-mediated microvascular re-
sponses are reduced in some vascular beds
after CPB, the response to phenylephrine (an
alpha-adrenergic agonist) is actually in-
creased in the mesenteric microcirculation

(25), increasing the probability of mesenter-
ic ischemia when vasopressor drugs are ad-
ministered after CPB in order to maintain
peripheral blood pressure. Thus, changes in
both vasomotor tone and vascular perme-
ability are regulated by NOS and COX.
Changes in the expression and activities of
these enzymes have a major impact on the
recovery of patients after cardiovascular sur-
gery, especially those subjected to extracor-
poreal circulation.

Prevention of microvascular injury

The use of systemic cooling and the ad-
ministration of heparin (both of which de-
crease complement activation), utilization
of blood-containing cardioplegic solutions
(8,52,53) and other modifications have a
beneficial effect on endothelium-dependent
relaxation, myogenic contraction and re-
sponses to adrenergic agonists, and other
indices of vascular health during ischemic
arrest. However, a clinical benefit of blood
cardioplegia or of the addition of metabolic
enhancers to a cardioplegic solution has been
difficult to demonstrate under non-ischemic
conditions (54,55). The mechanism of the
positive effect of blood is uncertain but may
be due to its potent inhibitory effects on
oxygen-derived free radical generation, im-
proved oxygenation of tissues (thereby de-
creasing the amount of vascular ischemia),
buffering capacity of histidine and other
blood proteins or preservation of morpho-
logical integrity of the endothelium (6,8).
The addition of blood or magnesium to the
cardioplegic solution prevents the depolar-
ization and intracellular calcium accumula-
tion during ischemic arrest, most likely by
limiting calcium entry to the cytosol from
the sarcoplasmic reticulum and extracellular
space (56), and by limiting the derangement
in responses mediated by the endothelium
and those acting directly through the vascu-
lar smooth muscle (57). In addition, the use
of continuous warm blood cardioplegia has
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been shown to better preserve coronary en-
dothelium-dependent relaxation (53), al-
though other studies have failed to demon-
strate an improved effect over standard in-
termittent, cold blood cardioplegia (58). A
key to this disparity between experimental
and clinical effects may be related to species
variations, differences in experimental and
clinical conditions, and a negligible impor-
tance of each individual factor in the overall
outcome of patients undergoing CPB. It is
intuitive that the injury to vascular function,
including activity of eNOS and predomi-
nance of the COX-1 isoform, may be pre-
vented by limiting the factors that initiate the
changes, namely, hypoxia, ischemia, or ex-
posure to cytokines and activated leukocytes.
Antiproteases such as aprotinin, in addition
to decreasing blood loss after cardiopulmo-
nary bypass, may be useful in reducing post-
operative systemic inflammation (59). Fi-
nally, ischemic preconditioning may be use-
ful in limiting vascular injury, since it has
been reported to maintain endothelium-de-
pendent relaxation and ß-adrenergic regula-
tion (37,60).

Clinical implications

Reduction of endothelium-dependent re-
laxation and other changes in vasomotor
regulation following cardioplegia may pre-
dispose to coronary constriction or spasm
and alter the normal regulation of myocar-
dial perfusion in the postoperative period.
Recent work demonstrating an increased ex-
pression of COX-2 and increased contractile
response of coronary arterioles to serotonin
suggests that the administration of anti-plate-
let drugs such as aspirin improves short-term
coronary bypass graft patency not only by

preventing platelet aggregation and throm-
bus formation, but perhaps also by improv-
ing graft blood flow by preventing reduc-
tions in myocardial perfusion and changes in
vasomotor regulation.

Inhibition of factors suspected in causing
systemic inflammation has been attempted
with corticosteroids to block the effects of
inflammatory cytokines and expression of
iNOS, COX-2, and other inflammatory en-
zymes. PMN activation has also been inhib-
ited in some studies, but in general the re-
sults of these efforts have been disappoint-
ing. Inhibition of neutrophil infiltration with
a monoclonal antibody to C5a has resulted in
improved endothelial-dependent relaxation,
but without functional benefits in myocar-
dial, pulmonary, or mesenteric recovery.
However, these experiments only assessed
the short-term effects of impaired neutrophil
adhesion and sequestration, and long-term
affects were not examined. Of considerable
interest is the observation that many of the
clinical manifestations observed after car-
diac surgery were ascribed to CPB. Yet many
of these manifestations such as systemic hy-
potension, cognitive dysfunction, postopera-
tive atrial fibrillation and increased vascular
permeability are observed even during �off
pump� coronary artery bypass grafting, or
�OP CAB�, in which cardiopulmonary by-
pass is not utilized. Nevertheless, increasing
the understanding of vascular changes dur-
ing cardiac surgery and developing methods
to reduce microvascular injury to the heart,
brain and other organs through the use of
specific tyrosine kinase and guanylate cy-
clase inhibitors that regulate permeability,
or selective inhibitors or modulators of iNOS
or COX-2 will certainly be a challenge in
future investigations.
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