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Abstract

The antinociceptive effects of stimulating the medial (ME) and central
(CE) nuclei of the amygdala in rats were evaluated by the changes in
the latency for the tail withdrawal reflex to noxious heating of the skin.
A 30-s period of sine-wave stimulation of the ME or CE produced a
significant and short increase in the duration of tail flick latency. A 15-
s period of stimulation was ineffective. Repeated stimulation of these
nuclei at 48-h intervals produced progressively smaller effects. The
antinociception evoked from the ME was significantly reduced by the
previous systemic administration of naloxone, methysergide, atro-
pine, phenoxybenzamine, and propranolol, but not by mecamylamine,
all given at the dose of 1.0 mg/kg. Previous systemic administration of
naloxone, atropine, and propranolol, but not methysergide, phenoxy-
benzamine, or mecamylamine, was effective against the effects of
stimulating the CE. We conclude that the antinociceptive effects of
stimulating the ME involve at least opioid, serotonergic, adrenergic,
and muscarinic cholinergic descending mechanisms. The effects of
stimulating the CE involve at least opioid, ß-adrenergic, and musca-
rinic cholinergic descending mechanisms.
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Introduction

Behavioral and electrophysiological stud-
ies have demonstrated that at many sites in
the brain electrical or chemical stimulation
produces analgesia by activating centrifugal
pathways that act to inhibit sensory neurons
in the spinal cord (see Ref. 1). Special atten-
tion has been given to the mesencephalic
periaqueductal gray (PAG)/dorsal raphe
nucleus (DRN) and nucleus raphe magnus
(NRM) (see Ref. 2), but evidence exists for
the involvement of more rostral structures,

including the amygdala, in this central pain
control mechanism (see Ref. 3)

The amygdala is a subcortical complex of
nuclei considered to be an important site for
the induction of morphine analgesia (4), in
addition to playing a role in the mediation of
emotionality (see Ref. 5). The amygdala also
seems to be critical in processing the aspect
of noxious stimulation that results in aver-
sive conditioning (6). Most of the informa-
tion in favor of the involvement of the amyg-
dala in pain control mechanisms derives from
experiments on amygdaloid-lesioned animals
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or from the observation that the microinjec-
tion of some agonists into the amygdala can
evoke antinociception. Lesions of the amyg-
dala, mainly at its basolateral and central
(CE) nuclei, attenuate several forms of envi-
ronmentally induced antinociception (7-10).
Bilateral lesions of the CE abolish the anti-
nociceptive effects of low doses of systemi-
cally administered morphine in both the rat
tail flick (11) and formalin (12) tests. Micro-
injection of a κ-opioid agonist (13) or neuro-
tensin (14) into the amygdala evokes antino-
ciception. A similar effect was demonstrated
in the rat tail flick test following microinjec-
tion of carbachol into various amygdaloid
nuclei, including the CE and the medial (ME)
nuclei (15,16). Microinjection of morphine
into the corticomedial subdivision of the
amygdala is effective in the flinch-jump
(17,18) and hot plate (19) tests. Microinjec-
tion of opioids into the CE (9,20-25) or of
serotonin (26) into the basomedial part of
the amygdala also induces antinociception.

Few studies, however, have been con-
ducted on the effects of electrical stimula-
tion of the amygdala on nociceptive re-
sponses. Early studies have demonstrated
that stimulation of the lateral region of the
amygdala elicits antinociceptive-like effects
while the medial region yields a painful re-
sponse pattern (27). However, Abbott and
Melzack (28) did not obtain immediate anti-
nociception in rats following stimulation of
the amygdala. More recently, reduction of
visceral pain in cats has been reported to
occur after electrical stimulation of the CE
(29). Unilateral stimulation of the basolateral
nucleus, CE, or ME did not affect the thresh-
old for the tail withdrawal response evoked
by electric shock but increased the tail flick
latency (TL) to noxious heat, reduced the
tonic phase of the animal response to forma-
lin, and elevated the threshold for vocaliza-
tion during and after the application of an
electric shock to the tail skin (30).

The present study was undertaken to ex-
amine the effects of stimulating the CE or the

ME on the tail flick response evoked by
noxious heating of the skin in rats. We dem-
onstrate that a brief (30 s) stimulus applied to
either nucleus evokes antinociception. In
addition, we demonstrate that previous sys-
temic administration of methysergide, nalox-
one, propranolol, phenoxybenzamine or at-
ropine, but not mecamylamine, is effective
in inhibiting the antinociception produced
by ME stimulation. Moreover, systemic
naloxone, atropine and phenoxybenzamine,
but not propranolol, methysergide, or meca-
mylamine, are effective against CE stimula-
tion-produced antinociception.

Material and Methods

Subjects and surgery

The experiments were conducted on male
Wistar rats (140-160 g) housed two to a cage
with free access to food and water and main-
tained at an average ambient temperature of
24oC with a 12-h light-dark cycle before and
after surgery. The proposals of the Commit-
tee for Research and Ethical Issues of IASP
(31) were followed throughout the experi-
ments. Each animal was anesthetized with
sodium thiopentone (50 mg/kg, ip) and a
Teflon-insulated monopolar electrode (OD
= 0.007�) was stereotaxically implanted into
the skull to lie in the CE or ME nuclei. The
coordinates used were: AP = +5.8, L = 3.5,
and H = -3.2 mm, for the ME, and AP = +5.8,
L = 4.4, and H = -5.5 mm, for the CE, as
proposed elsewhere (32). The electrode was
then fixed to the skull with two steel screws
and dental cement. One of these screws was
used as the indifferent electrode. After re-
ceiving penicillin (50 mg/kg, im) the animal
was allowed to recover for at least one week
before the experiments.

Tail flick test

The animal was introduced into a venti-
lated glass tube for a period of up to 20 s,
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with the tail laid across a small wire that was
at room temperature (23 ± 2oC). The coil
temperature was then raised by the passage
of electric current, which was previously
adjusted to ensure a tail withdrawal reflex
within 2.5-3.5 s. A cut-off time of 6 s was
established to minimize the probability of
skin damage. Tail flick latencies were meas-
ured at 10-min intervals until a stable baseline
(BL) was obtained over three consecutive
trials. Only rats showing a stable BL after six
trials were used in each experiment. Each TL
was normalized by an index of antinocicep-
tion (IA) using the formula IA = (TL - aver-
age BL)/(6 - average BL).

Stimulation procedures

Immediately after BL determination the
animal was placed inside a glass-walled box
(20 x 30 x 35 cm), a 60-Hz sine-wave alter-
nating current was applied to the electrode
for 15 or 30 s and the TL determined within
10 s and the procedure was repeated at 10-
min intervals over a period of 30 min. Dur-
ing the stimulation period the drop in voltage
across a 1-kΩ resistor in series with the
electrode was continuously monitored on an
oscilloscope. No attempt was made to test
for the presence of antinociception during
the stimulation. Two groups of 5 animals
each with electrodes implanted in the ME or
CE were used as sham-stimulated rats.

A group of 18 rats with electrodes im-
planted in the ME or CE was preliminarily
used for the determination of the CI50, i.e.,
the current intensity producing an antinoci-
ceptive effect in 50% of the animals in the
experimental group. For calculation, antino-
ciception was arbitrarily considered to occur
whenever IA ≥0.5 was obtained. Immedi-
ately after BL determination each animal
received 30 s of brain stimulation, and the
TL was determined up to 10 s later. During
this first stimulation period the lowest cur-
rent of 1.4 µA root mean square (rms) was
used and then increased to 3.5 µA in a sec-

ond test 5 min later and to a maximum of 35
µA in a stepped sequence of 1.4, 3.5, 7.0,
10.0, 14.0, 21.0, 35.0 µA rms. The animals
were spared further stimulation whenever
IA = 1.0 was obtained.

Histology

At the end of the experiment the animal
was killed with an overdose of sodium thio-
pentone and perfused through the heart with
formalin. Electrode tracks were localized on
50-µm serial coronal sections stained with
neutral red, and identified on diagrams from
the atlas of König and Klippel (32).

Statistical analysis

The CI50 was calculated by the method of
Litchfield and Wilcoxon (33). The results of
the remaining studies are reported as graphs
of averaged IA (± SEM) values against time
of reading for a group of rats. The effects of
different treatments on IA were analyzed
statistically by multivariate analysis of vari-
ance (MANOVA) with repeated measures
to compare the groups over all times. The
factors analyzed in the experiments of ME
or CE stimulation were treatments, time
and treatment x time interaction. In the case
of significant treatment x time interactions
a one-way ANOVA followed by the Duncan
test was performed for each time. The anal-
ysis was performed using the statistical soft-
ware package SPSS/PC+, version 3.0, and
the level of significance was set at P<0.05.

Drugs

A range of antagonists were adminis-
tered intraperitoneally. Naloxone hydrochlo-
ride and phenoxybenzamine hydrochloride
were from RBI (Research Biochemicals In-
ternational, Natick, MA), atropine sulfate,
mecamylamine hydrochloride, and propran-
olol hydrochloride were from Sigma Chem-
ical Co. (Saint Louis, MO), and methysergide
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bimaleate was from Sandoz (Basel, Switzer-
land). The antagonists were all dissolved in
saline and given at the dose of 1.0 mg/kg, 10
min (naloxone, atropine, and propranolol),
15 min (methysergide and mecamylamine),
or 3 h (phenoxybenzamine) before intracere-
bral stimulation. A longer interval had to be

used between phenoxybenzamine adminis-
tration and brain stimulation because the
central effects of this drug develop slowly
(34).

Results

Determination of the current intensity
applied to the ME and CE for the production
of antinociception

The latency for the tail flick reflex was
increased by electrical stimulation of ME or
CE at the sites depicted in Figure 1A. The
current intensity for the maximal possible
effect in the test (IA = 1.0), however, varied
widely. One of eleven animals stimulated in
the ME with a current intensity of 1.4 µA
rms yielded IA = 1.0, whereas other rats
showed full antinociception after stimula-
tion with current intensities of 3.5 (2 ani-
mals), and 7.0, 10.0, 14.0, and 21.0 µA rms
(1 animal at each intensity). Four animals
did not show a full effect even after stimula-
tion at 35 µA rms. Similar results were ob-
tained for 7 rats stimulated in the CE. Full
antinociception was obtained at current in-
tensities of 1.4 and 10.0 µA rms (2 animals
each) and at 3.5 and 7.0 µA rms (1 animal
each). The remaining animal did not show a
full effect even at the current intensity of
35.0 µA. The CI50 were 10.11 (confidence
limits = 7.99 and 11.87) and 5.16 (3.74 and
6.29) µA rms for the ME and CE, respec-
tively. We therefore decided to stimulate
systematically these nuclei with 21.0 µA
rms.

Time-course of the effects of stimulating the
ME and CE. Influence of duration of the
stimulation and repeated stimulation

Stimulation of the ME (Figure 1B) or CE
(Figure 1C) with 21.0 µA over a period of 15
s produced a slight increase in the index of
antinociception (26% and 35% for ME and
CE stimulation, respectively) and the effects
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Figure 1 - Antinociceptive effects of stimulating the medial or central nuclei of the amygdala.
(A) Cross sections taken from the atlas of König and Klippel (32), at the indicated AP levels,
showing the location of the sites stimulated during experiments for the determination of
current thresholds. The remaining graphs show the time-course of the effects of stimulating
the medial (B and D) or the central (C and E) nuclei of the amygdala for 15 or 30 s,
respectively, on three different occasions at 48-h intervals. N = 4 for the curves of graph C
and 5 for the remaining graphs. *P<0.05 compared to sham-stimulated animals (Duncan
test).

*

*



685

Braz J Med Biol Res 31(5) 1998

Stimulation-produced antinociception from the amygdala

did not change significantly for experiments
repeated 48 or 96 h later. The effects were
stronger and of short duration following stim-
ulation of the ME (Figure 1D) or CE (Figure
1E) with the same current intensity applied
over a period of 30 s (58% and 54% for ME
and CE stimulation, respectively), but the
effects were smaller when the stimulation
was repeated 48 and 96 h later. The curves in
Figure 1B and C did not differ significantly
regarding the different occasions of stimula-
tion (F3,16 = 0.97, P = 0.43, and F3,16 = 1.15,
P = 0.36, respectively) nor did they show
significant effect x time interactions (F21,112

= 0.96, P = 0.52, and F21,112 = 1.01, P = 0.46,
respectively). The curves in Figure 1D did
not differ when the different occasions of
stimulation were compared (F3,13 = 1.73, P =
0.21) and showed no significant effect x
time interaction (F21,91 = 1.10, P = 0.35). The
curves in Figure 1E were significantly dif-
ferent (F3,16 = 3.89, P = 0.029) and showed a
significant effect x time interaction (F21,112 =
2.42, P = 0.002). The effects obtained for
animals stimulated in the CE on the first
occasion were significantly different from
those obtained for sham-stimulated rats at
times 0 and 2 min (ANOVA followed by the
Duncan test). The subsequent experiments
were then conducted on animals stimulated
only once with a current intensity of 21.0 µA
rms applied to each nucleus over a period of
30 s.

Some rats stimulated in the CE presented
aversive-like behaviors during stimulation,
including vocalization, masticatory move-
ments and attempts to escape from the box.
Apparently, the frequency of behaviors
evoked by stimulating these nuclei was not
changed by increasing the duration of the
stimulation. Escape was also observed in
some rats stimulated in the ME. These be-
haviors were more frequent during longer
periods of stimulation. After the end of stim-
ulation, no gross motor disturbance was de-
tected. The animals walked and responded
normally to innocuous stimuli. No attempt

was made to quantify these behaviors in the
present study.

Effects of ip administration of antagonists
on the antinociception induced by
stimulation of the ME

Six groups of rats were treated by ip
administration of antagonists, 10 min (nalox-
one, atropine, and propranolol), 15 min
(methysergide and mecamylamine) or 3 h
(phenoxybenzamine) before intracerebral
stimulation. All drugs were given at the dose
of 1 mg/kg. A group of rats treated with
saline (0.1 ml/kg, ip) was used as control.

Naloxone (Figure 2A), methysergide (Fig-
ure 2B), phenoxybenzamine (Figure 2C),
atropine (Figure 2D) and propranolol (Fig-
ure 2E), but not mecamylamine (Figure 2F),
significantly inhibited the antinociceptive
effects of stimulating the ME. The curves in
Figure 2 did not differ significantly regard-
ing treatments (F6,39 = 2.33, P = 0.05) but
showed a significant treatment x time inter-
action (F42,273 = 2.44, P<0.001). On the other
hand, naloxone (Figure 3A), atropine (Fig-
ure 3B), and propranolol (Figure 3C), but
not methysergide (Figure 3D), mecamyla-
mine (Figure 3E), or phenoxybenzamine (Fig-
ure 3F), were effective against the antinoci-
ception induced by stimulation of the CE.
The curves in Figure 3 differed significantly
regarding treatments (F6,38 = 5.10, P = 0.001)
and showed a significant treatment x time
interaction (F42,266 = 2.31, P<0.001). The
antagonists alone had no significant effect
on tail flick latency.

Discussion

The present study demonstrated that stim-
ulation of the ME or CE in rats produced
antinociception in the tail flick test. Behav-
ioral changes such as vocalization, mastica-
tory movements and attempts to escape from
the restraining box were occasionally ob-
served during the stimulation period. Masti-
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catory movements during stimulation of the
CE have also been reported elsewhere (35).

The antinociceptive effects of stimulat-
ing the ME or the CE were dependent on the
pattern of electrical stimulation. The current
intensity required for a full antinociceptive
effect was variable, the CE being more sen-

sitive than the ME. Electrical stimulation of
these nuclei was more effective when ap-
plied for 30 s than when applied for 15 s. The
small monopolar electrodes used in these
experiments reduce the risk of tissue lesion
and the occurrence of edema at the site
reached by the electrode tip. Moreover, the
biphasic alternating current applied to mon-
opolar electrodes allows a more focal stimu-
lation of the target structure (36).

We have also shown that the antinoci-
ception evoked from the ME or CE was
progressively weaker when the stimulation
was repeated at 48-h intervals. The repeated
stimulation of the amygdala may somehow
cause irreversible or long-lasting functional
changes at the site of stimulation. Repeated
stimulation of the amygdala may produce
kindling, a phenomenon that may change the
animal�s responsiveness to pain (37). An
alternative explanation for the phenomenon
could be the development of tolerance to the
stimulation. Similar changes induced by re-
peated stimulation of the PAG have been
previously demonstrated, and probably in-
volve the participation of endogenous opioid
modulation (38). In fact, opioid mechanisms
may participate in the antinociception evoked
by amygdaloid stimulation. The ME and CE
express mRNA for µ- and κ-opioid receptors
(39,40). Fibers and terminals immunoreac-
tive to ß-endorphins (41) or enkephalins
(42,43) were demonstrated in the ME and
CE, respectively. Our data, however, do not
allow us to conclude about the mechanism
involved in the reduced effectiveness of re-
peated stimulation of the ME or CE.

The antinociceptive effects of stimulat-
ing the ME were significantly inhibited by
the previous systemic administration of
naloxone (an opioid receptor antagonist),
methysergide (a 5-HT receptor antagonist),
atropine (a muscarinic cholinergic receptor
antagonist), phenoxybenzamine (an α-
adrenoceptor antagonist), and propranolol
(a ß-adrenoceptor antagonist), but not by
mecamylamine (a nicotinic cholinergic re-
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ceptor antagonist). Naloxone, atropine, and
propranolol, but not methysergide, phenoxy-
benzamine, or mecamylamine, were signifi-
cantly effective against the antinociception
induced by stimulating the CE. These an-
tagonists were all used at doses already known
to be effective against similar effects in-
duced by the stimulation of other brain struc-
tures known to participate in the descending
control of pain (44-48). The effectiveness of
propranolol against the stimulation-produced
antinociception from the ME or CE is in-
dicative that ß-adrenergic mechanisms may
be involved in the phenomenon. Propranolol
exhibits local anesthetic properties and has
affinity also for a range of serotonergic re-
ceptor subtypes (49). A local anesthetic ef-
fect of propranolol seems to depend on higher
drug concentrations (see 50) and is, there-
fore, unlikely to be the reason for its inhibi-
tory effect found in this study. The present
results do not allow us to exclude that the
effectiveness of propranolol against the stim-
ulation-produced antinociception from the
ME derives from its 5-HT antagonist prop-
erty. However, the nonspecific 5-HT an-
tagonist methysergide was effective against
the effect of stimulating the ME, but not the
CE. Thus, ß-adrenergic mechanisms may
also be involved in the descending mech-
anism activated from the CE. The different
profiles of effectiveness of the antagonists
used in this study provide evidence that the
ME and CE function separately to produce
inhibition of the tail flick reflex.

The tail flick escape from noxious heat is
a spinal reflex (51) and its inhibition by
stimulating supraspinal structures indicates
that this action may somehow inhibit spinal
mechanisms. Motor impairment produced
by intracerebral stimulation could be one
reason for the inhibition of the tail flick
reflex. Objective tests for motor changes
were not conducted in the present study.
However, no gross motor disturbance was
detected throughout the experiments. The
animals walked normally after the stimula-

tion period and responded to innocuous
stimuli.

Few reports are available regarding di-
rect projections from the amygdala to the
spinal cord. A sparse population of CE neu-
rons in monkeys (52) and cats (53) projects
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to the cervical spinal cord. Alternatively,
anatomical studies have demonstrated direct
reciprocal projections between the amyg-
dala and the PAG (54-59). The CE (56,60)
and ME (55,56,61) have direct and indirect
(via the hypothalamus) connections with the
PAG. The CE also sends projections to the
parabrachial nucleus (62,63) and locus coe-
ruleus (60,64), which are structures also
known to exert antinociceptive effects when
electrically stimulated (65,66). Thus, the
depression of the tail flick reflex by stimulat-
ing the ME or CE probably involves activa-
tion of descending pathways that utilize re-
lay stations before reaching the spinal
cord.

In summary, this study demonstrates that
brief electrical stimulation of the ME and CE
amygdaloid nuclei increases the tail flick
response latency. The effect obtained from
the ME involves at least opioid, serotoner-
gic, adrenergic, and muscarinic cholinergic
mechanisms. The effect from the CE seems
to depend on at least opioid, ß-adrenergic,
and muscarinic cholinergic mechanisms.
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